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Simple Summary: Interferon alpha (IFNα) signaling is highly upregulated in ER+ breast cancers that
become resistant to estrogen deprivation therapy. This study uncovers how enhanced (IFNα)/JAK-
STAT signaling directly influences estrogen receptor (ERα) activation in the absence of estrogen. We
found that inhibiting IFNα signaling downregulates expression and activation of ERα. In addition,
STAT1 and ERα directly interact and regulate a key interferon-stimulated gene, IFITM1, in AI-
resistant breast cancer cells. We demonstrate that crosstalk occurs between IFNα and ERα pathways,
which contributes to aggression and survival of AI-resistant breast cancer, thus representing a novel
mechanism of acquired AI resistance.

Abstract: Aromatase inhibitors (AIs) reduce estrogen levels up to 98% as the standard practice
to treat postmenopausal women with estrogen receptor-positive (ER+) breast cancer. However,
approximately 30% of ER+ breast cancers develop resistance to treatment. Enhanced interferon-alpha
(IFNα) signaling is upregulated in breast cancers resistant to AIs, which drives expression of a
key regulator of survival, interferon-induced transmembrane protein 1 (IFITM1). However, how
upregulated IFNα signaling mediates AI resistance is unknown. In this study, we utilized MCF-7:5C
cells, a breast cancer cell model of AI resistance, and demonstrate that these cells exhibit enhanced
IFNα signaling and ligand-independent activation of the estrogen receptor (ERα). Experiments
demonstrated that STAT1, the mediator of intracellular signaling for IFNα, can interact directly
with ERα. Notably, inhibition of IFNα signaling significantly reduced ERα protein expression and
ER-regulated genes. In addition, loss of ERα suppressed IFITM1 expression, which was associated
with cell death. Notably, chromatin immunoprecipitation experiments validated that both ERα
and STAT1 associate with ERE sequences in the IFITM1 promoter. Overall, hyperactivation of
IFNα signaling enhances ligand-independent activation of ERα, which promotes ER-regulated, and
interferon stimulated gene expression to promote survival in AI-resistant breast cancer cells.

Keywords: breast cancer; aromatase inhibitor; estrogen deprivation; AI resistance; estrogen receptor;
interferon alpha; interferon-stimulated genes; IFITM1; STAT1

1. Introduction

Breast cancer is the most frequently diagnosed cancer among women in the United
States (U.S.) and the second highest cause of death. It is estimated that in 2021, ap-
proximately 281,550 U.S. women will receive a diagnosis of invasive breast cancer and
43,000 women will die from the disease [1–4]. The most frequently diagnosed subtype of
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breast cancer is ER+ (estrogen receptor and/or progesterone receptor positive) accounting
for approximately 70% of diagnoses [5,6]. Because estrogen promotes cancer progression,
the standard treatment for ER+ breast cancer blocks ERα signaling. Aromatase inhibitors
(AIs), which decrease estrogen production by 90–98%, are now the standard of care for
postmenopausal ER+ breast cancer [7–10]. Despite the efficacy of AIs, approximately 30%
of patients develop recurrent disease within 10 years, demonstrating resistance to AIs in
tumors. To treat these patients, it is critical to understand the molecular mechanisms of
acquired AI resistance.

Our lab has previously identified that the interferon alpha (IFNα)/JAK-STAT signal-
ing pathway is a mechanism of AI resistance [11]. Interferons (IFNs) are cytokines secreted
by the body to increase antiviral responses in cells, but they also influence pro-survival
signaling mechanisms. Picomolar concentrations of IFNs autonomously secreted by cancer
cells for an extended duration induce expression of ISGs important in cancer progres-
sion and therapy resistance [12,13]. For example, expression of ISGs including PLSCR1
and IFITM1/3 promotes tumor progression and invasion in clinical samples and cancer
cell lines [14–16]. Mechanistically, IFNα activates JAK/STAT signaling through binding
to the IFNα receptor 2 (IFNAR2). P-STAT1, P-STAT2, and interferon regulatory factor
9 (IRF9) bind to interferon-stimulated response elements (ISREs) to transcribe ISGs. Indeed,
hyperactivated IFNα/JAK/STAT signaling is pro-tumorigenic and confers resistance to
treatment; however, the exact molecular mechanism has yet to be elucidated [17,18].

Recently, our lab identified overexpression of multiple ISGs in AI-resistant breast
cancer including interferon-induced transmembrane protein 1 (IFITM1), which is critical
for regulating survival of acquired AI-resistant breast cancer cells [11,19,20]. IFITM1
contributes to protein complexes involved in cell adhesion, germ cell homing, and viral
infection [21]. IFITM1 resides on plasma membranes and can interact with multiple proteins
including RAB5, LAMP1, CD63, CD19, CD21 and CD81 [22,23], which can regulate EMT,
cell adhesion, angiogenesis, invasion, and metastasis [24]. Other studies have validated
the importance of IFITM1 and shown correlation with poor overall and recurrence-free
survival in multiple tumor types. Its overexpression in gastric, esophageal, colorectal,
cervical, ovarian, brain, and breast cancer promotes proliferation, migration, invasion, and
metastasis [25–33].

Traditionally, the estrogen receptor functions as a classic steroid hormone receptor.
Estrogen binds to ERα, allowing it to act as a transcription factor [34]. ERα can also
signal through a ligand-independent (or estrogen-independent) mechanism. Through
tethered protein–protein interactions with other transcription factors (FOXA1 SP1, AP1,
Pitx1, Runx1, SF-1, SRCs, NFκB, and C/EBP) and rapid phosphorylation cascades through
the serine 167 and 118 residues, ERα can regulate signaling non-canonically [34–37]. Many
cell signaling proteins including GPCRs, Src, PI3K, EGFR, HER2, IGF-1, and MAPK can
influence the ligand-independent activation of ERα [34,38]. This ligand-independent
signaling allows breast cancers to become resistant to AIs. We hypothesize that long-term
estrogen deprivation enhances IFNα signaling in AI-resistant breast cancer cells, which
drives ligand-independent activation of ERα and promotes AI resistance.

In this study, we investigated whether ERα is directly regulated by IFNα signaling,
representing a potential mechanism by which ER+ breast cancers develop resistance to
estrogen deprivation therapy. We discovered that AI-resistant MCF-7:5C breast cancer
cells constitutively express enhanced ERα (total and phosphorylated) expression as well
as ER-regulated genes compared to AI-sensitive MCF-7 and T47D cells and that blockade
of IFNα signaling or knockdown of STAT1/2 markedly reduces ERα expression and ER-
regulated genes in these cells. Additionally, we found that ERα and STAT1 physically
interact in MCF-7:5C cells through protein docking studies, proximity ligation assay, and
immunoprecipitation. Notably, chromatin immunoprecipitation studies show that STAT1
and ERα associate with IFITM1 promoter to drive its expression in AI-resistant MCF-7:5C
cells. Surprisingly, ligand treatment (through E2) inhibits IFITM1 promoter occupation
and expression and induces cell death. Together, these findings demonstrate a novel
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crosstalk between IFNα signaling and ligand-independent activation of ERα in promoting
AI resistance in breast cancer.

2. Materials and Methods
2.1. Cell Lines

The MCF-7 cell line was obtained from Dr. V. Craig Jordan (University of Texas MD
Anderson Cancer Center, Houston, TX, USA) and the MCF-7:5C was cloned from parental
MCF-7 cells following long-term (>12 months) culture in estrogen-free medium [39]. The
T-47DA:18 cell line (hereafter referred to as T47D) was derived from T47D cells origi-
nally obtained from ATCC (Rockville, MD, USA) [40,41]. All cell lines were cultured as
previously described [42] at 37 ◦C under 5% CO2.

2.2. Small Interfering RNA (siRNA) Transfections

T47D, MCF-7, and MCF-7:5C cells (1 × 105) were transiently transfected with siRNAs
for ERα (Santa Cruz Biotechnology, Dallas, TX, USA, Cat#sc-29305), STAT1 (Santa Cruz
Biotechnology, Cat#sc-44123), and STAT2 (Santa Cruz Biotechnology, Cat#sc-29492) or a
scrambled negative control (Santa Cruz Biotechnology, Cat#sc-37007). The ERα, STAT1,
STAT2 and control siRNAs were pools of three target-specific 20 to 25 nt siRNAs as
previously described [42].

2.3. Cell Counting for Proliferation

T47D, MCF-7, and MCF-7:5C (1× 104) cells were assayed for viability and proliferation
in 24-well plates in triplicate in estrogen-free medium. After 72 h transfection, cells
were counted by Trypan blue (Sigma, St. Louis, MO, USA, Cat#T8154) exclusion direct
cell counts.

2.4. Western Blotting

Following 48 h treatment as indicated with 1 nmol E2 (Sigma, Cat#E8875), 48 h treat-
ment with siER (Santa Cruz Biotechnology, Cat#SC-29305), 24 h treatment with 10 µmol
IFNAR NAb (Millipore, Burlington, MA, USA, MAB1155), 48 h treatment with 1 µmol
Ruxolitinib/Jakafi™ (Rux) [43] as indicated (Cayman Chemical, Ann Arbor, MI, USA,
Cat#11609), cells were harvested, underwent protein assay, separated by SDS-PAGE, trans-
ferred and blocked. After primary and secondary antibody incubation, bands were detected
and exposed to film, as previously described [42]. Target proteins were detected using
primary antibodies: anti-p-ERα S167 (Cell Signaling, Danvers, MA, USA, Cat#64508S), anti-
p-ERα S118 (Cell Signaling, Cat#2511S), anti-ERα (Cell Signaling, Cat#8644S), anti-p-STAT1
(Santa Cruz Biotechnology, Cat#SC-8394), anti-p-STAT2 (Cell Signaling, Cat#88410S), anti-
STAT1 (Santa Cruz Biotechnology, Dallas, TX, USA, Cat#SC-464), anti-STAT2 (Santa Cruz
Biotechnology, Cat#SC-514193), anti-IFITM1 (Santa Cruz Biotechnology, Cat#SC-374026)
or anti-β-actin (Cell Signaling, Cat#3700S). Western blotting of proteins is available in
Supplementary Materials.

2.5. RNA Isolation and Real-Time PCR

Following 48 h treatment or transfection, cells were harvested, total RNA was isolated,
cDNA was synthesized, and RT-PCR was conducted. (Primers are outlined in Table S1 [42]).
Relative mRNA expression level was determined as the ratio of the signal intensity to
that of PUM1 using the formula: 2−∆CT. When cells were treated, fold change in gene
expression was normalized to PUM1 and then compared to the untreated value for that
cell line using the formula: 2−∆∆CT.
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2.6. Immunofluorescent (IF) Staining

Following fixing and permeabilization, cells were stained using primary antibodies
against anti-IFITM1 (Santa Cruz Biotechnology, Cat#SC-374026) and anti-ERα (Santa Cruz
Biotechnology, Cat#SC-544) followed by secondary antibodies, and mounted as previously
described [42]. Images were collected on a Leica TCS SPE confocal microscope and analyzed
using the Leica LAS AF Lite software (Leica Biosystems, Nussloch, Germany).

2.7. Proximity Ligation Assay

Fixed cells were washed with PBS, permeabilized with 0.1% Triton-X in 1× PBS for
15 min, and incubated with Duolink® blocking solution. For the remainder of the processing
the Duolink® PLA Fluorescence (Sigma Aldrich, St. Louis, MO, USA, #DUO92001) was
used per the manufacturer’s instructions. Antibodies used were ERα rabbit (Cell Signaling
Technologies, #8644S,) and STAT1 mouse (1:200, Santa Cruz: sc-464).

2.8. Dual Luciferase Reporter Assays

For promoter assays, 0.8 µg of plasmid DNA and pRL CMV Renilla vector were
used [44]. For analysis of IFITM1 promoter activity, the pGL3 plasmid with the first 750 nu-
cleotides of the IFITM1 promoter inserted (pGL3-IFITM1 [−750/−1]) was used [44]. The
pGL3-Basic-IRES was a kind gift from Joshua Mendell (Addgene, Watertown, MA, USA,
Cat#64784) [45]. Analysis of ISRE and ERE promoter activity was previously described [42].

2.9. TUNEL Staining

After 72 h transfection, TUNEL staining was conducted using the Click-iT Plus TUNEL
Assay Kit (Invitrogen, Waltham, MA, USA, Cat#C10618) following the manufacturer’s
instructions. The average TUNEL intensity was quantified using the red color channel on
Image J software for a minimum of three images.

2.10. Co-Immunoprecipitation (Co-IP)

Cell lysates were collected incubated overnight at 4 ◦C with 2 µg appropriate antibody or
control IgG. 50:50 Protein A/G coated magnetic beads (Invitrogen, Cat#10001D/Cat#10003D)
were then added for the final 1 h of incubation time. Immune complexes were washed three
times with PBS, resuspended in Laemmli sample buffer (Invitrogen, Cat#NP0007), boiled for
5 min, and subjected to Western blotting analysis.

2.11. In Silico Docking Analysis

X-ray crystal structures of STAT1 (1YVL) and ERα (1A52) were downloaded from the
protein data bank (PDB). These PDB files were prepared for docking analysis by removing
ligands, water molecules and extra chains of amino acids that may interfere with the
protein–protein interactions. Chain A was selected for both proteins which were further
energy minimized to ensure the best folding of each protein and polar hydrogens and
Kollman Charges were added using MGL tools. The final prepared protein structures were
uploaded to the GRAMM-X Protein–protein Docking Web Server v.1.2.0 (http://vakser.
compbio.ku.edu/resources/gramm/grammx/, accessed on 8 February 2021) to check for
protein–protein interactions [46,47]. The final output file was analyzed using the PYMOL
program to isolate the interacting amino acids and bond lengths [48].

2.12. Chromatin Immunoprecipitation (ChIP) Assay

ChIP was performed after sonication using the ChIP-IT Express Kit (Active Motif,
Carlsbad, CA, USA, Cat#53008) according to the manufacturer’s instructions. Lysates were
immunoprecipitated (IP) overnight (18 h) with the following antibodies: anti-STAT1 (Cell
Signaling, Cat#9172S), anti-ERα (Cell Signaling, Cat#8644S) or an equal amount of rabbit
IgG (Santa Cruz Biotechnology, Cat#SC-2027). Resulting DNA was analyzed using qPCR
and run on a DNA gel. Data are represented as a percentage of input DNA.

http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
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3. Results
3.1. ERα and ER-Regulated Genes Are Upregulated in Aromatase Inhibitor-Resistant Breast
Cancer Cells

The estrogen-independent MCF-7:5C clone was derived from MCF-7 cells after long-
term estrogen deprivation [39,49]. MCF-7:5C cells maintain wild-type ERα but lose PR
expression and exhibit estrogen (E2)-induced cell death [50,51]. To better understand
ERα function in AI-resistant MCF-7:5C cells, we measured total and phosphorylated ERα
expression in these cells compared to AI-sensitive MCF-7 and T47D breast cancer cells. We
found that AI-resistant MCF-7:5C cells expressed markedly elevated levels of total and
phosphorylated (S167 and S118) ERα compared to MCF-7 and T47D cells and that ERα
was primarily localized in the nucleus in MCF-7:5C cells, thus indicating a constitutively
activated state (Figure 1A,B). Next, we examined the mRNA expression levels of five
ER-regulated genes, including cyclin D1 (CCND1), c-Myc, Cathepsin D (CTSD), pS2, and
FOXA1. As shown in Figure 1C, all the ER-regulated genes were highly upregulated in
AI-resistant MCF-7:5C cells compared to MCF-7 and T47D cells, despite these cells being
grown in estrogen-free conditions (Figure 1C). Finally, we assessed the mRNA expression
of several well-known ER-coregulatory proteins including SP1, SRC-1, SRC-3, CBP, p300,
GATA3, and CITED1 in MCF-7, T47D, and MCF-7:5C cells (Figure 1D). Surprisingly, we
found that T47D cells had the highest expression of ER-coregulatory proteins, whereas
MCF-7:5C cells had the lowest level compared to MCF-7 cells (Figure 1D).

3.2. Loss of ERα Expression Induces Apoptosis Most Prominently in Aromatase
Inhibitor-Resistant Breast Cancer Cells

To test whether loss of ERα expression significantly impacts the phenotype of MCF-
7:5C, MCF-7, and T47D cells, we used siRNA to inhibit its expression. Figure 2 shows that
loss of ERα markedly reduced the growth of AI-resistant MCF-7:5C cells compared to MCF-
7 and T47D cells and TUNEL staining confirmed that the decrease in growth was due to
apoptosis, which was most pronounced in MCF-7:5C cells (Figure 2A,B). Immunoblotting
analysis verified that ERα inhibition increased PARP cleavage primarily in MCF-7:5C cells
(Figure 2C). Lastly, we observed that in all three cell lines, knockdown of ERα significantly
reduced the expression of ER-regulated genes; however, the effect was most pronounced
in AI-resistant MCF-7:5C cells, which expressed the highest basal level of ER-regulated
genes (Figure 2D, left panel) compared to MCF-7 (Figure 2D, right panel) and T47D cells
(Figure 2D, bottom panel).

3.3. Enhanced IFNα Signaling Affects ERα and ER-Regulated Gene Expression in AI-Resistant
Breast Cancer Cells

Previously, we demonstrated the enhanced IFNα signaling in AI-resistant MCF-7:5C
cells [11,26]; hence, we investigated the consequence of enhanced IFNα signaling on ERα
function and its transcriptional activation. We first measured the expression of multiple
interferon-stimulated genes (ISGs) including IFNα, IFNβ, IFIT1, IRF9, OAS1, STAT1, STAT2,
PLSCR1, and IFITM1 and found that they were markedly elevated in AI-resistant MCF-7:5C
cells but not expressed in MCF-7 cells (Figure 3A). Next, we determined whether enhanced
IFNα signaling alters ERα expression and function by blocking the IFNα signaling pathway
using an IFNAR neutralizing antibody (IFNAR NAb) and a JAK1 inhibitor, Ruxolitinib
(Rux) (Figure 3B–D). Blockade of IFNα signaling significantly reduced total ERα, p-ERα
S167 levels, p-STAT1/p-STAT2, and IFITM1 expression (Figure 3B) in AI-resistant MCF-
7:5C cells. The expression of our selected ER-regulated genes (CCND1, pS2, CTSD, FOXA1,
and c-Myc) was markedly reduced in these cells with no significant effect in MCF-7 cells
(Figure 3C). Finally, blockade of IFNα signaling also reduced ERE (estrogen response
element) activity in AI-resistant MCF-7:5C cells, as demonstrated by the luciferase assay
shown in Figure 3D. Confirmation of the inhibitors effect on STAT1 and STAT2 at the
mRNA level in all cell lines is shown in Figure S1A along with two downstream targets,
IFITM1 and IRF9. The same experiments were performed in T47D cells and show little
impact on ERα signaling (Figure S1B–D).
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3.4. STAT1 and STAT2 Expression Affect ERα and ER-Regulated Gene Expression in AI-Resistant
Breast Cancer Cells

Since the JAK/STAT inhibitor Rux dramatically reduced ERα expression in AI-resistant
MCF-7:5C cells, we next determined whether inhibition of STAT1 and STAT2 directly im-
pacts ERα expression and function in these cells. We utilized siRNAs to target STAT1 and
STAT2 expression in MCF-7:5C and MCF-7 cells. Inhibition of STAT1 and STAT2 reduced
total ERα and p-ERα levels in MCF-7:5C cells but not MCF-7 cells (Figure 4A). Notably,
loss of STAT1 significantly reduced ERE activity in MCF-7:5C cells (Figure 4B) while loss of
STAT1 and STAT2 dramatically reduced the expression of ER-regulated genes in MCF-7:5C
cells (Figure 4C, right panel) with no effect in parental MCF-7 cells (Figure 4C, left panel).
Confirmation of STAT1 and STAT2 knockdown is shown in Figure 4D along with two
downstream targets IFITM1 and IRF9. Similar experiments were performed in T47D cells
and although ERα protein level was reduced, ERE luciferase activity and ER-regulated
genes were not impacted (Figure S2).

Figure 1. ERα and ER-regulated genes are overexpressed in aromatase inhibitor-resistant breast cancer cells. Cell lysates
were subjected to (A) Western blot for ERα, p-ERα S167, and p-ERα S118 protein expression. Image J software was used
to quantify levels of each protein relative to T47D. Quantification is shown below blot. (B) Immunofluorescent imaging.
(C) RT-PCR for ERα, and the ER-regulated genes, CCND1, C-Myc, CTSD, pS2 and FOXA1 mRNA. (D) Transcript levels of
ERα coactivators of ERα, SP1, SRC1, SRC3, CBP, P300, GATA3 and CITED1, were determined by RT-PCR. Data represent
three independent experiments run in triplicate. *** p < 0.001.
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Figure 2. Loss of ERα expression induces apoptosis most prominently in aromatase inhibitor-resistant breast cancer cells. T47D, MCF-7,
and MCF-7:5C cells were transiently transfected with siCon or siER and (A) measured for apoptosis by TUNEL staining, which was
quantified with Image J Software (right panel); (B) assessed for cell proliferation c using Trypan blue exclusion 72 h after transfection;
(C) immunoblotted for ERα and PARP expression; (D) analyzed by RT-PCR for mRNA expression of ER-regulated genes (CCND1, pS2,
CTSD, FOXA1 and C-myc). Data represent three independent experiments run in triplicate. ** p < 0.05 and *** p < 0.01.
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Figure 3. Enhanced IFNα signaling affects ERα and ER-regulated gene expression in AI-resistant breast cancer cells. (A) MCF-7
and MCF-7:5C cells were analyzed by RT-PCR for interferon-stimulated gene (ISG) expression. (B,C) MCF-7 and MCF-7:5C cells
were treated for 48 h with IFNAR NAb or Rux (as indicated) and immunoblotted for the indicated proteins or analyzed by RT-PCR.
(D) MCF-7 and MCF-7:5C cells were transfected with the ERE luciferase construct and then treated with IFNAR NAb or Rux. Luciferase
activity was then read. * p < 0.1, ** p < 0.05 and *** p < 0.01.

3.5. STAT1 Interacts with ERα through In Silico and In Vitro Analysis in AI-Resistant Breast
Cancer Cells

Our data validated that STAT1 can alter ERα levels, thus we sought to determine
whether these proteins physically interact through in silico analysis using the GRAMM-X
Protein–protein Docking Web Server v.1.2.0. We found a potential binding site between
STAT1 and ERα (Figure 5A). The STAT1 amino acids (denoted in pink) D292, S307, S315,
and T489 interact with L544, G339, P337, L416, N413, and M437 of ERα (denoted in
green), respectively. Binding occurs within 2.2 to 3.5 angstroms, indicating strong bonds
and a relatively stable complex between the STAT1 DNA binding domain and ERα AF2
domain. This suggests that STAT1 may be interacting with ERα in lieu of ligand to cause
its activation. In vitro, we validated the interaction between STAT1 and ERα through two
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methods. First, we performed immunoprecipitation of ERα and used Western blotting to
detect protein interactions. Only STAT1, not STAT2 or IRF9, interact with ERα in the MCF-
7:5C cells (Figure 5B). Finally, we utilized proximity ligation assay for STAT1 and ERα and
saw predicted interactions solely in the AI-resistant MCF-7:5C cells (Figure 5C). Overall,
this finding indicates a novel interaction between STAT1 and ERα in the AI-resistant
MCF-7:5C cell line.

Figure 4. STAT1 and STAT2 expression affect ERα and ER-regulated gene expression in AI-resistant breast cancer cells.
(A) MCF-7 and MCF-7:5C cells were transiently transfected for 48 h with siRNA against STAT1 or STAT2 and immunoblotted
for the proteins indicated. (B) MCF-7 and MCF-7:5C cells were transiently transfected for the ERE reporter construct and
siRNA against STAT1 or STAT2 for 48 h. Luciferase activity was then read. (C,D) MCF-7 and MCF-7:5C cells were transfected
with siCon, siSTAT1, or siSTAT2 (as indicated) and analyzed by RT-PCR. * p < 0.05, ** p < 0.01 and *** p < 0.001.

3.6. Inhibition of ERα Directly Affects IFITM1, a Downstream Target of IFNα Signaling

We previously reported that interferon-induced transmembrane protein 1 (IFITM1) is a
key regulator of growth and survival in AI-resistant MCF-7:5C cells [11] and its expression
correlates with ERα expression. In this experiment, we utilized siRNA knockdown to
examine the effect of ERα loss on IFITM1 expression. We found that inhibiting ERα
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markedly reduced IFITM1 expression at the protein (Figure 6A) and the mRNA level
(Figure 6B) and it decreased IFITM1 reporter activity and interferon-stimulated response
element (ISRE) luciferase activity in MCF-7:5C cells but not MCF-7 or T47D cells (Figure 6C
and Figure S3A–C). Notably, loss of ERα also significantly reduced p-STAT1 but not p-
STAT2 levels in MCF-7:5C cells, thus confirming an important role for ERα/STAT1 crosstalk
in regulating IFITM1.

Figure 5. STAT1 interacts with ERα through in silico and in vitro analysis in AI-resistant breast cancer cells. (A) X-ray
crystal structures of STAT1 and ERα were downloaded from PDB and prepared for docking by removing ligands, water
molecules and extra chain of amino acids. Chain A was selected for both proteins. The proteins were further prepared using
MGL tools. The final prepared protein structures were uploaded to the GRAMM-X protein docking server for checking
interactions. The final output file was analyzed using PYMOL program. (B) T47D, MCF-7, and MCF-7:5C cells were
immunoprecipitated with anti-ERα or rabbit IgG and immunoblotted for STAT1, STAT2, IRF9 and ERα. (C) All cell lines
were grown on coverslips and processed with the Duolink® PLA Fluorescence with ERα and STAT1 antibodies.

3.7. ERα and STAT1 Regulate IFITM1 through Binding to ERE and ISRE Elements in
the Promoter

To investigate whether ERa and STAT1 directly bind to the IFITM1 promoter, we first
determined whether there were any ERE binding sites in the IFITM1 promoter. Utilizing the
UCSC Genome Browser, we searched previously uploaded chromatin immunoprecipitation
data from Tamoxifen-resistant cells for ERE-like sequences. We found multiple ERE-like
sequences (AGGTCACCCTGACCT) within the IFITM1 promoter at 30 kB upstream and
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45, 85, and 100 kB downstream of the start site (Figure 7A). Next, we performed chromatin
immunoprecipitation in all three of our cell lines with primers selective for each of the
EREs and the well-known ISRE in the IFITM1 promoter (Figure 7B and Figure S3D). We
found that STAT1 and ERα were recruited to the ERE of IFITM1 in AI-resistant cells and to
the ISRE. In MCF-7:5C cells the maximum ERα binding occurred at the 100 kB ERE (3.0×)
with the lowest binding at 45 kB ERE (1.9×) when compared to the IgG. The maximum
STAT1 binding was observed at the 100 kB ERE site (2.7×) and the lowest binding at the
45 kB ERE (1.7×) compared to the IgG. Overall, these data suggest that both STAT1 and
ERα bind to the ERE sites within the IFITM1 promoter as well as the ISRE element. The
strongest binding of both proteins occurs at the 100 kB ERE site. The MCF-7 and T47D cells
(Figure S3) did not have significant binding of STAT1 or ERα to any of these sites within
the IFITM1 promoter.

Figure 6. Inhibition of ERα directly affects IFITM1, a downstream target of IFNα signaling. MCF-7 and MCF-7:5C cells were
transiently transfected for 48 h with siRNA against ERα and (A) immunoblotted for the proteins indicated; (B) analyzed by
RT-PCR. (C) MCF-7:5C cells were transiently transfected for the IFITM1 promoter construct and siRNA against ERα for
48 h. (D) MCF-7 and MCF-7:5C cells were transfected with the ISRE reporter construct and siRNA against ERα for 48 h.
Luciferase activity was read. ** p < 0.05 *** p < 0.001.
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Figure 7. ERα and STAT1 regulate IFITM1 through binding to ERE and ISRE elements in the promoter. (A) ChIP data
from Tam-resistant breast cancer cells from the UCSC Genome Browser were analyzed for potential ERα binding sites.
(B) Chromatin immunoprecipitation (ChIP) with antibodies against ERα, STAT1 or species-specific IgG control was
performed and analyzed by qPCR and DNA gels on the isolated DNA using primers designed to amplify the ERE and
ISRE regulatory regions. Recruitment of the indicated proteins to the ERE and ISRE site was compared to input DNA and
displayed as mean ± SD of technical triplicates in two independent experiments. * p < 0.5, ** p < 0.05 and *** p < 0.001.

3.8. E2 Treatment Inhibits IFITM1 Expression and Blocks ERα and STAT1 Recruitment to the
IFITM1 Promoter

Based on the observation that ERα was transcriptionally active in our AI-resistant
MCF-7:5C cells and that ERα/STAT1 interaction regulates IFITM1 expression in these cells,
we assessed the impact of E2 on ERα function and ER-mediated regulation of IFITM1 ex-
pression. Western blot and RT-PCR analyses revealed that E2 treatment completely reduced
IFITM1 protein (Figure 8A) and IFITM1 mRNA (Figure 8B) expression in AI-resistant MCF-
7:5C cells. Additionally, ChIP assays revealed that there was significant ligand-independent
recruitment of ERα and STAT1 to the IFITM1 promoter at the location of the ERE sites
in MCF-7:5C cells; however, in the presence of E2, the binding of both STAT1 and ERα
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to the IFITM1 promoter was markedly reduced (Figure 8C). Taken together, these data
indicate that in AI-resistant MCF-7:5C cells, E2 acts in a paradoxical manner to suppress
ERα function and thus block its potential crosstalk with the IFNα signaling pathway.

Figure 8. E2 treatment inhibits IFITM1 expression and blocks ERα and STAT1 recruitment to the IFITM1 promoter. MCF-7:5C
cells were treated for 48 h with E2 and (A) immunoblotted for ERα, p-STAT1, STAT1, and IFITM1 expression; (B) analyzed
by RT-PCR. (C) Chromatin immunoprecipitation (ChIP) with antibodies against ERα, STAT1 or species-specific IgG control
was performed and analyzed by qPCR and DNA gels on the isolated DNA using primers designed to amplify the ERE and
ISRE regulatory regions. Recruitment of the indicated proteins to the ERE and ISRE site was compared to input DNA and
displayed as mean ± SD of technical triplicates in two independent experiments. * p < 0.5, ** p < 0.05 and *** p < 0.001.
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4. Discussion

Estrogen deprivation through AIs is the first-line treatment for ER+ breast cancer
patients; however, resistance develops in approximately 30% of patients. Understanding
the mechanism by which AI resistance occurs is of great clinical importance. We sought to
investigate the mechanisms of AI resistance in our MCF-7:5C cell line. Previous findings
from our lab demonstrate enhanced IFNα signaling in AI-resistant cells, which is key in
mediating cell survival. In this study, we show for the first time that IFNα signaling is
enhanced in AI-resistant MCF-7:5C cells and promotes ligand-independent regulation
of ERα primarily through STAT1. This novel interaction may explain why these AI-
resistant cells retain expression of ERα and continue to grow in estrogen-free conditions.
Pharmacologically targeting the interaction between IFNα signaling and ERα may improve
survival outcomes of patients with AI-resistant breast cancer.

The AI-resistant MCF-7:5C cells show enhanced expression of ERα compared to the
MCF-7 and T47D AI-sensitive cells (Figure 1A). In addition, they have elevated levels
of p-ERα at both the S167 and S118 residues and primarily nuclear localization of ERα,
indicating that ERα is in an activated state (Figure 1A,B). Enhanced phosphorylation of
ERα through coactivators can drive AI-resistant survival of breast cancer cells [52]. When
ERα is activated (via ligand binding or phosphorylation), it begins transcription of its target
genes. We saw enhanced expression of multiple ER-regulated genes (CCND1, pS2, CTSD,
FOXA1, and c-Myc) in the AI-resistant cells (Figure 1C). Surprisingly, in the AI-resistant
MCF-7:5C cells, the ERα coactivators (SP1, SRC1, SRC3, CBP, P300, GATA3, and CITED1)
had much lower basal activation (Figure 1). This could indicate that in AI-resistant cells,
JAK/STAT signaling is acting as a coactivator in lieu of these other proteins. It is paramount
to reiterate that the expression and localization of ERα occurs in the absence of estrogen
in the AI-resistant MCF-7:5C cells. In comparison, the levels of ERα in MCF-7 and T47D
cells are shown under estrogen containing conditions (Figure 1). This suggests that the
AI-resistant MCF-7:5C cells have a ligand-independent mechanism of activating ERα via
phosphorylation that turns on ER-regulated genes. We hypothesize that this is through the
enhanced IFNα signaling previously demonstrated in this cell line and that IFNα signaling
is compensating for the loss of estrogen and continuing to activate ERα, which promotes
AI-resistant cell survival.

Preclinical and clinical studies suggest an interaction between the IFNs and estrogen
signaling pathways that leads to progression of breast cancer [53–56]. These studies high-
light IRF-1, a target gene of JAK-STAT signaling, in acquired anti-estrogen and tamoxifen
resistance [57–60]. This would offer a possible explanation as to why many breast tumors
retain ERα expression but become resistant to treatment targeting ERα signaling. ERα is
known to induce transcription of Jak2 in MCF-7 cells and the STAT proteins in endothe-
lial cells and to promote IRF7-dependent expression of IFNα in plasmacytoid dendritic
cells [35,61,62]. In addition, STAT1/3/5 has been shown to influence ERα in cancer and
other diseases and the ISG, IFI27, can directly downregulate ERα expression [63–65]. A
recent study from Hou et al. identified the involvement of STAT1 in facilitating ERα
transcription in the Tamoxifen-resistant MCF-7: LCC2 cell line and this cell line showed
overexpression of multiple ISGs, including IFITM1 [66]. This supports our hypothesis that
IFNα can promote breast cancer progression through enhanced ERα signaling. Notably,
our PLA and co-immunoprecipitation experiments indicate a direct interaction between
ERα and STAT1 in AI-resistant MCF-7:5C cells, which was not observed in AI-sensitive
MCF-7 and T47D cells (Figure 5). We have previously investigated the interaction between
MUC1 and STAT1 in AI-resistant cells [42]. MUC1 is a well-known regulator of ERα and
may facilitate the binding of STAT1 in activating ligand-independent signaling of ERα;
however, this requires further investigation.

We found that blocking IFNα and JAK/STAT signaling through genetic and pharmaco-
logical mechanisms inhibits ERα expression (both total and S167 levels) and ER-regulated
genes in the MCF-7:5C cells (Figures 3 and 4). This indicates that JAK/STAT activation
contributes to ERα phosphorylation. S118 and S167 reside in the AF-1 domain of ERα
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and upon phosphorylation contribute to ligand-independent activation and transcription
of ER-regulated genes, including recruitment of co-activators [67]. Crosstalk with other
signaling pathways [52,68,69] and mutations within the ligand binding domain of ERα
can also cause ligand-independent activation and lead to therapy resistance [70–72]. We
should note, however, that AI-resistant MCF-7:5C cells express only the wild-type ERα
and not any of the previously published mutant ERα variants. There is also evidence that
progesterone receptor (PR), another steroid receptor, suppresses expression of ISGs [73,74].
However, with long-term estrogen deprivation, MCF-7:5C cells lose PR expression. We
hypothesize that without PR, this suppression is blocked, enhancing IFNα signaling and
ISG expression possibly contributing to ligand-independent activation of ERα.

ERα plays a key role in modulating many signaling pathways. Here, we show that ERα
directly regulates the IFNα signaling pathway and its downstream target IFITM1. IFITM1
has proven key in our AI-resistant cells in promoting their growth and survival [11,26]. In
this study, downregulation of ERα caused a reduction in IFITM1 mRNA and protein expres-
sion and promoter activity. We went on to probe previous chromatin immunoprecipitation
data using the UCSC Genome Browser, for potential ERα binding sites near the IFITM1
promoter. In canonical signaling, ERα binds to estrogen response elements (EREs) or
ERE half-sites of promoters of estrogen-responsive genes promoting cell cycle progression
and growth [34,75]. However, one-third of genes regulated by ERα lack ERE sequences
and ERα non-canonically regulates signaling by binding to GC-rich promoter sequences
and through tethered protein–protein interactions [34–37]. Our ChIP data confirmed that
ERα directly binds to multiple ERE sites within the IFITM1 promoter and can bind in
conjunction with STAT1 at these sites and the ISRE element in the AI-resistant MCF-7:5C
cells (Figure 7). Hence, this finding suggests that ERα may regulate ISGs to promote cell
survival and it indicates a potential crosstalk between ERα and the JAK/STAT signaling
pathway in driving this process.

AI-resistant MCF-7:5C cells grow robustly in the absence of estradiol (E2); however,
in the presence of E2, these cells undergo in vitro and in vivo cell death [40–42,51,76,77].
The cytotoxic effect of estrogen on AI-resistant cells have been verified through multiple
pre-clinical studies [11,76] and low-dose estrogen is being clinically investigated in patients
with resistant breast cancer [78–81]. Consistent with this paradoxical action of estrogen,
we found that E2 treatment suppresses IFNα signaling and IFITM1 expression and it
diminishes some ERα-mediated actions in AI-resistant MCF-7:5C cells. Notably, estrogen
treatment also reduces activation of ERα and blocks ERα and STAT1 binding to the IFITM1
promoter at both the ISRE and the ERE sites (Figure 8). The ability of E2 to suppress
IFNα/JAK-STAT signaling in AI-resistant MCF-7:5C cells highlights the importance of this
pathway in promoting survival in these cells and it supports previous data demonstrating
the paradoxical action of E2 in these cells.

The current study suggests that identifying tumors with high expression of IFNα

signaling, through a panel of ISGs, before second-line therapy could further improve
treatment outcomes for AI-resistant breast cancer patients. These AI-resistant tumors
could then be treated with inhibitors of the IFNα signaling pathway (via an IFNAR NAb
or JAK/STAT inhibitor), thus blocking the IFNα signaling pathway. In addition, combi-
nation therapy using exogeneous estrogen would further suppress the IFNα signaling
pathway and promote estrogen-induced apoptosis. Individually, these treatments have
been studied clinically [43,78,82]; however, the combination of low-dose estrogen and
Ruxolitinib (Jakafi™) has yet to be investigated in AI-resistant breast cancer. Based on our
data, we hypothesize that combination treatment may be most effective to maintain tumor
regression in a subset of AI-resistant patients. One limitation of these studies is that the
mechanisms of resistance we investigated are restricted to MCF-7-derived cells. Other
models of AI resistance (such as T47D cells) lose expression of ERα. To study the effects
of IFNα signaling on ligand-independent activation of ERα, additional ER+ AI-resistant
models need to be developed and investigated. Our studies are also limited as they were
conducted in breast cancer cells free from the effects of the tumor microenvironment, which
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has significant effects on tumor progression and therapy resistance [52,69,83]. This limits
the ability to translate these findings into the clinical setting. However, our previous
research has demonstrated that estrogen and Rux treatment in vivo effectively reduces
tumor progression [42]. It is critical for future studies to understand how crosstalk between
E2, ERα, and IFNα signaling are mediated by the cells within the tumor microenvironment.

5. Conclusions

Overall, our data show that a unique phenotype exists in our AI-resistant MCF-
7:5C cells. Upon long-term estrogen deprivation, hyperactivation of the IFNα signaling
pathway leads to not only activated JAK/STAT signaling and overexpression of ISGs, but
also ligand-independent activation of ERα. This may be through activation of ERα via
phosphorylation of S167 and through co-activation of ERα by STAT1. This continues to
cause increased proliferation of the AI-resistant cells through enhanced expression of many
pro-survival proteins that are regulated by ERα including IFITM1 (Figure 9). This novel
interaction shows that AI-resistant cells can be targeted through multiple mechanisms.
Estrogen, the JAK/STAT inhibitor, Ruxolitinib, or inhibitors of other ERα and JAK/STAT
coactivators could effectively treat AI-resistant patients or IFITM1-expressing breast cancer
in combination [42]. Future studies are needed to determine the exact role that IFNα

signaling has on ERα signaling in AI-resistant cells and how the tumor microenvironment
impacts this crosstalk.

Figure 9. Proposed mechanism of enhanced IFNα signaling on ligand-independent expression of ERα
in driving AI resistance and IFITM1 expression. Enhanced IFNα signaling seen in the AI-resistant
MCF-7:5C cells upregulates JAK/STAT signaling and expression of not only ISGs but also ERα. This
enhanced signaling also promotes ligand-independent activation of ERα through phosphorylation of
the S167 residue. STAT1 and ERα then function as co-activators of not only ER-regulated genes but
also of IFITM1 by binding directly to its promoter which increases survival signaling in AI-resistant
cells. (Figure created with Biorender.com.)

Biorender.com
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