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A B S T R A C T

The development of physiologically based (PB) models to support safety assessments in the field of nano-
technology has grown steadily during the last decade. This review reports on the availability of PB models for
toxicokinetic (TK) and toxicodynamic (TD) processes, including in vitro and in vivo dosimetry models applied to
manufactured nanomaterials (MNs). In addition to reporting on the state-of-the-art in the scientific literature
concerning the availability of physiologically based kinetic (PBK) models, we evaluate their relevance for reg-
ulatory applications, mainly considering the EU REACH regulation. First, we performed a literature search to
identify all available PBK models. Then, we systematically reported the content of the identified papers in a
tailored template to build a consistent inventory, thereby supporting model comparison. We also described
model availability for physiologically based dynamic (PBD) and in vitro and in vivo dosimetry models according
to the same template. For completeness, a number of classical toxicokinetic (CTK) models were also included in
the inventory. The review describes the PBK model landscape applied to MNs on the basis of the type of MNs
covered by the models, their stated applicability domain, the type of (nano-specific) inputs required, and the
type of outputs generated. We identify the main assumptions made during model development that may in-
fluence the uncertainty in the final assessment, and we assess the REACH relevance of the available models
within each model category. Finally, we compare the state of PB model acceptance for chemicals and for MNs. In
general, PB model acceptance is limited by the absence of standardised reporting formats, psychological factors
such as the complexity of the models, and technical considerations such as lack of blood:tissue partitioning data
for model calibration/validation.

1. Introduction

Following exposure to a chemical or a manufactured nanomaterial
(MN), a toxic response may occur, depending on the ability of the
substance to reach the target tissue, and its intrinsic potency when in-
teracting with that tissue. Toxicokinetics (TK) is the science that studies
the fate of a substance (including MNs) in the body, whereas tox-
icodynamics (TD) studies what a substance does to the body once it
comes to contact with it (local toxicity) or once it enters the body
(systemic toxicity) [1].

Mathematical models that can predict the target tissue concentra-
tion of the toxicant or of its active species (parent compound or

metabolite) are especially useful in chemical risk assessment; these
models are termed physiologically based kinetic (PBK) models.1 PBK
models aim at the development of quantitative descriptions of adsorp-
tion, distribution, metabolism and excretion (ADME) of chemicals, on
the basis of interrelationships among the critical determinants of these
processes.

PBK model parameters include physiological parameters, such as
tissue volumes and physiological flow rates, along with chemical-spe-
cific parameters, such as rates of absorption, diffusion across cell
membranes, blood:tissue partition coefficients, and rates/affinities for
biochemical reactions and transporters. PBK models have traditionally
been used for extrapolating: a) the kinetic behaviour of chemicals from

https://doi.org/10.1016/j.comtox.2018.10.002
Received 27 July 2018; Received in revised form 20 October 2018; Accepted 23 October 2018

⁎ Corresponding author.
E-mail address: andrew.worth@ec.europa.eu (A. Worth).
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test animal species to humans; b) one human exposure route to another;
c) from high dose to low dose; and d) between internal and external
exposure levels in the context of biological monitoring [2]. More re-
cently, PBK models have also been used to improve the relevance of in
vitro toxicity data by enabling in vitro to in vivo extrapolation (IVIVE),
and the ADME parameters of such models are increasingly derived from
new approach methodologies (NAMs) such as in vitro and in silico
methods [3]. PBD models extend PBK models by including a model of
the toxicodynamic response, typically by including an internal con-
centration-response relationship. An overview of available PBK models
for chemicals, and of PBK platforms, is available in Bessems et al. [4].

In the European Union (EU), the REACH (Registration, Evaluation,
Authorisation and Restriction of Chemicals) Regulation aims to im-
prove the protection of human health and the environment from the
risks that can be posed by chemicals, while enhancing the competi-
tiveness of the EU chemicals industry. It also reduces animal testing by
promoting the use of alternative methods in the hazard assessment of
substances.

REACH applies to a wide range of chemical substances and manu-
factured nanomaterials (MNs), not only those used in industrial pro-
cesses, but also those in our day-to-day lives, for example in cleaning
products, paints as well as in articles such as clothes, furniture and
electrical appliances.

To comply with REACH, companies must identify and manage the
risks linked to the substances they manufacture and market in the EU.
Companies are required to demonstrate how the substance can be safely
used, and they must communicate the risk management measures to the
users. If the risks cannot be managed, authorities can restrict the use of
substances in different ways

For the purposes of REACH, MNs are defined by the European
Commission Recommendation on the Definition of a Nanomaterial as
materials containing particles, in an unbound state or as an aggregate or
as an agglomerate and where, for 50% or more of the particles in the
number size distribution, one or more external dimensions is in the size
range 1 nm–100 nm [5].

PBK models are also taken in consideration in the REACH regulation
as relevant in human health risk assessment according to the Chapter
R8 of the Guidance on information requirements and chemical safety
assessment on the characterisation of dose[concentration]-response for
human health [6] where it is recognised that PBK modelling can sup-
port the derivation of derived no-effect level (DNEL) from animal data
to account for human health risk. PBK models can be used to determine
or adjust specific assessment factors (AFs): 1) route-to-route; 2) inter-
species and 3) high-dose-low-dose extrapolation. In addition, PBK

modelling data can aid in the quantification of intraspecies variability,
denoted by variation in anatomical, physiological and biochemical
parameters with age, gender, genetic predisposition and health status.
With a view to replacing animal testing, PBK models can in principle
also be used to extrapolate from effects observed in in vitro systems to
the in vivo situation. TD models are also relevant in determining in-
terspecies AFs, by taking into account the different susceptibility of the
test animal compared to the human [7].

Although PBK models are considered in ECHA guidance supporting
information requirements in chemical safety regulation [6], there is no
official template to report the details of the PB models used or any set of
criteria/rules to consider a given PBK or fate model as valid or adequate
for a given purpose. In practice, the validity of a model, and the ade-
quacy of its results, are evaluated on a case-by-case basis.

MNs are differing in composition, size, surface chemistry, mor-
phology, and assessing each MN would require considerable technical
and financial efforts [8]: for this reason, the understanding of MN
pharmacokinetics has been addressed more and more in the scientific
literature [9–11], and several PB models became available [12–17].

In this paper, we treat PB models which include physiologically
based kinetic (PBK) and dynamic (PBD) models, as well as in vitro and in
vivo dosimetry models. For completeness, our model inventory includes
several classical toxicokinetic (CTK) models, even though these are not
physiologically based. Lamon et al. [18] developed a template for re-
porting PB models applied to MNs. This template was then used to
compile the information on the available PB models applied to MNs.
The original inventory is available in the public online inventory
available at the JRC Science Hub [19] and the contents are presented in
this review paper.

The objective of this paper is to report the status of PB and CTK
models developed or applied to MNs, and to highlight the relevance of
the existing models for the REACH regulation.

2. Methods

2.1. Bibliographic searches

The literature search aimed at collecting available models including
PBK, PBD and dosimetry models either considering in vivo or in vitro
systems. Searches were performed in Scopus and Web of Science.

A specific search on ATLA (Alternatives to Laboratory Animals) in
Pubmed was also conducted given that this journal is not considered
within the Scopus database. We selected 50 publications as relevant to
feed the model inventory. In some cases, multiple papers focused on

Nomenclature

ADME adsorption, distribution, metabolism and excretion
ADSRM agglomeration-diffusion-sedimentation-reaction model
AF assessment factor
CFD computational fluid dynamics
CTK classical toxicokinetic
DNEL derived no-effect level
ECHA European Chemicals Agency
EURL ECVAM European Union Reference Laboratory for

Alternatives to Animal Testing
GITT generalised integral transform technique
GRACIOUS grouping, read-across, characterisation and classifica-

tion framework for regulatory risk assessment of manu-
factured nanomaterials and safer design of nano-enabled
products

ISDD In vitro sedimentation, diffusion and dosimetry model

IVIVE In vitro to in vivo extrapolation
MN manufactured nanomaterial
MPPD multiple-path particle dosimetry
MPS mononuclear phagocyte system
NAM new approach methodology
PAMAM polyamidoamine
PB physiologically based
PBD physiologically based dynamic
PBK physiologically based kinetic
PEG poly-ethylene glycol (PEG)
PVP poly-vinyl pyrrolidone
QSAR quantitative structure-activity relationship
REACH registration, evaluation, authorisation and restriction of

chemicals
RES reticuloendothelial system
TD toxicodynamics
TK toxicokinetics
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different applications of the same model. These papers have not been
included in the inventory as new entries, but as different applications of
the same model. After identifying this kind of publication, and exclu-
sion of redundant models, 35 papers were included in the final in-
ventory.

More details on the bibliographic searches are available in Worth
et al. [20]. Papers published until 2016 are reported in the public online
inventory available at the JRC Science Hub [19]. An update on the
available PB models in the literature was carried out in May 2018, but
this search did not identify new models.

2.2. Model types considered in this review

PB models available in the literature were organised as follows:

1. Physiologically based toxicokinetic (TK) models: Numerical models
commonly derived from physiologically relevant compartments and
processes (PBK models) and constructed from mass-balance equa-
tions (i.e. accounting for material entering and leaving a system).
CTK models are also included within this category.

2. Physiologically based toxicodynamic (TD) models, i.e. PBD models:
Models that simulate the intensity and time-course of effects caused
by a MN on a biological system (e.g. prediction of the inflammatory
response of macrophages under exposure to MNs).

3. Dosimetry models: Computational models that predict the fate and
the local concentration/dose of MNs in a defined in vitro or in vivo
system. The models in this section are divided in two different ca-
tegories:

3.1. Respiratory tract dosimetry: biologically-based mechanistic
approaches to predict the fate of inhaled particles, by describing
the physical and physiological factors that influence the deposi-
tion, clearance, and retention of inhaled particles.
3.2. In vitro dosimetry: models that calculate the dose-rates and
target cell doses based on particle kinetics and transport predic-
tion of MNs to cells in liquid-based in vitro systems.

In the next section, we provide the state of the art in the different
model domains according to the information collected in the inventory.

2.3. The model inventory

A detailed description of the structure of the model inventory is
available in Lamon et al. [18]. Information on the available models
cover different domains:

• Model metadata: includes model details (name, version, homepage)
information about the model owner (ownership, contact point,
email address, license), the reference (associated literature refer-
ences and DOI). A model name was assigned taking into con-
sideration the aim and the type of model.

• Model description: this section gathers the main characteristics of
the model (i.e. a generic description of the model output(s), the level
of organisation considered (i.e. compartments, tissues, cells), the
model type), information about the processes considered within the
model (including units, level of description/definition). This section
also allows the possibility to include free text to add comments.

• Inputs and Outputs: Information on the nano-specific or chemical-
specific parameters that the model uses as input or output is re-
ported in this section (e.g. parameter, symbol, units, protocol for
measured values, etc). Assumptions or key information on the pro-
tocol related to the inputs are also covered by this section.

• NP description: in this section the type of MNs used to build the
model or to evaluate it are described (e.g. TiO2, Ag, CeO2, metal
oxide, carbon-based, polystyrene, etc.). Then other associated phy-
sicochemical properties, such as coating, size, shape, and any other
relevant characterisation performed. This also contains the

description of the MNs used in other literature references evaluating
or using the same model. The information about these references is
placed in the subsection “Used in reference”.

• Model domain: in this section the applicability domain stated by the
author or inferred from the description and the outcome(s) of the
model is provided. It also state if one or more physicochemical
properties of the MNs (e.g. size, density, agglomeration state, etc.)
are used as input model parameters. General adopted assumptions
by the model are also described at this level.

We have populated the inventory reported in Lamon et al. [18] with
the models available in the literature, collected through the biblio-
graphic search described above. The resulting inventory is freely
available through the JRC Science Hub [21] and through the European
Union Reference Laboratory for Alternatives to Animal Testing (EURL-
ECVAM) collection [19] in the JRC Data catalogue as .xls files2.

3. Results on available PB models applicable to MNs

In this section, we report the contents of the inventory, to describe
the status of PB models developed or applied to MNs.

Fig. 1 shows the number of papers reported in the inventory for each
model type.

In addition, Fig. 2 depicts the number of publications included in
the inventory with respect to the year of publication. Based on this
figure, the number of PB publications considered as relevant remains
almost constant over the time. A peak of PB publications (n = 5) was
observed in 2015. A constant number of publications is also observed
for the respiratory tract dosimetry models. For the remaining models
there is some variability depending on the year of publication. It should
be noted that this figure reflects the criteria adopted to include the
publications as “relevant models” (principally new developed models)
but it does not reflect the actual number of publications using these
models in the field of nanotoxicology.

3.1. Results of the analysis of the available TK models

The parameters considered most relevant for the characterisation of
a TK model are summarised in Fig. 3. These include: the type of MN
used either to develop or evaluate the model, the animal species, the
exposure routes, and the physiological compartments (organs or tis-
sues) considered.

The TK models reported in the inventory cover a total of 15 different
MNs including metals, metal oxides, polymeric and carbon-based na-
nomaterials. Metal based MNs are the most common materials (covered
by 10 out of 19 models). As seen in Table 1, Ag (4) and Au (3) are the
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Fig. 1. Number of publications of each model included in the Model Inventory
[19].

2 S2: Model inventories for physiologically based kinetic (PBK) models, dosimetry
models and environmental fate models (Excel workbooks).
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most frequently evaluated metals. Metal oxides, polymeric and carbon-
based nanomaterials are represented to a similar extent. Three of the
models [25,34,35] are not focused on the evaluation of a specific type
of MN. They can be applied to MNs in a broad, generic sense, in-
dependently of their chemical composition. Table 1 shows a list with
the specific type of MN for each group.

Six models [14,24,34–36,38] are considered as CTK, since they were
based on the use of compartments without physiological meaning to
calculate absorption, transportation, and elimination rate constants.
Despite their limited capability to extrapolate between species or ex-
posure routes, they can be useful to extrapolate between dose levels.

Fig. 3 shows that the intravenous route is the most common route of
administration taken into consideration in developing TK models. Other
administration routes such as those relevant for the oral route, the in-
halation route (e.g. intratracheal administration), the dermal or the
subcutaneous route are represented at a lesser extent in the inventory.

The TK models compiled within the inventory vary in complexity
from full TK models where organs and tissues are considered as sepa-
rate perfused compartments (i.e. Péry et al. [33] included more than 20
compartments) to more simplified, minimal TK models (i.e. van Kes-
teren et al. [14] included three compartments). Blood, liver, spleen and
kidneys are the most represented compartments (see Fig. 3). Liver and
spleen are considered the major target organs for the accumulation of
MNs, especially after intravenous administration and together with
blood, the main compartments containing reticuloendothelial system
(RES; also called mononuclear phagocyte system or MPS) cells. MNs are
rapidly captured and retained by these cell types (monocytes circu-
lating in the blood, reticular cells in the spleen and Kupffer cells in the

liver). The RES has been considered as a separate compartment in six
models [22,27,30,34,39,40].

3.2. Results of the analysis of available TD models

TD refers to the quantitative description of a toxicant’s effects on a
biological system at different levels (from the molecular level, to higher
levels such as cells, tissues, organ systems). In the model inventory, four
TD models are reported; some details are extracted in Table 2.

Shelley et al. [41] developed a model to simulate the cell population
dynamics (including toxic effects and functional viability along time) of
rat alveolar macrophages under exposure to nano-Al (size: 80 nm). A
system of differential equations was derived based on the macrophage

Fig. 2. Number of publications included in the Model Inventory [19] by publication year.

Fig. 3. Summary of the type of MN, animal species,
exposure routes and compartments used in the TK
models for MNs. Information derived from
[9,12,28–37,14,17,22–27]. The numbers represent
the times that each specific parameter has been
identified. MPS: mononuclear phagocyte system;
RES: reticuloendothelial system.

Table 1
List of MNs reported in the Inventory for TK models. The number in brackets
indicates the how many models are available on each MN, including both
publications on TK and CTK models.

Type of MNs Specific type of MNs

Metal Silver (4), Gold (3), CdSeTe (1), Iridium (1),
CdTe (1), CdS (1)

Metal oxide Fe2O3 (1), TiO2 (1), ZnO (1), SiO2 (1)
Polymeric Polystyrene (1), Poly(amidoamine(1), PLGA

(1), polyacrylamide (1)
Carbon-based Carbon (3)
Unspecified chemical

composition
(3)
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population, MNs concentration, and macrophage phagocytosis func-
tion. The model demonstrates how in vivo cell dynamics can be simu-
lated starting from in vitro data.

Maher et al. [42] used a phenomenological rate equation model that
numerically simulates uptake and cellular responses to poly-
amidoamine dendrimer (PAMAM) MN with a different number of initial
branching points. The model simulates MN uptake and the subsequent
cellular response measured by change in cellular markers of oxidative
stress, mitochondrial damage, inflammatory response and apoptosis.
The model is intended to be applied as a tool to interpolate and vi-
sualise the dose range and to elucidate the mechanisms underlying the
in vitro cytotoxic response to MN exposure in time.

Mukherjee et al. [43] developed a multiscale TD model to quantify
and predict pulmonary effects due to uptake of MNs in mice. The ki-
netics of surfactant and pulmonary function due to interactions of MNs
at the alveolar microenvironment are simulated. This consists of a
collection of TD modules to describe the dynamics of tissue focused on
cells and the alveolar surfactant chemicals that regulate the process of
breathing, as well as the response of the pulmonary system to xeno-
biotics. It is worth mentioning that the model uses some size-related
(e.g. diameter and surface area) or surface-related properties (e.g. zeta
potential) as input parameters. The model predictions were compared
to in vivo lung function response in mice and the analysis of mice lung
lavage fluid following exposures to citrate-stabilised 10–20 nm nano-Ag
and carbon black as MNs.

Finally, Mukherjee et al. [44] developed a mathematical model that
predicts the in vitro inflammatory response (i.e. expression levels of
cytokines) of immune cells exposed to citrate-coated and PVP-coated
nano-Ag in a culture system. The model was run with and without the
inclusion of the NP agglomeration-diffusion-sedimentation-reaction
model [45], to determine the extent of effects due to in vitro cellular
dosimetry of MNs.

The available TD models focus on cellular, sub-cellular or tissue
levels. Two out of four models focus on alveolar cells or tissue [41,43],
one is developed for macrophages [44] and one for different cell lines
[42].

3.3. Results of the analysis of available respiratory tract dosimetry models

The respiratory tract dosimetry models compiled in this section are
based on modelling fluid and particle dynamics in subject-specific re-
spiratory geometry tracts. Among these modelling techniques, compu-
tational fluid dynamics (CFD) models allow for simulations of airflow
patterns and particle deposition efficiencies in complex geometries such
as those found in the upper respiratory tract of laboratory animals and
humans. These models provide a valuable supplement to experimental
work in evaluating dose-response relationships.

The most relevant parameters for the characterisation of the re-
spiratory tract dosimetry models are summarised in Fig. 4. These in-
clude: the MN type used in the model (either to develop or evaluate the
model); the species considered to build the model and the input para-
meters (independent or dependent on MN type) needed to run the
model.

3.3.1. Model species for respiratory tract dosimetry models
Assessment of human health risk from exposure to inhaled materials

often relies on extrapolation of dose-response data from laboratory
animals. Inhalation toxicological studies are mainly conducted in ro-
dents such as mice or rats. Due to the differences in their respiratory
tract architecture and other physiological parameters, differences in the
lung deposition fraction can occur between test animals and humans.
Predicting such lung deposition fractions refine the comparison of doses
causing animal toxicity with those associated with human exposure to
the inhaled materials.

Three out of six models found in the literature [46,47] were re-
spiratory tract dosimetry models for rats. Among these, the Multiple-
Path Particle Dosimetry (MPPD) model [46] (freely available from
https://www.ara.com/products/multiple-path-particle-dosimetry-
model-mppd-v-304) has been successively improved by adaptation to
mouse, rhesus monkey, pig and rabbit, and has included more specific
treatment of the aerosol size through a multimodal size distribution
[16]. The MPPD model has been applied quite thoroughly in the field of
inhalation hazard assessment [48,49]. Zhang et al. [50] and Kolanjiyil
et al. [26] built their deposition models based on the geometry of the

Fig. 4. Summary of the type of MN, species/system, and input parameters (dependent or independent on the nanoform) used in the respiratory tract dosimetry
models. The numbers represent the times that each specific parameter was identified in the model inventory.

Table 2
List of the details of selected TD models reported.

MN (size) Endpoint Biological level Species Reference

nano-Al (80 nm) Functional viability Alveolar macrophages cell dynamics Rat [41]
polyamidoamine dendrimer (PAMAM) Uptake/cytotoxicity (sub-)Cellular responses (e.g. ROS, apoptosis) for human keratinocyte

and murine macrophages
Human Murine [42]

nano-Ag carbon black (10–20 nm) Pulmonary function Alveolar tissue Mouse [43]
nano-Ag citrate-coated and PVP-coated In vitro inflammatory response Immune cell – macrophages and human monocyte-derived macrophages

for cytokine study
Human [44]
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human airway. Finally, Schroeter et al. [51] built a model based on the
nasal architecture of the rhesus monkey.

3.4. Results of the analysis of available in vitro dosimetry models

Commonly, in vitro dosimetry models are based on mathematical
approaches that describe the dynamics of particles in liquids. The most
relevant parameters in the characterisation of the respiratory tract
dosimetry models are summarised in Fig. 5.

Agglomeration plays an important role in in vitro dosimetry, influ-
enced by MN concentration, surface chemistry and zeta potential, and
affects MNs diffusion and gravitational settling [52]. Surprisingly, ag-
glomeration is recorded only for one model reported in the inventory.
Nonetheless, sedimentation (or gravitational settling) is reported in
three models in the inventory, according to Fig. 5, as it is an essential
process in the fate of MNs [52].

3.4.1. Kinetic processes in in vitro dosimetry models applicable to MN
Kinetic processes such as diffusion (based on the Stokes-Einstein

equation), sedimentation (based on Stokes law) and advection (transfer
by motion of the fluid) are some of the processes that are considered in
these models (e.g. In vitro Sedimentation, Diffusion and Dosimetry
model – ISDD – by Hinderliter et al. [53]). Mukherjee et al. [45] also
includes in their agglomeration-diffusion-sedimentation-reaction model
(ADSRM), dynamic transformation processes important for MNs, spe-
cifically dissolution. Neither the ISDD nor ADSRM models consider the
interaction of MNs with molecules present in the test system media. To
overcome this limitation in the ASDRM model, the authors [54] ex-
tended the ADSRM model to consider the interaction of MNs with
various fractions of lipids and surfactant proteins in the model. Another
enhancement worth mentioning is the semi-analytical solution for the
ISDD model developed by Mahnama et al. [55]. Based on a generalised
integral transform technique (GITT) the predictions concerning the
advection-diffusion processes were improved, and consequently the
accuracy of the ISDD model. The above-mentioned models are mainly
designed for in vitro supporting systems such as tubes or cell culture
well plates.

A different approach was developed to predict the distribution of
MNs in the extracellular phase after injection [56]. Interactions of the
MNs with the surrounding media were also considered. To this end, van
der Waals interactions, electrostatic forces and attachment of MNs to
solid structures is taken into consideration as relevant processes in the
model.

4. Discussion

Information from the PB model inventory reported above allowed
description of the status of different models applicable to MNs. We
evaluate in this section the relevance of the available models for the
assessment of MNs under REACH, also with a view to possible future
acceptance of the available model types. We also discuss the model
landscape regarding MN coverage and applicability domain, processes
taken into consideration, model inputs and outputs, assumptions and
uncertainties.

4.1. REACH relevance

In general TK data can be used for: “[…] further acceptability and
applicability of quantitative structure-activity relationships, read-across
or grouping approaches in the safety evaluation of substances. Kinetic
data may also be used to evaluate the toxicological relevance of other
studies (e.g. in vivo/in vitro)” (OECD Test Guideline 417 [57]).

REACH allows the use of any scientifically justified information as
weight of evidence (Annex XI) supporting read-across approach. As
mentioned in the introduction, TK can support the derivation of DNEL
from animal data to account for human health risk and to determine
AFs: 1) route-to-route; 2) interspecies and 3) high-dose-to-low-dose
extrapolation. However, taking into consideration model assumptions,
issues related to the applicability domain and model reliability, their
application would be associated with high uncertainty.

TK data could aid in the quantification of intraspecies variability,
which may be caused by variation in anatomical, physiological and
biochemical parameters with, age, gender, genetic predisposition and
health status, thus determining specific AFs. Interspecies differences
result from variation in the sensitivity of species due to differences in
TK and in TD: such models can potentially be used to calculate inter-
species assessment factors in the human risk assessment process.
However, PBD models are not explicitly taken into consideration in
ECHA guidance supporting REACH dossier submissions, although TD
contribute to the determination of AFs [7].

Respiratory tract dosimetry models can be used to determine the
internal dose following inhalation. However, care must be taken since
the most sensitive endpoint may vary for different durations or tech-
niques of exposure, resulting in different internal doses from the same
external inhaled concentration. These models can also be applied to
extrapolate from animal toxicological data to humans, e.g. calculation
of a human equivalent dose (HED) [58].

Finally, in vitro dosimetry models can be helpful in IVIVE, and they
are mentioned in the draft ECHA guidance on information requirements

Fig. 5. Summary of the type of processes and input parameters (nanoform-dependent, nanoform-independent) identified in the in vitro dosimetry models. The
numbers represent the times that each specific parameter has been recorded in the model inventory.
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and chemical safety assessment for estimating biotransformation rates
in bioaccumulation assessments [59].

4.2. MNs and applicability domain

The concept of applicability domain is important in defining the
limits of validity of a quantitative structure-activity relationship
(QSAR) (e.g. types of chemical structures, physicochemical properties
and mechanisms of action) [60] and is also applied to the PB models in
our inventory [18,61,62].

Only a few models in the inventory explicitly report the material
applicability domain. For instance, Bachler et al. [22] defined the ap-
plicability domain as “ionic silver and 15–150 nm nano-Ag, which were
not coated with substances designed to prolong the circulatory time
(e.g., polyethylene glycol)”. Li et al., [29] stated that the model can be
applied to “non-degradable/non-metabolisable nanoparticles”. In most
cases, however, the applicability domain is not reported.

In general, dosimetry models reported in the inventory include
computational fluid and particle dynamic simulation models that were
developed to study airflow, gas uptake and deposition fractions of
particles that cover different size ranges (i.e. nanoparticles and micro-
particles). Hence, this type of model can simulate the behaviour of a
“generic” particle but is not limited to particles in the nano-size range.
For instance, Schroeter et al. [51], used a CFD model based on the ar-
chitecture of the nasal passage of an adult and an infant rhesus monkey
to simulate inhaled airflow and particle deposition for both inhaled
MNs (0.5–1000 nm) and microparticles (1–20 µm). Other authors
[46,47,50,63] developed models that can be applied to a generic par-
ticle with varying size from 10 nm to 10 µm. Some models were eval-
uated with particles in the nano-size range. For instance, the MPPD
model was applied to MNs inhalation studies [48,49]; Kolanjiyil et al.
[26], compared the predicted nasal depositions with available experi-
mental results using polymeric (polystyrene latex) and metal (silver
wool) MNs ranging from 3.6 to 100 nm, for validation purposes. Their
study shows that for smaller MNs the deposition to the airways is un-
derestimated by the model; most important parameters in determining
the fate of test MNs distribution and deposition are MN size and the
airflow rate. These lung deposition studies can be complemented by
studies modelling the fate of inhaled particles after deposition onto the
pulmonary mucosa [64]. Kirch et al. [64] applied ex vivo and compu-
tational approaches to investigate the dependency of mucociliary
clearance on size, shape, charge and surface chemistry of MNs and
microparticles and in their study these parameters did not affect par-
ticles penetration in the mucous layer. Polymeric particles (polystyrene
particles ranging from 200 nm to 6 µm) and metal oxide particles
(maghemite, Fe2O3 particles ranging from 146 to 555 nm) were in-
vestigated.

In vitro dosimetry models generally predict the dynamics of particles
in liquids or predict the transport of colloids through a porous medium,
e.g. [56]. Similar to the respiratory tract dosimetry models, the in vitro
dosimetry models include, but are not limited to, particles in the range
of 0–100 nm. For instance, Hinderliter et al. [53] stated that the ISDD
model can be used for non-interacting spherical particles and their
agglomerates. The model was tested with multiple sizes of polystyrene
spheres (20–1100 nm), 35 nm amorphous silica and large agglomerates
of 30 nm iron oxide particles. Other authors [65–68], using the ISDD,
evaluated a variety of different nanomaterials (< 100 nm) including
metal (Au, Ag) metal oxides (Al2O3, CeO2, CoO, Cr2O3, Fe2O3, Fe3O4,
Gd2O3, Mn2O3, SiO2, TiO2, ZrO2) and carbon-based MNs.

Similar to the ISDD model, Su et al. [56] assumed that the model
can evaluate spherical, chemically inert and solid MNs, the model being
applied to 10 nm Fe3O4 MNs.

Mukherjee et al. [44] evaluated the ADSRM model by applying it to
silver-based MNs of different size (from 1 to 110 nm) and surface
chemistry (i.e. citrate, PEG and PVP). The model parameters optimised
in this exercise can support predictions in in vivo inflammatory

modelling that would include various cell types and interactions.
However, the model can predict the dissolution of silver MNs. In a
further publication, the same authors added the assessment of MN in-
teraction with various fractions of lipids and surfactant proteins of the
alveolar lining fluid, and applied the model also to 20–110 nm gold
MNs and 600 nm SiO2 particles [54].

4.3. Model inputs and outputs

The most common input parameters in the TK models reported in
the inventory are physiological parameters (e.g. body weight, organ
weight, blood flow, organ and tissue volumes, blood flow to organs)
that are non-dependent on the nanoform. Only one model in the in-
ventory has a size-related input parameter (diameter) [22] that is ap-
plied in the calculation of the MPS uptake rate of MNs from blood
circulation. Other physicochemical properties such as surface area,
specific surface area, density and agglomeration state are not ex-
tensively considered as input parameters in the collected models. These
physicochemical properties are well known to affect the TK of MNs.
However, most available TK models were developed and parameterised
on the basis of experimental data for a single MN, and their goal was
not to predict TK for other MNs. As other computational kinetic models,
the estimation of the concentration in tissues, time-dependent con-
centration in organs or other specific compartments is the main pre-
dicted model outcome of the collected TK models.

The input parameters used in the respiratory tract dosimetry models
include some of the physicochemical properties of the MNs. As shown
in Fig. 4, two main MN-dependent properties are identified: size related
parameters (e.g. diameter, radius and diffusion coefficient) and density.
Four groups of nanoform-independent parameters were also identified,
related to air properties (e.g. air density, viscosity, flow rate, etc),
airway architecture (e.g. airway length, diameter, volume, and area),
respiratory function parameters (e.g. tidal volume and breathing fre-
quency) and mucus properties (e.g. thickness and viscosity). The main
model output in this case is particle deposition (as mass) in different
respiratory sections, e.g. the upper [47,51,63], the lower [46] or the
whole respiratory tract [26,50]. The deposited mass can be converted
into other dose metrics (such as surface area) if the size, shape and
density of the MN are known. In some cases, dose descriptors other than
mass have shown better correlation to hazard endpoints [69–71], so it
would be useful if the output of the models were also provided in terms
of other dose metrics.

From the analysis of the inventory, MN physicochemical properties
are relevant input parameters in the in vitro dosimetry models. Size,
density and zeta potential of the primary MNs as well as properties
related to the agglomeration state (e.g. agglomeration density, size and
porosity) are the main parameters reported as nanoform-dependent in
Fig. 5. Mukherjee et al. [45] considered the fraction of coated surface as
input parameter from which the free MN surface available for reaction
is derived. The properties of the assay media are non-nanoform de-
pendent model input parameters, as identified in Fig. 5. In vitro dosi-
metry models collected in our inventory provide as an output the es-
timation of the time-dependent fraction of administered particles that
deposit on cells [45,53–55], or the spatial distribution of MNs in the
extracellular space [56].

4.4. Assumptions and uncertainties

TK models reported in our inventory are based on some relevant
assumptions that can be considered as critical factors responsible for
part of the uncertainty of the available models. Generally, ideal MNs are
taken into consideration when applying a TK model: it is assumed that
MN physicochemical properties do not affect their biokinetics, no ag-
glomeration occurs, and, when inhalation is considered as an exposure
pathway, there is no overload effect in the lung.

Some assumptions hold also for the model structure and processes:
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• All compartments are considered as well mixed (homogeneous), i.e.
there are no spatial gradients

• The rates of mechanical transport are independent of the chemical
composition and crystal form of the MNs (e.g. [35])

• Although there is some evidence that for MNs the blood:tissue
partition coefficient is an important parameter in understanding
their fate (e.g. [28]), some studies applied the same blood:tissue
partition coefficient value for different organs, to facilitate para-
meter estimation (e.g. [33])

Respiratory tract dosimetry models assume a uniform concentration
of monodisperse MNs [51], and also adopt some simplifications of the
airway architecture:

• Homogeneity in the airway geometry (e.g. alveolar volume was
assumed to be equally distributed among all alveolar ducts) (e.g.
[46])

• Disturbances in the air flow caused by the presence of the nano-
particles are neglected (e.g. [47])

• Constant and homogeneous parameters (e.g. constant velocity of
ciliary beating; e.g. [64])

Some examples of assumptions underlying the in vitro dosimetry
models are:

• Single value for the average particle hydrodynamic diameter (e.g.
[53])

• Size, number and effective density of agglomerates remain constant
over time (e.g. [53])

• Non-buoyant particles (particles immediately and permanently ad-
here to cells and are thereby removed from further influencing
transport)

• Deposition is assumed to be irreversible (e.g. [56])
• Oxidation of Ag MN coatings is assumed to be zero for PEG and PVP

coatings (e.g. [45])

All these assumptions are sources of uncertainty, to different de-
grees, in the model output. They are not necessarily generalised as-
sumptions in all the reviewed models, but are recognised in at least one
of them.

For TD models, declared assumptions and uncertainties are on cel-
lular growth kinetics [41]; in general, the same considerations as for TK
models apply regarding nanoform-dependent MN properties as input
requirements.

5. Conclusions

A number of PB models have been developed and applied to MNs.
Particle size is not a required input in all model types: respiratory tract
dosimetry models usually have a more detailed consideration of particle
behaviour in the airways compared to TK models, which in many cases
do not consider any size-related parameter [13,17,31,36]. Regarding
the structure of the available PBK models, the assumptions made for the
model structure are similar to those made for chemicals (e.g. airway
architecture, homogeneous compartments, same blood partitioning
coefficients for different organs) [23,33,46,72]. On the other hand,
parameters that are specific to MNs like the influence of their physi-
cochemical properties, such as size, on their biokinetics and reversi-
bility of processes like agglomeration and sedimentation are typically
neglected as models usually assume that MNs do not agglomerate, and
that when inhalation is considered as an exposure pathway, there is no
overload effect in the lungs.

Biological systems are complex and the behaviour of MNs is not yet
fully understood. The characterisation of MNs in biological contexts
calls for analytical and physical experimental techniques combined

with computational models, including PBK models, either based on
physical principles or employing data-mining strategies [73]. In recent
years, research efforts by the scientific community are going in this
direction through the creation of tools and platforms for the exchange
of information and data and for model creation [19,20,74,75]. These
efforts are being strengthened by the ongoing EU project Grouping,
Read-Across, CharacterIsation and classificatiOn framework for regUlatory
risk assessment of manufactured nanomaterials and Safer design of nano-
enabled products (GRACIOUS) (Grant Agreement No. 760840), which
aims at enforcing data sharing and creating exchange interfaces
(https://www.h2020gracious.eu/).

All information relevant for understanding PB model structures and
applications are systematically reported in the EURL ECVAM repository
on PBK models applied to MNs [19], representing the main outcome of
this manuscript. The available inventory was structured to extract those
details on the available models that are needed for understanding the
specificity of a model to its (regulatory) application, and to facilitate
understanding of the reliability of the model results.

Regarding the acceptance and application of PBK models in public
health decision making (e.g. in REACH), conclusions drawn by Tan
et al. [76] and Paini et al. [77] hold true also for the case of PBK models
applied to MNs. There are three main barriers to the more extensive
reliance on PBK models for regulatory assessment purposes. One reason
lays on the intrinsic complexity of PBK models that makes it challenging
to evaluate them. Another aspect relies on the lack of transferability
across modelling platforms. To facilitate PBK model code conversion,
Lin et al. [78] conducted a study on implementing existing PBK models
in different software platforms. One of the two selected PBK models to
conduct the comparison was gold MNs. These aspects are not specific to
the chemical or material type but are related to the complexity and
variety of available PBK models, as well as the difficulty of identifying a
representative set of models considered acceptable for regulatory ap-
plications. Another issue impacting the acceptance of PBK models in
regulatory applications is the lack of confidence in PBK models for
chemicals lacking tissue/plasma concentration data [76]. This aspect
holds true also for MNs, although in this case there is the additional
uncertainty of how such partitioning should be taken into account:
while for chemicals the concept of partitioning between tissues and
blood is based on the chemical potential of molecules in different
phases such as water, fat and protein phase, it is less clear what de-
termines the partitioning of MNs [17]. Thus, there are still barriers to
the acceptance of PBK models in regulatory applications for chemicals
and these are even greater for MNs, where there is less experience in
constructing and parameterising the respective models, and fewer data
for model validation purposes. It is expected that the use of standar-
dised reporting formats for PB models, such as those proposed in this
study, will help facilitate the dialogue between the developers and
proponents of PB models on the one hand, and the users/regulatory
assessors on the other.
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