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Abstract: Ionizing radiation generated during high resolution computed tomography (HRCT)
scanning may have an indirect effect on the mechanisms regulating the oxidative-antioxidant balance
in the human body, which is one of the necessary factors ensuring the maintenance of its homeostasis.
The aim of the study was to analyze the response of antioxidant systems through the determination
of the antioxidant markers in the blood of patients exposed to oxidative stress resulting from the
routine HRCT examination of the chest. Blood of 35 people aged 60.77 + 10.81 taken before and
at four time points after the examination constituted the test material. The determination of the
total antioxidant capacity expressed as ferric reducing ability of plasma (FRAP) and ferric reducing
antioxidant activity and ascorbic acid concentration (FRASC) were performed together with an
examination of catalase activity and the concentration of the reduced glutathione. The organism’s
response to ionizing radiation was associated with a significant decrease in the antioxidant markers’
levels at all time-points and showed a significant negative correlation depending on the radiation
dose. Visible down-regulation of these markers is a response to increased oxidative stress. In light of
the obtained results, the measurement of the selected markers of antioxidant defense may be a useful
parameter of oxidative stress caused by ionizing radiation.

Keywords: ionizing radiation; reactive oxygen species; human antioxidant systems

1. Introduction

Ionizing radiation during radiological examinations influences the initiation of free radical
reactions in the body. After passing through the cell membrane, ionizing radiation causes the formation
of oxygen free radicals by affecting water molecules. The water molecule undergoes radiolysis
producing a hydrated electron (e729) and cation radical H,O**, which undergoes rapid disintegration
to a hydroxyl radical *OH.

Homolytic cleavage of water and the formation of H* and a hydroxyl radical is another possible
route of reactive oxygen species formation:

H,O + hv - H,O*®* - H* + *OH

This process ends in the formation of hydrogen and hydrogen peroxide molecules.
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H* + H* > H,
*OH + *OH — H202

Oxygen free radicals are therefore atoms, molecules or their fragments containing one or more
unpaired electrons in an atom or molecular orbitals, and mainly determining much higher chemical
reactivity as compared to their parental molecules.

The damaging effect of free radicals associated with their destructive effect on biological systems
is described in the literature as an oxidative stress or nitrosative stress in the case of reactive nitrogen
species (NOS). It occurs in cases of Reactive Oxygen Species/Nitric Oxides (ROS/NOS) overproduction
with concomitant insufficiency or deficiency of enzymatic and non-enzymatic antioxidants.

Oxidative stress is therefore a result of an imbalance between pro-oxidative and antioxidative
reactions with a shift towards the formation and accumulation of free radicals together with an
occurrence of negative consequences in metabolism.

Ionizing radiation (IR) leads to the production of oxygen free radicals (ROS), which are a type
of pro-oxidant that can cause indirect cell damage when their excessive production surpasses the
detoxification capabilities of antioxidant systems. IR-induced ROS production has been proven in both
in vitro and in vivo studies [1,2].

In addition to the hydroxyl radical (OH®), particle ionization results in the formation of other
reactive oxygen species such as the superoxide anion radical (O,°7). On the other side, reactions of
oxygen free radicals with proteins, lipids and nucleic acids lead to the formation of organic free radicals.

Such a mechanism may take place during radiological examinations as well as computed
tomography (CT). This constitutes a significant problem because over the last twenty years, the use of
CT in routine medical diagnostics has more than doubled and constitutes about 35% of all imaging
tests [3,4].

Despite the high frequency of CT examinations, knowledge of the long-term effects of exposure to
ionizing radiation in humans is still limited. Such an exposure may pose a potential threat to health
and life of the human organism, including increased incidence of cancer [5].

The estimated risk associated with the development of cancer after exposure to ionizing radiation
is usually extrapolated from animal models or in vitro tests without assessment of actual DNA damage.
The results obtained from animal models clearly show that cellular response to damage (including
oxidative stress) during CT scanning is increased [6].

While low and medium ROS concentrations are necessary to preserve basic physiological processes
of the organism (e.g., regulation of NO® synthesis, nicotinamide adenine dinucleotide phosphate
oxidase NAD(P)H oxidase, vasoconstriction, cell adhesion), their high concentrations may affect
excessive proliferation and cell apoptosis [7,8], resulting in further organ damage and functional
deterioration of the system.

Specialized enzymatic antioxidant systems as well as numerous non-enzymatic systems preventing
too high free radicals’ concentrations are components of all eukaryotic organisms’ cells. Basic
components of antioxidant enzymatic system include catalase (CAT), superoxide dismutase (SOD)
and enzymes involved in glutathione metabolism such as glutathione peroxidase (GPx) or glutathione
reductase (GR), all interacting with each other. Thioredoxin reductase (TrxR) and other enzymes also
play an antioxidative role.

On the other side, non-enzymatic antioxidants include endogenous compounds synthesized in
the organism as well as natural and synthetic exogenous compounds. Some of them were until recently
regarded only as inactive end products of metabolism, however, intensive studies of recent years
confirm their antioxidant capacity, shedding new light on their biological role (including glutathione
(GSH), bilirubin, albumin, ceruloplasmin or ferritin) [9,10].

The joint action of different antioxidants results in a greater protective effect than the summarized
antioxidant effects of each compound separately. Literature states various definitions of total antioxidant
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capacity, including FRAP (ferric reducing ability of plasma) and FRASC (ferric reducing antioxidant
activity and ascorbic acid concentration). Estimation of the total antioxidant capacity as a clinical
exponent of oxidative stress is based on the determination of various markers’ concentrations in plasma,
serum, saliva and other biological materials, e.g., single or total low molecular weight antioxidants,
activity of the selected enzymes or markers of oxidative stress such as malonyldialdehyde (MDA)
or phosphorylated histone H2 (y-H2AX) as markers of lipid peroxidation or double-strand DNA
breaks [11,12].

Methods for determining of total antioxidant capacity of plasma are based on the measurement
of the ability of plasma to counteract the effects caused by ROS. Methods of measuring the total
antioxidant capacity most commonly used in the literature are FRAP method which is a total ability of
plasma to reduce Fe3* ions; as well as its modification, FRASC, usually performed according to the
Benzie and Strain method [13].

The total antioxidant capacity of plasma (FRAP/FRASC) is a result of the action of low molecular
weight antioxidants (such as a-tocopherol, ascorbic acid, 3-carotene, glutathione, uric acid, bilirubin),
proteins (ceruloplasmin, ferritin, albumin, transferrin) and enzyme systems. Oxidative-stress-induced
FRAP and FRASC decrease is eliminated by the increase in antioxidant enzymes activity with activation
of non-enzymatic mechanisms. A decrease in FRAP/FRASC is observed in a later phase of oxidative
stress and is caused by the depletion of antioxidant defense mechanisms [14,15].

A significant increase in FRAP/FRASC is also observed after supplementation with vitamins C, E,
A and may be used in monitoring and optimization of antioxidative therapy [16].

Oxidative stress, although impossible to eliminate, has survived in the course of evolution together
with the elements of antioxidant protection of the organism. Even though it is difficult to monitor
in vivo due to the short viability of free radicals, the determination of enzymes limiting its development
is possible and easily achievable due to the development of analytical methods examining enzymatic
activities in biological material.

The antioxidant system associated with the operation of enzymes or non-enzymatic elements
therefore presents a developed survival strategy, because it allows organisms to maintain an
oxidative-antioxidative balance and eliminate oxidative stress which leads to disruption of redox
signaling in cells and can initiate molecular damage.

A small amount of literature on the effect of ionizing radiation on the antioxidant system in humans
became the subject of our interest, and informed the decision to undertake research determining the
role of the antioxidative system and its impact on the human body against the harmful effects of
ionizing radiation in routinely performed computed tomography (CT).

2. Materials and Methods

2.1. The Study Group

The study involved 35 adult patients of the Clinical University Hospital in Krakow, subjected to
routine high-resolution computed tomography (HRCT) examination of the chest. They were selected
as consecutive individuals who applied for routine HRCT examination of the chest. The examinations
of chest were performed using a 16-row helical CT Siemens Somatom Sensation 16 scanner (Siemens
Healthcare GmbH, Erlangen, Germany) and HRCT chest protocol, including CareDose option for
dose reduction, based on X-ray beam modulation depending on patient’s body size. No i.v. contrast
agent was used. The parameters of the protocol were as follows: tube voltage 120 kV, tube current
169-253 mA automatically adjusted using CareDose option, rotation time 0.5 s, spiral pitch factor 1.25,
configuration of detectors 16 x 0.75 mm, slice thickness and increment 1 mm, data collection diameter
500 mm, reconstruction diameter 350 mm, convolution kernel B60f, CT window width 1200 HU,
level —600 HU. During every CT examination, the radiation dose used was estimated by the scanner
software and presented in final report as CT dose index computed tomography dose index CTDI,
and dose-length product (DLP) values. CTDI [mGy] is a standardized measure of radiation dose
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during CT examination allowing comparison between different scanners. CTDI;y [mGy] is a linear
measure of dose distribution using a 100-mm standard pencil dose chamber, which does not take into
consideration the variation of a human body size and composition, thus having a very limited clinical
value. CTDI,, (weighted) [mGy] uses measurements acquired at central and peripheral positions in
the head or body phantoms, thus it is closer to the human dose profile as compared to CTDI;¢p.

CTDI,y = 1/3 CTDIyg9 (center) + 2/3 CTDIgg (periphery)

CTDIyc) [mGy] is calculated by dividing CTDI,, by pitch factor.

DLP [mGy x cm] estimates the overall dose output, using multiplication of CT dose index by scan length.
DLP = CTDI,,) X scan length

Pathological changes were excluded in all participants of the study. Demographic data of patients
as well as administered doses of ionizing radiation during HRCT examination are given in Table 1.

Table 1. Demographic characteristics of studied groups.

Women Men Total
Number of patients 18 17 35
Age (mean + SD) 61.61 +12.47 59.88 + 9.04 60.77 + 10.81
CTDI,,] (mean + SD) 6.67 +£0.17 6.67 +0.18 6.67 +0.17
DLP (mean + SD) 227.89 + 17.54 246.24 + 22.64 236.8 +21.94

All values given as mean + SD. Computed tomography dose index CTDI,,,; which is a standardized measure of the
radiation output of a CT system, measured in a cylindrical acrylic phantom; dose-length product DLP, which is the
product of CTDIvol and the irradiated scan length.

Patients (age-matched adults) completed the questionnaire regarding personal data and general
disorders before the study. Smokers or people with history of smoking have been excluded from the
study. The exclusion criteria also included systemic diseases such as diabetes and chronic inflammation,
alcohol abuse, use of antibiotics, antioxidants or anti-inflammatory drugs in the last seven months.
The study did not require the administration of a contrast agent. The study report has been approved
by the bioethics committee of the Jagiellonian University in Krakow (KBET/223/B/2011). The study was
conducted in accordance with the ethical principles of the Helsinki Declaration of 2008. All subjects
expressed a written informed consent before taking part in the study.

2.2. Collection and Preparation of the Material

Fasting blood samples were collected from all 35 participants of the study in the morning directly
prior to examination. The second blood collection took place 10 min after the examination, and other
after 20, 60 and 120 min. In total, 10 mL of blood was collected from each patient from the ulnar vein
puncture using a closed Sarstedt system (Sarstedt AG&Co., Numbrecht, Germany) containing K2EDTA
as an anticoagulant. Plasma was separated from the blood cells by centrifugation at 400x g for 10 min
at 4 °C. Plasma samples were stored at —80 °C until the analysis of the selected antioxidative markers:
catalase (CAT), total antioxidant capacity of plasma expressed as FRAP and FRASC, and reduced
glutathione (GSH). In addition, routine laboratory tests were performed from the obtained material
(i.e., blood count and C-reactive protein (CRP) according to the applicable procedures in the hospital
laboratory). The flow chart of the study is presented in Figure 1.
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Figure 1. The flow chart of the study.

2.3. Analysis of Selected Antioxidant Parameters

CAT determination was performed using the Randox Laboratories Ltd. kit (London, UK) according
to the manufacturer’s instructions.

FRAP determination was performed using the Benzie and Strain’s method based on using the
ability of plasma to reduce Fe** ions (ferric reducing ability of plasma) [13].

In addition, FRACS (vitamin C) was designated for persons undergoing HRCT. The FRASC
method is a simple modification of the FRAP method, which allows the simultaneous measurement
of ascorbic acid and FRAP in the same sample [13,17]. FRASC was introduced with regard to the
reference HPLC method for ascorbic acid [15].

The GSH assay was performed according to the Ellman’s method [18] as described in
Darczuk et al. [19]. The method is based on the reaction of thiols with DTNB (5,5’-dithiobis-2-
nitrobenzoic acid) chromogen, resulting in formation of a measured yellow 5-thio-2-nitrobenzoic acid
dianion (TNB) [20].

The values of individual antioxidant parameters obtained in subsequent collection times were
compared after 10, 20, 60 and 120 min separately in men and women.

2.4. Statistical Analysis

Analytic results have been evaluated using R 3.4.2 statistical package (R Foundation for Statistical
Computing, Vienna, Austria). The differences between values of variables in two groups were tested
by Mann-Whitney U test (nonparametric). Correlation between qualitative features was assessed with
Spearman’s rank correlation coefficient (nonparametric). Multiple correlation coefficient was used to



Int. |. Environ. Res. Public Health 2019, 16, 1476 6 0of 17

judge the relationship between more than two qualitative features. The differences between values in
two repeated measurements (before HRCT examination and after 10/20/60/120 min) were tested by
Wilcoxon paired-samples test (nonparametric). Significance was set at 5% level (p = 0.05).

3. Results

The presented study has analyzed the differences in selected antioxidant parameters of the
oxidative-antioxidative system (CAT, GSH, FRAP, FRASC) at various time points before and after
HRCT examination of the chest.

Catalase activity (CAT) and reduced glutathione concentration (GSH) are summarized in Table 2,
Figures 2 and 3.

Table 2. CAT (catalase) activity [U/g Hb] in blood cells and GSH (glutathione) concentration [nmol/L]
in plasma of subjects undergoing routine HRCT (high resolution computed tomography) before the
examination, 10 min, 20 min, 60 min and 120 min after the examination.

Catalase Activity [CAT U/g Hb]
Time Sex n Mean SD Median Min  Max Q1 Q3 p*

Female 18 16.04 877 13.82 3.2 43.78 11.22 18.88 —
Male 17 2216 113 18.51 9.08 5459 1547 28.14 —

Female 18 11.59  5.85 11 297 2864 836 1375 0.002
Male 17 1253 828 11.4 233 3879 765 1315 <0.001

Female 18 8.24 2.66 8.56 393 1293 5.67 9.89 0.001
Male 17 10.4 517 8.2 351 2027 732 1395 <0.001

Female 18 11.12 4.32 11.32 3.22 19 8.7 14.42 0.024
Male 17 1518 10.62 14.2 391 4516 794 1582 0.005

Female 18 14.89 11.39 12 417 4628 891 15.88 0.212
Male 17 18.69 14.59 13.31 411 6429 1051 198 0.025

Reduced Glutathione GSH [nmol/L]
Time Sex n Mean SD Median Min  Max Q1 Q3 p*

Female 18 5435 24.31 5478  24.04 132.85 36.14 65.04 —
Male 17 5293 1221 5724 2891 7215 4227 60.53 —

Female 18 4641 1473 44381 2572 67.88 32.04 61 <0.001
Male 16 4625 12,65 4722 2337 68.02 3652 53.3 0.001

Female 18 4648 1427 4431 2437 6472 36.03 6225 0.004
Male 17 4704 1226 4756 2614 6529 363 56.84 0.003

Female 18 4356 17.63  43.27 8.08 68.08 29.39 61.85 0.001
Male 17 4489 14.02 4378 18.45 6855 34.87 5744 <0.001

Female 18 4515 14.35 41.26 2622 6592 3315 5935 0.002
Male 16 4658 11.45 45.65 25.06 6238 40.73 56.88 0.013
Notes: The analysis was carried out using the Wilcoxon test for dependent (repeated) measurements; the table

shows the medians, quartiles and ranges of values of individual variables. * p—comparison with the measurement
before the examination—Wilcoxon test for dependent (repeated) measurements.

Before

After 10 min

After 20 min

After 60 min

After 120 min

Before

After 10 min

After 20 min

After 60 min

After 120 min

The presented results of catalase activity are statistically significantly lower at all time-points
compared to the activity before the test, except for the measurement after 120 min in women (Table 2,
Figure 2).
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Figure 2. CAT activity [U/g Hb] in the blood of subjects undergoing routine HRCT examination before
the test, 10 min, 20 min, 60 min and 120 min after the test. The analysis was carried out using the
Wilcoxon test for dependent (repeated) measurements; the graph shows the medians, quartiles and
ranges of values of individual variables. * p—comparison with the measurement before the examination
(*p <0.05, * p < 0.01, *** p < 0.001)—Wilcoxon test for dependent (repeated) measurements.
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Figure 3. GSH concentration [nmol/L] in the plasma of subjects undergoing routine HRCT examination
before the test, 10 min, 20 min, 60 min and 120 min after the test. The analysis was carried out using the
Wilcoxon test for dependent (repeated) measurements; the graph shows the medians, quartiles and
ranges of values of individual variables. * p—comparison with the measurement before the examination
(*p <0.05, * p < 0.01, *** p < 0.001)—Wilcoxon test for dependent (repeated) measurements.

The concentration of reduced glutathione was statistically significantly lower at all time-point
compared to its pre-test concentration, both in women and in men (Table 2, Figure 3).

Consequently, the total plasma antioxidant capacity expressed as FRAP and FRASC was
determined at before and after 10, 20, 60 and 120 min after the test. The results of these measurements
are presented in Table 3, Figures 4 and 5.

As the presented results show, the total antioxidant potential expressed as FRAP was statistically
significantly lower after 10, 20, 60 and 120 min compared to its values before the test, both in women
and men (Table 3, Figure 4).

Similarly, in the case of the antioxidative potential expressed as FRASC, its mean concentrations were
lower at all time-point compared to its values before the test, both in women and in men (Table 3, Figure 5).

Subsequently, the relationship between the determined FRAP and FRASC parameters have been
examined and summarized in Table 4.
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Table 3. Total antioxidant capacity expressed as FRAP (ferric reducing ability of plasma) and FRASC

(ferric reducing antioxidant activity and ascorbic acid concentration) in the blood of subjects undergoing

routine HRCT examination before the test, 10 min, 20 min, 60 min and 120 min after the test.

FRAP [mmol/L]
Time Sex n Mean SD Median Min  Max Q1 Q3 p*
Bt Female 18 1 031 087 064 163 077 12 —
ctore Male 17 091 031 083 061 166 0.9 1 —
After 10 mi Female 18 07 022 073 03 108 057 087 <0.001
er 1mn Male 17 065 028 066 017 142 052 069  0.004
After 20 mi Female 18 065 022 063 031 11 049 077 <0.001
er s min Male 17 074 034 074 035 18 05 083 0.02
After 60 mi Female 18 067 021 07 034 108 051 081 <0.001
erolmn Male 17 08 057 064 013 273 056 083 0017
After 190 mi Female 18 079 028 074 035 138 055 099  0.001
er 1 min Male 16 075 026 077 025 118 061 089 0011
FRASC (Vitamin C) [umol/L]

Time Sex n Mean SD Median Min  Max Q1 Q3 p*
Bt Female 18 5243 1579 513 3153 8472 37.84 6561 —
ctore Male 17 4872 1775 447 3032 10846 4295 4735 —
After 10 mi Female 18 3714 229 2889 1428 1106 25 4739  0.002
er immn Male 17 3338 1704 27.65 1819 8132 20.66 4078  0.001
) Female 18 3414 1862 3069 1423 861 2212 3762 <0.001

After 20 min
Male 17 31.82 2179 2556 1319 10168 19.86 3536 <0.001
After 60 mi Female 18 3629 129 3485 1802 5781 2384 4838 <0.001
er ol mmn Male 17 3495 1609 3027 1928 89.03 2441 3666 <0.001
After 120 mi Female 18 4272 19.68 4329 1651 73.68 2439 5666  0.018
er Ll mn Male 16 4036 2959 3503 1199 139.97 2385 4588  0.039

Notes: The analysis was carried out using the Wilcoxon test for dependent (repeated) measurements; the graph
shows the medians, quartiles and ranges of values of individual variables.
before the examination—Wilcoxon test for dependent (repeated) measurements.
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Figure 4. Total antioxidant capacity expressed as FRAP [mmol/L] in the blood of subjects undergoing

routine HRCT examination before the test, 10 min, 20 min, 60 min and 120 min after the test. The analysis

was carried out using the Wilcoxon test for dependent (repeated) measurements; the graph shows

the medians, quartiles and ranges of values of individual variables.

* p—comparison with the

measurement before the examination (* p < 0.05, ** p < 0.01, *** p < 0.001)—Wilcoxon test for dependent

(repeated) measurements.
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Figure 5. Total antioxidant capacity expressed as FRASC (vitamin C) [umol/L] in the blood of subjects
undergoing routine HRCT examination before the test, 10 min, 20 min, 60 min and 120 min after the
test. The analysis was carried out using the Wilcoxon test for dependent (repeated) measurements; the
graph shows the medians, quartiles and ranges of values of individual variables. * p—comparison
with the measurement before the examination (* p < 0.05, ** p < 0.01, *** p < 0.001)—Wilcoxon test for
dependent (repeated) measurements.

Table 4. Correlation between FRAP and FRASC values in patients undergoing routine HRCT before
the test, 10, 20, 60 and 120 min after the test.

Measurement Correlation Coefficient P Dependence The Power of Dependence
Correlation between FRAP and FRASC in Women
Before 0.112 0.656 — —
After 10 min 0.62 0.007 positive average
After 20 min 0.183 0.467 — —
After 60 min 0.005 0.987 — —
After 120 min —0.165 0.512 — —
Correlation between FRAP and FRASC in Men
Before 0.302 0.239 — —
After 10 min —0.006 0.981 — —
After 20 min 0.228 0.377 — —
After 60 min -0.056 0.831 — —
After 120 min —0.076 0.78 — —
Correlation between FRAP and FRASC both Women and Men
Before 0.314 0.066 — —
After 10 min 0.338 0.047 positive weak
After 20 min 0.183 0.291 — —
After 60 min —-0.017 0.922 — —
After 120 min —-0.01 0.953 — —

The analysis was carried out using the Spearman correlation coefficient.

The correlation FRAP and FRASC values after 10 min from the study was significant in the group

of women, with a positive dependence. In the group of men, no relationship was observed between
FRAP and FRASC at each of the time points (Table 4).

Subsequently, the influence of sex on the selected values of antioxidant parameters (CAT, GSH,
FRAP and FRASC) have been examined and presented in Table 5.
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Table 5. The influence of sex on mean CAT, GSH, FRAP and FRASC values at different time points of
the CT: before the test and 10, 20, 60 and 120 min after the examination.

CAT [U/g Hb]
Time Sex n Mean SD Median Min  Max Q1 Q3 p*
Female 18 16.04 8.77 13.82 3.2 4378 1122 18.88

Before Male 17 2216 113 1851 908 5459 1547 2814 004

After 10 mi Female 18 1159 585 11 297 2864 836 13.75 .
ter 10 min Male 17 1253 828 114 233 3879 765 1315

After 20 mi Female 18 824 266 856 393 1293 567  9.89 04

ter 20 min Male 17 104 5.17 8.2 351 2027 732 1395 :
) Female 18 1112 432 1132 322 19 87 1442

After 60 min Male 17 1518 1062 142 391 4516 794 1582 0318

After 120 mi, | Female 18 1489 1139 12 417 4628 891 1588 o

Male 16 18.69 14.59 13.31 411 6429 1051 19.8
GSH [nmol/L]
Time Sex n Mean SD Median Min Max Q1 Q3 p*

Female 18 5435 2431 54.78 2404 13285 36.14 65.04

Male 17 5293 1221 57.24 2891 7215 4227 60.53

After 10 min Female 18 4641 14.73 44.81 2572 67.88 32.04 61 0.986
Male 17 4625 12.65 47.22 2337 68.02 3652 533

Female 18 4648 1427 4431 2437 6472 36.03 62.25

Before 0.804

After20min — “yph 17 4704 1226 4756 2614 6529 363 5684 0%
] Female 18 4356 17.63 4327 808 6808 2939 61.85

After 60 min Male 17 4489 1402 4378 1845 6855 3487 5744 0961
] Female 18 4515 1435 4126 2622 6592 3315 59.35

After120min “y1o 0 16 4658 1145 4565 2505 6238 4073 5688 0700

FRAP [mmol/L]
Time Sex n Mean SD Median Min Max Q1 Q3 p*
Bet Female 18 1 031 087 064 163 077 12 .0
etore Male 17 091 031 083 061 166 0.9 1 :

] Female 18 07 022 073 03 108 057 087

After 10 min Male 17 065 028 066 017 142 052 069 048
] Female 18 065 022 063 031 11 049 077

After20min oy 97 o074 034 o074 035 18 05 083 0463
] Female 18 067 021 07 034 108 051 081

After60min i 17 08 057 064 013 273 056 083 0807
. ) . . 1. ] 99

After 120 min | Female 18 079028 074 035 38 055 0 0932

Male 16 0.75 0.26 0.77 0.25 1.18 0.61 0.89
FRASC (vitamin C) [umol/L]

Time Sex N Mean SD Median Min Max Q1 Q3 p*

Female 18 5243 15.79 51.3 31.53 8472 3784 65.61

Before Male 17 4872 1775 447 3032 10846 4295 4735 O3%
seomn SR OTE OB DD ORR S S IR s
semmn S B OWE S DO ER ML ER T2 0w
seomn B LR OEUS BE IR LMD om
After 120 min Female 18 4272 19.68 43.29 16.51 73.68 2439 56.66 0.398

Male 16 4036 29.59 35.03 11.99 13997 23.85 45.88

The analysis was carried out using the Mann-Whitney test. * p < 0.05; non-parametric analysis.
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Comparing the examined antioxidant parameters (CAT, GSH, FRAP and FRASC) depending on
sex, it was noted that their mean values did not differ in the group of men and women in any of the
time points.

The study also examined the influence of age on these antioxidant parameters separately for
women and men and for the whole group. The results are shown in Table 6.

Table 6. The effect of age on mean CAT, GSH, FRAP and FRASC values at different time points of the
CT scan: before the test and 10, 20, 60 and 120 min after the test.

Parameter Before After 10 Min  After20 Min  After 60 Min  After 120 Min
Females
r=-0052  r=0.300 r=0.226 r = 0.055 r=-0217
FRAP[mmolLl ) _gg39  p=0227 p=0366 p=0.829 p=0387
FRASC (vitamin C)  r = 0.543 r=0417 r=0.46 r=0.286 r=0323
[umol/L] p=002*  p=0085 p = 0.055 p=0.249 p=0.191
r=-0181  r=-0237 r=-0.013 r=-0.031 r=0.139
GSH [nmol/L] p=0472  p=0344 p=0958 p=0903 p=0583
r=-0131  r=-0402 r=-0.101 r=0.133 r=—0.04
CAT[U/g Hb] p=0603  p=0098 p=0.69 p=0598 p=0.874
Males
r=0.181 r=0.085 r=0.036 r=-0.043 r=0.227
FRAP [mmolL] ) _ () 4gg p=0.746 p=0.892 p =087 p =0.398
FRASC (vitamin C) r=-0.392 r=-0.403 r=-0.084 r=-0.346 r=-0.631
[umol/L] p=0.12 p=0.109 p=075 p=0173 p =0.009 **
r=0.151 r=0.06 r=—0.057 r=-0.071 r=0.133
GSH [nmol/L] p=0563  p=0824 p=0.828 p=0.786 p =0.624
r=0.186 r=0.134 r=-0.237 r = 0.065 r=0.035
CAT [Ufg Hol p=0476  p=0.608 p=036 p = 0.804 p =0.897
Females and Males
r=0.048 r=0218 r=0.117 r=0.03 r=0.043
FRAP [mmol/L1 — _ 7g) p =0.208 p = 0.505 p =0.865 p =0.809
FRASC (vitamin C)  r =0.165 r=0.062 r=0.185 r=0.043 r=-0.035
[umol/L] p=0343  p=0723 p=0.287 p = 0.806 p=0.842
r=-0014  r=-0.064 r=-0.028 r=—0.04 r=0123
GSH [nmol/L] p=0935 p=072 p =0.875 p=0818 p=0.487
r=-003  r=-0125 r=—-0.181 r = 0.068 r=—0.059
CAT [Ufg Hbl p=0865  p=0473 p=0297 p =0.699 p=0.742

The analysis was carried out using the Mann-Whitney test. ** p, abnormality of distribution (** p < 0.01, * p < 0.05);
non-parametric analysis.

Comparing the examined parameters (CAT, GSH, FRAP and FRASC) depending on the age, it only
affected the FRASC value significantly before the study, and the dependence was positive. In other
cases of antioxidant parameters, age did not significantly affect their value, as presented in Table 6.

Subsequently, the influence of the radiation dose size (CTDI, and DLP) on the antioxidant
parameters have been evaluated, with the results summarized in Table 7.

It was noted that CTDI, does not significantly affect the value of any antioxidant parameter. In
turn, DLP significantly influences the average FRASC and GSH concentrations after 10 min from the
study. The dependence on FRASC is negative, while the dependence on the reduced glutathione level
is positive (Table 7).
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Table 7. The effect of CTDI,,, and DLP radiation doses on the values of selected antioxidant parameters
(CAT, GSH, FRAP and FRASC) of patients undergoing routine HRCT examination: before the test,
and 10, 20, 60 and 120 min after the test.

Parameter Before After 10 Min  After20 Min  After 60 Min  After 120 Min
Dependence on CTDI,,

r = 0.059 r=0.14 r=0.178 r=0011 r=0.156

FRAP[mmolLl 735 - 0421 p = 0306 p = 0951 p =038
FRASC (vitamin C) r=-0.144 r=-0.288 r=-0.088 r=-0.19 r=-0.021
[umol/L] p=0408  p=0.09% p=0614 p=0.274 p =0.907
r=0.226 r=0.151 r=0.131 r=0.296 r=0.107

GSH [nmol/L] p=0192  p=039 p=0.453 p=0.084 p=0549
r=0071  r=-0051 r=-0.18 r=—0.067 r=—0.026

CAT [Ufg Hol p=0684  p=0773 p=0.302 p=0.701 p=0.885

Dependence on DLP

r=0052  r=-0208 r=-0.116 r = —0.062 r=0.021

FRAP[mmolLl ) _ 766 p=0229 p = 0506 p=0723 p =0.906
FRASC (vitamin C) r=-0.298 r=-0.43 r=-0.195 r=-0.235 r=-0.326

[umol/L] p =0.082 p=0.01 p=0.261 p=0.174 p=0.06
r=0.238 r=0.176 r=0.129 r=0.192 r=0.141

GSH [nmol/L] p=0.168 p=032 p =046 p=027 p=0428
r=0257  r=-0015 r=-0.14 r=—0.088 r=0.103

CAT [Ufg Hbl p=0136  p=0934 p=0.424 p=0617 p =0.562

The analysis was carried out using the Spearman correlation coefficient.

4. Discussion

The effect of ionizing radiation on cells has been known since 1954 and relies heavily on free
radical formation and reactions, which became the basis of the free radical theory of organisms” aging.

The study examined the relationship between a single exposure to ionizing radiation during the
CT examination of the chest and an antioxidant potential of blood expressed as the activity of selected
antioxidant enzymes, i.e., catalase (CAT), reduced glutathione (GSH) and total antioxidant capacity
(FRAP and FRASC) in blood plasma.

There are no studies in available, published scientific papers describing the participation of human
antioxidative system in protection against harmful effects of ionizing radiation during routine imaging
examinations. The presented works only address the topic of the influence of ionizing radiation on
antioxidant systems in in vitro cell culture animal models.

Our study seems to be the first to try to explain the role of human antioxidant systems and their
relationship with protection against the harmful effects of ionizing radiation.

The conducted study provides evidence that IR even in small doses causes the weakening of
elements of the antioxidant system in humans during routine HRCT examination (doses in the 6.67 mGy
range). The authors try to at least partially illuminate the scale of the problem through the analysis of
the current state of knowledge on the impact of ionizing radiation on antioxidant systems in cell and
animal models.

Liu et al. have studied the effect of ionizing radiation on the induction of oxidative stress in bone
marrow mesenchymal stem cells (BMSCs) [21]. As a result of IR (6 Gy), there was an occurrence of
intracellular increase of reactive oxygen species level (ROS), apoptosis and impaired ability of cell
differentiation, although the mechanisms of observed changes have not been clarified. It was also noted
that 6-Gy-level IR significantly increased the level of apoptotic cells (15.3 + 2.67%) and ROS generation
(a number of ROS-positive cells and mean fluorescence intensity were significantly higher than in
13 controls) compared to cells not exposed to IR (percentage of apoptotic cells equal to 5.73 + 1.19%).
Under the influence of IR, an increased expression/upregulation of reactive oxygen species-generating
NADPH oxidase-4 (NOX4) was observed with simultaneous downregulation of SOD2. NOX4 belongs
to NADPH-dependent oxidase family (NOX/DUOX) and physiologically participates in the production
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of ROS in various cell types. Superoxide-2-dismutase (SOD2) belongs to an iron-manganese superoxide
dismutase family, providing cells with a capture of intracellular ROS levels. In addition, SOD2 plays
an important role in inhibiting cellular apoptosis induced by an increase of ROS, IR and inflammatory
cytokines [22]. It was found through a whole-body irradiation of mice that ROS generation was
closely correlated with NOX4 upregulation and SOD2 downregulation in bone marrow damage [23].
The variable expression of NOX4 and SOD2 together with ROS level increase was closely correlated
with an exposure to IR.

During our research, there was a similar visible failure of the antioxidant system elements,
i.e., the decrease in catalase activity after 10, 20, 60 and 120 min after exposure to IR compared to
its values before the exposure. The observed effect of a reduced regulation of antioxidant systems
(CAT, GSH, FRAP, FRASC) after the exposure to IR is in accordance with the results of Liu et al., who
associated a failure of the antioxidant system with microRNA upregulation (miR-22) [21].

MicroRNA (miRNA) belong to non-coding RNA genes that perform many functions, ranging
from growth, differentiation and proliferation, to the regulation of total intracellular or mitochondrial
reactive oxygen species production. It has been found that miRNA expression after irradiation (2 Gy)
increases. It is not clear whether the radiation-induced increased expression of miR-22 plays a role
in the regulation of IR-induced ROS production and cellular apoptosis, and subsequently in the
impairment of bone formation.

Available literature shows the effect of miRNA on increased ROS production and the development
of oxidative stress due to an increase of superoxidases levels and inhibition of antioxidant enzymes.
The proposed mechanism of IR-induced miR-22 upregulation is associated with TGF-f3 increase and
inhibition of SOD2 gene expression leading to a decrease in SOD2 activity and damage to irradiated
tissues constituting a target for hydrogen peroxide in the failure of subsequent elements of the
antioxidant system (mainly H,O,-degrading catalase) [24,25].

Han et al. have observed a decreased human umbilical vein endothelial cell (HUVEC) line
viability, increased cytotoxicity and decreased migration ability in relation to the state before IR
exposure (at 20 Gy dose) [26]. In addition, it has been shown that ionizing radiation increases ROS
production, lipid peroxidation and oxidative DNA damage (through an increase of 8-OH-dG level) and
reduces the activity of antioxidative enzymes (superoxide dismutase SOD, catalase CAT, glutathione
S-transferase (GST) and glutathione peroxidase GPx) in HUVEC cells.

The IR exposure studies draw attention to the importance of multi-parameter analysis (multigene
analysis or assessment of numerous biochemical markers), which presents different gene expression
profiles or different behavior of biochemical transformation markers in whole blood samples irradiated
with different X-ray doses.

Determination of IR limit doses in human imaging tests seems to be quite problematic, because
such activities should not burden the patient. The estimated doses are effective based on calculations
using phantoms as population-risk-associated IR doses. Research is being carried out on cell lines or
animal models without actual assessment of IR damage to the human body. Hence, the identification
of potential human biomarkers of IR exposure taking into account anatomical differences, different
types of CT devices equipped with dose reduction options or using different types of CT protocols,
seems to be so important.

El-Saghire et al. observed an increase the level of genes related to inflammation and immunity;,
increased secretion of growth factors, chemokines and cytokines after the exposure to 0.05 Gy IR, which
indicates the activation of the immune response to such a dose of IR radiation [27]. On the other hand,
IR application in a dose of 1 Gy, resulted in mobilization of cellular self-destructive pathways associated
with the increase in mitochondrial ROS level, activation of p53-dependent apoptosis pathway, and
consequently, DNA damage [27].

Vandevoorde et al. and Rothkamm et al. drew attention to the formation of double-stranded
DNA breaks in the blood of adult patients through an increased level of phosphorylated H2 histone
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(v-H2AX; 0.72 foci/cell) in response to X-ray CT compared to y-H2AX level before IR exposure
(0.56 foci/cell) [28,29].

Stephan et al. showed chromosomal abnormalities associated with a statistically significant
increase in the level of dicentric and acentric chromosomal fragments under the influence of ionizing
radiation at the dose of 12.9 mGy in pilot studies with blood samples from ten pediatric patients
undergoing CT [30].

The increase in the number of DNA breaks and chromosomal aberrations in the form of dicentric
chromosomes or deletions in lymphocytes and in whole blood under the influence of gamma radiation
was also demonstrated in the work of Sudprasert et al. [31].

The vast majority of publications assessing the oxidative stress level associated with exposure
to IR uses a double-strand DNA breaks testing (by assessing the level of phosphorylated H2 histone,
v-H2AX) in the blood of patients undergoing CT [32-34]. Double-strand DNA breaks (DSB) differ
from single-strand DNA breaks as double lesions are more difficult to repair compared to single-strand
ones (SSB). DSB more often lead to mutagenesis, cell death or neoplastic transformation than SSB [35].

Tissue sensitivity to radiation is different and depends to a large extent on the expression of genes
responsible for apoptosis and damaged DNA repair.

In the Durante and Formenti’s study, IR-induced DNA damage was examined by assessing H2AX
histone phosphorylation at Ser 15 (y-H2AX) [35]. An increase in y-H2AX level was observed in the
cells of both irradiated lines, however, H460 cell line (with a lower SirT1 expression) is more sensitive
to radiation compared to the A549 line. It proves that SirT1 expression is negatively correlated with
radio-sensitivity. Activation of SirT1 by, e.g., resveratrol reduced the degree of DNA damage and
cells apoptosis induced by radiation, however its blocking increased the damage degree (similar effect
in both lines). While searching for the mechanisms of these reactions, it has been proven that SirT1
regulates apoptosis and radio-sensitivity of cells through the Sirtl/NF-xB/Smac pathway that may be a
potential target in the treatment of non-small-cell lung carcinoma.

Available literature data confirm the hypothesis that the strategy of reducing radiation dose in CT
in humans is associated with a parallel decrease in the y-H2AX level constituting a type of biomarker
of the exposure effect [36]. A wide range of activities have been undertaken globally to improve the
effective and optimal CT dose, which is especially important in children, taking into account not only
the need of reducing the dose, but also high resolution of diagnostic imaging. A number of studies
reveal that even the same CT doses show statistically significant differences between study protocols
for the same studies, suggesting that not all of the protocols have been properly standardized and
optimized [37—40].

CT dose minimization activities are constantly evolving depending on imaging techniques as well
as dose selection methods, which is of great importance in vulnerable groups such as children.

In the Mancuso et al.’s study, heterozygous mice had an increase in DNA oxidative damage
(increase in y-H2AX level), increased apoptosis and tumor induction after partial irradiation of the
cerebellar tumor (3 Gy X-ray), which significantly stimulated hyperplasia thus promoting tumor
growth [41]. A lower level of DNA damage (y-H2AX <10-20 DSB) was observed in case of low
ionizing radiation doses (<0.04 Gy), which did not cause changes in the cell cycle in human fibroblasts
(no transition of G2 to M). At low IR doses, apoptotic cell death was found to be protective due to the
selective elimination of damaged cells that might have contributed to the increase in tumorigenesis.
In conclusion, the presented in vivo model using variable IR doses showed a clear carcinogenic
potential for high doses of IR.

In addition to the dose of radiation, the age of the subjects plays a significant role in assessing the
effects of IR exposure. Epidemiological data indicate that children have a higher relative risk of cancer
than adults after using even low doses of radiation. Moreover, children, unlike adults, live longer after
using cancer radiotherapy, which determines the need of setting clear and precise limits for the use of
selected IR doses depending on the age. Published data in this area are modest, so it seems necessary
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to conduct studies demonstrating the X-ray-induced exposure effects in various age groups in order to
select appropriate biomarkers of exposure and establish additional measures of radiological protection.

Lower doses and adequately lower risk reflect the technological progress that has been made
in imaging examination using latest CT equipment in recent years. The results of the studies for
smaller doses most often used in diagnostic radiology or epidemiological studies, are limited to in vitro
and animal models, and in the case of humans are often unreliable because of too small sample size.
This imposes the necessity of developing new algorithms for assessing IR exposure through the use of
a number of biomarkers predictive about the harmfulness of the used IR dose.

The assessment of IR-induced biological damage through sole assessment of DSB DNA is
mainly related to lymphocytes, which is a reflection of oxidative damage exclusively within one
tissue-blood. However, one can assume that DNA damage combined with its repair in lymphocytes is
representative of other physiological tissues. The assessment of only y-H2AX level in X-ray exposure
studies is biologically important but does not provide any insight into compensatory mechanisms
regarding other macromolecules such as proteins or lipids that constitute the entire functioning of the
antioxidant system.

5. Conclusions

1. A disorder of the antioxidative system was observed in patients after the exposure to ionizing
radiation during HRCT examination of the chest.

2. The average activity of catalase as an element of human antioxidant defense was reduced after 10,
20, 60 and 120 min from the HRCT examination of the chest.

3. Mean glutathione concentrations and total antioxidant potential decreased after exposure to
ionizing radiation in both women and men.

4. The observed changes in antioxidant parameters in humans are a manifestation of the
oxidative-antioxidative balance disorder caused by the exposition to ionizing radiation during
the routine HRCT examination of the chest.

5. Measurement of the selected antioxidant defense parameters may constitute a useful indicator of
oxidative stress resulting from ionizing radiation.
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