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A B S T R A C T

Background: Tumour Necrosis Factor (TNF) family members play important roles in mounting anti-tumour
immune responses, and clinical trials targeting these molecules are ongoing. However, the expression pat-
terns and clinical significance of TNF members in lung adenocarcinoma (LUAD) remain unrevealed. This
study aimed to explore the gene expression profiles of TNF family members in LUAD and constructed a TNF
family-based prognosis signature.
Methods: In total, 1300 LUAD cases from seven different cohorts were collected. Samples from The Cancer
Genome Atlas (TCGA) were used as the training set, and the RNA data from five Gene Expression Omnibus
(GEO) datasets and qPCR data from 102 samples were used for validation. The immune profiles and potential
immunotherapy response prediction value of the signature were also explored.
Findings: After univariate Cox proportional hazards regression and stepwise multivariable Cox analysis, a TNF
family-based signature was constructed in the TCGA dataset that significantly stratified cases into high- and
low-risk groups in terms of OS. This signature remained an independent prognostic factor in multivariate
analyses. Moreover, the clinical significance of the signature was well validated in different clinical sub-
groups and independent validation cohorts. Further analysis revealed that signature high-risk patients were
characterized by distinctive immune cell proportions and immune-suppressive states. Additionally, signature
scores were positively related to multiple immunotherapy biomarkers.
Interpretation: This was the first TNF family-based model for predicting outcomes and immune landscapes for
patients with LUAD. The capability of this signature for predicting immunotherapy response needs further
validation.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

According to the latest worldwide cancer statistics, lung cancer
remains the leading cause of cancer-related incidence and mortality,
and represented almost 20% of cancer deaths predicted in 2018 [1].
Lung cancer mainly consists of two subtypes: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for
almost 80% of lung cancer cases and is made up of two major types,
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma [2].
LUAD is the predominant histology, and the rates are still increasing
[3]. Despite the clinical improvements in, and applications of, a
combination of therapeutic strategies and individualized therapies—
which primarily consist of tyrosine kinase inhibitors (TKIs)—the 5-
year overall survival (OS) rate for LUAD remains only about 16% [4,5].
Therefore, continued efforts to discover specific prognostic methods
for patient-specific survival are still needed so that the most suitable
therapeutic and management schemes can be designed for distinct
subsets of patients with LUAD. With the advancements in multi-
omics profiling, numerous studies, which used different expression
profiles and bioinformatic methods, have provided additional prog-
nostic evaluation for patients with LUAD [3,6,7]. However, most of
the enrolled parameters in these studies were derived from the
entire genome or transcriptome with no consideration of biological
processes. Consequently, these signatures possessed a natural bias in
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Research in context

Evidence before this study

Tumour Necrosis Factor (TNF) family members comprise key
communication systems that regulate the body’s anti-tumour
immune responses, in addition to immune checkpoint mole-
cules from the B7-CD28 family. Modulating the interactions
between the TNFSF/TNFRSF families holds great potential as a
novel cancer therapy. To date, there is no relevant study con-
cerning the expression landscape of TNF family members in
lung adenocarcinoma.

Added value of this study

Our study conducted a first systematic investigation of the
expression details and clinical significance of TNF family mem-
bers in lung adenocarcinoma. Additionally, we developed and
validated a TNF family-based prognostic model using 1300
LUAD cases from seven different cohorts. Importantly, the novel
signature was closely associated with distinct immune profiles
and biomarkers of the immunotherapy response.

Implications of all the available evidence

Our findings provide a better understanding of the TNF family
profile and the clinical and immunological characteristics of
lung adenocarcinoma. The TNF family-based novel signature
could be a clinically useful tool for prognostic management and
the determination of targeted immunotherapies for patients
with lung adenocarcinoma.
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that they were simply mathematic models that did not reflect the
intrinsic character of the cancer itself.

Nowadays, cancer immunotherapy by immune checkpoint
blockade (ICB) is becoming a pillar of lung cancer treatment, along-
side surgery, chemoradiotherapy, and TKIs [8]. The immune check-
points inhibitors targeting programmed cell death protein 1 (PD-
1) and programmed cell death 1 ligand 1 (PD-L1), which belongs to
the B7-CD28 family [9], are the best-described immunotherapy
targets and are becoming first-line therapies of choice for treating
advanced NSCLCs [10]. However, a significant limitation of these
immune checkpoint inhibitors is that more than half of the
patients do not respond to PD-1/PD-L1 immunotherapy [11], indi-
cating the existence of another co-stimulatory signal in the LUAD
tumour microenvironment.

Recently, studies have revealed that promoting T-cell responsive-
ness through engaging co-stimulatory receptors from the tumour
necrosis factor (TNF) family is another potential treatment, in addition
to blocking co-inhibitory immune checkpoints from the B7-CD28 fam-
ily [12]. The TNF family, which consists of a 19 TNF ligands superfamily
(TNFSF) and a 29 TNF receptor superfamily (TNFRSF), mediates signal-
ling which controls the survival, proliferation, differentiation, and
effector functions for both immune and non-immune cells [13]. While
members of the TNF family generally show proinflammatory func-
tions through activating the NF-kB pathway, the activation of the
TNFSF/TNFRSF family may also trigger apoptosis or other forms of
cell death, leading the activation or suppression of the immune
response in the tumour microenvironment [14]. Therefore, modu-
lating the interactions between the TNFSF/TNFRSF families holds
great potential as a cancer therapy. Actually, many therapeutic
approaches that target TNF family members—including CD40, OX40,
4�1BB, GITR, and CD27—are now under active investigation in clini-
cal trials for various cancers, including lung cancer [13,15,16]. Nev-
ertheless, the expression patterns and clinical significance of TNF
members in LUAD remain unrevealed.
This was a systematic investigation of the expression details and
clinical significance of TNF family members in LUAD. Additionally, we
developed and validated a TNF family-based prognostic model using
1300 LUAD cases from seven different cohorts. Considering the spe-
cific role of the TNFSF/TNFRSF family in the interaction between
tumour-infiltrating lymphocytes and tumour cells, and the potential
role of this family in controlling the body’s response to immunother-
apy, we further explored the relationship between the signature and
the landscape of immune-related profiles and the association with
immunotherapy responses. A better understanding of the TNF family
profile and the clinical and immunological characteristics of the TNF
family-based signature in LUAD may help optimize cancer immuno-
therapies.

2. Materials and methods

2.1. Public mRNA expression datasets

We enrolled 1198 LUAD cases from six public datasets in this
study. The Cancer Genome Atlas (TCGA) level three RNA-seq data of
502 LUAD samples (Illumina HiSeq 2000) with clinical annotations
and overall survival information, acquired from Cancer Genomics
Browser of University of California Santa Cruz (UCSC) (https://
genomecancer. ucsc.edu), was used as the training set. All the corre-
sponding clinical data and mutation data of these 502 patients with
LUAD were also collected from UCSC. Several reprehensive Gene
Expression Omnibus (GEO) datasets (http://www.ncbi.nlm.nih.gov/
geo) that contained relatively large populations of patients with
LUAD (n>80) with clinical annotations and overall survival informa-
tion were enrolled—including 90 cases from GSE11969 [17], 117
cases from GSE13213 [18], 83 cases from GSE30219 [19], 226 cases
from GSE31210 [20] and 180 cases from GSE41271 [21]—as the pub-
lic validation sets. The mRNA expression from GEO microarray data
was first log2 transformed and quantile normalized, and the mean
expression was selected as the expression of genes with more than
one probe. Several reprehensive GEO datasets containing a relatively
large population of LUAD patients (n>80) with clinical annotation
and overall survival information were enrolled.

2.2. Samples and quantitative real-time polymerase chain reaction
(qRT-PCR) analysis

FromMay 2013 to September 2014, we gathered a total of 102 fro-
zen surgically resected lung adenocarcinoma tissues from patients at
the First Affiliated Hospital of Zhengzhou University. Based on the
standard protocols, total RNA was extracted from these collected sam-
ples by RNAiso Plus reagent (Takara, #9109). Then, the Prime ScriptTM

RT reagent kit (Takara, #RR047A) was used for the total RNA to reverse
single-stranded cDNA total RNA. All cDNA samples were prepared for
qRT-PCR. In the qRT-PCR analysis, the enrolled five genes in this TNF
family-based signature were detected. SYBR Premix Ex Taq II (Takara,
#RR820A) was used in the qRT-PCR, and Agilent Mx3005P was used
for analyzing the data. The expression value of the target genes was
first normalized to GAPDH, and then log2 transformed for further anal-
ysis. The primer sequences of the included five genes and GAPDH are
shown in Table S1. This study was approved by the Institutional
Review Boards of The First Affiliated Hospital of Zhengzhou University.
All patients and, where appropriate, their families provided written
informed consent for participation.

2.3. Biological process and pathway enrichment analysis

The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway analyses of the TNF family-based signa-
ture related genes from TCGA were performed using DAVID 6.8
(http://david.abcc.ncifcrf.gov).
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2.4. Immune cell infiltration analysis

The abundance of immune cell infiltration between different
groups in this study was estimated by CIBERSORT [22]. CIBERSORT is
a novel method widely used for characterizing the cell composition
of complex tissues through the gene expression values in solid
tumours [23,24]. These characterizations are highly consistent with
ground-truth estimations in different cancers [22]. When we used
CIBERSORT, the LM22 signature algorithm was applied. LM22 is a
specific gene signature containing 547 genes that distinguish 22
immune cell subtypes downloaded from the CIBERSORT web portal
(http://cibersort.stanford.edu/). The fractions of 22 immune cell types
of patients with LUAD from TCGA, including different T cell types, B
cell types, plasma cells, natural killer (NK) cells, and different myeloid
subsets, were calculated using CIBERSORT with LM22.

2.5. Mutation, neoantigen and PD-L1 protein analysis

The mutation burden, number of neoantigens, number of clonal
neoantigens, and number of subclonal neoantigens in patients with
LUAD, obtained from the TCGA dataset, were obtained through The
Cancer Immunome Atlas (TCIA) (https://tcia.at/home) [25]. The pro-
tein expression of PD-L1 was based on the reverse-phase protein
array (RPPA) analysis from the TCGA dataset, which was retrieved
from cbioPortal (http://www.cbioportal.org).

2.6. Tumour Immune Dysfunction and Exclusion (TIDE) analysis

TIDE is a computational framework construct by Jiang et al. [26] to
predict immune checkpoint blockade response. TIDE integrates the
expression of two primary mechanisms of tumour immune evasion:
T cell dysfunction and T cell exclusion, to model tumour immune eva-
sion. The TIDE signature was validated and outperformed known
immunotherapy biomarkers that could predict immunotherapy
response in melanoma and lung cancer, especially in patients treated
with anti-CTLA4 and anti-PD-1/PDL1 [26]. The TIDE score, T cell dys-
function score, and T cell exclusion score of patients with LUAD from
the TCGA dataset were downloaded from the TIDE web (http://tide.
dfci.harvard.edu) after uploading the transcriptome profiles.

2.7. Prognostic meta-analysis

To comprehensively assess the prognostic significance of the TNF
family-based signature in different public cohorts, STATA software
(version 12.0) was used to conduct the prognostic meta-analysis. The
Table 1
Clinical characteristics of the patients frommultiple institutions.

Characteristics TCGA n=502 GSE11969n=90 GSE13213 n=117 GSE3

Age, year
Median (IQR) 66 (13.8) 62.0 (12.0) 61.0 (13.0) 60.0
Gender
Male 231 (46.0%) 47 (52.2%) 60 (51.3%) 65 (7
Female 271 (54.0%) 43 (47.8%) 57 (48.7%) 18 (2
Smoking history
Yes 416 (82.9%) 45 (50.0%) 61 (52.1%) �
No 72 (14.3%) 45 (50.0%) 56 (47.9%) �
NA 14 (2.9%) 0 (0.0%) 0 (0.0%) �
TNM stage
I and II 388 (77.3%) 65 (72.2%) 92 (78.6%) 83 (1
III andⅣ 105 (20.9%) 25 (27.8%) 25 (21.4%) 0 (0.
NA 9 (1.8%) 0 (0.0%) 0 (0.0%) 0 (0.
OS state
Alive 320 (63.7%) 50 (55.6%) 68 (58.1%) 40 (4
Death 182 (36.3%) 40 (44.4%) 49 (41.9%) 43 (5

Data are n (%). IQR, interquartile range; NA, not available; OS, overall survival.
pooled HR value was then calculated using the random-effects
model.
2.8. Signature construction and statistical analysis

A univariate Cox proportional hazards regression analysis was
used to evaluate the relationship between the gene expression value
of TNF family members and the OS of patients with LUAD. Then, a
stepwise Cox proportional hazards regression model was used to
shrink the variables and screen the most predictive markers among
the survival-related genes. The selected genes formed a risk formula
that was determined by a linear combination of the gene expression
levels and weighted with the corresponding regression coefficients
from the stepwise Cox proportional hazards regression model. The
proportional hazards assumption was checked by Schoenfeld’s partial
residuals and none of the variables revealed any indication of viola-
tion of this assumption. By ranking the risk formula score, patients
were classified into high- and low-risk groups. The Kaplan�Meier
method was used to assess the OS scores in the high- and low-risk
groups, and a log-rank test was used to calculate the difference in OS
between the two groups. The Mann�Whitney U-test was used to
analyse the distribution of estimate immune cell-type fractions, the
TMB load, number of neoantigens, number of clonal neoantigens,
number of subclonal neoantigens, PD-L1 protein expression, TIDE
score, T cell dysfunction score, and T cell exclusion score between
high- and low-risk groups. In patients with advanced stage disease,
the correlations between TMB and the cut-off score and signature
were analysed using the chi-square test. Independent prognostic fac-
tors were calculated by Cox proportional hazards regression model. P
< 0.05 was set as a significant difference in all statistical methods. R
software version 3.5.1 (https://www.r-project.org) was used for data
analysis and generation of figures.
3. Results

3.1. The landscape and prognostic significance of the TNF family genes
in LUAD

We enrolled 47 well-defined TNF family genes in this study,
including 18 TNFSF members and 29 TNFRSF members. Firstly, we
used 502 patients with TCGA LUAD with complementary prognostic
information to explore the TNF family gene expression profile. The
demographics of this cohort are listed in Table 1. The expression cor-
relation between the TNF family members is shown in Figure S1.
Most of the members showed a strong positive correlation with each
0219 n=83 GSE31210 n=226 GSE41271 n=180 Independentn=102

(14.0) 61.0 (10.0) 63.9 (13.8) 60.0 (9.0)

8.3%) 105 (46.5%) 91 (50.6%) 56 (54.9%)
1.7%) 121 (53.5%) 89 (49.4%) 46 (45.1%)

111 (49.1%) � 61 (59.8%)
115 (50.9%) � 41 (40.2%)
0 (0.0%) � 0 (0.0%)

00.0%) 226 (100.0%) 129 (71.7%) 80 (78.4%)
0%) 0 (0.0%) 51 (28.3%) 22 (21.6%)
0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

8.2%) 191 (84.5%) 111 (61.7%) 78 (76.5%)
1.8%) 35 (15.5%) 69 (38.3%) 24 (23.5%)

http://cibersort.stanford.edu/
https://tcia.at/home
http://www.cbioportal.org
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other. The univariate Cox proportional hazards regression analysis
was used to evaluate the relationship between the gene expression
value of TNF family members and the OS of patients with LUAD.
Here, we found that 17 genes were significantly associated with OS
(P < 0.05, Table 2), including six TNFSF members and 11 TNFRSF
members. Among the 17 genes, three genes (TNFRSF1A, LTBR, and
TNFRSF6B) were identified as “high-risk” factors, with hazard
ratios (HR) greater than 1. There were 14 genes (CD27, TNFRSF10C,
TNFRSF17, TNFRSF13B, TNFRSF13C, TNFRSF14, EDA2R, TNFRSF19,
TNFSF12, LTB, LTA, CD40LG, TNFSF8, and TNFSF13) that were iden-
tified as protective factors because they demonstrated HRs less
than 1.

3.2. Construction of the TNF family based-signature with LUAD in the
TCGA cohort

After filtered out the genes without prognostic significance, leaving
17 genes for further analysis. Then, a stepwise Cox proportional hazards
regression model was used to shrink the variables and optimize the
model by screening out five genes: TNFRSF6B, TNFRSF13C, TNFRSF14,
Table 2
Univariate Cox analysis of TNF family genes in TCGA C

Official symbol Aliases Fa

CD27 TNFRSF7 TN
CD40 TNFRSF5 TN
CD40LG TNFSF5, CD154 TN
CD70 TNFSF7, CD27L TN
EDA EDA-A1, EDA-A2 TN
EDA2R TNFRSF27, XEDAR TN
EDAR EDA-A1R TN
FAS TNFRSF6, CD95 TN
FASLG TNFSF6, CD95-L TN
LTA TNFSF1 TN
LTB TNFSF3 TN
LTBR TNFRSF3 TN
NGFR TNFRSF16, CD271 TN
RELT TNFRSF19L TN
TNF TNFSF2, TNFA TN
TNFRSF10A TRAILR1, CD261 TN
TNFRSF10B TRAILR2, CD262 TN
TNFRSF10C TRAILR3, CD263 TN
TNFRSF10D TRAILR4, CD264 TN
TNFRSF11A RANK, CD265 TN
TNFRSF11B OPG TN
TNFRSF12A FN14, TWEAKR, CD266 TN
TNFRSF13B TACI, TNFRSF14B, CD267 TN
TNFRSF13C BAFFR, CD268 TN
TNFRSF14 LIGHTR, HVEM, CD270 TN
TNFRSF17 BCMA, TNFRSF13A, CD269 TN
TNFRSF18 GITR, AITR, CD357 TN
TNFRSF19 TROY, TAJ TN
TNFRSF1A TNFR1, CD120A TN
TNFRSF1B TNFR2, CD120B TN
TNFRSF21 DR6, CD358 TN
TNFRSF25 DR3, TNFRSF12 TN
TNFRSF4 OX40, CD134 TN
TNFRSF6B DCR3 TN
TNFRSF8 CD30 TN
TNFRSF9 4-1BB, CD137, ILA TN
TNFSF10 TRAIL, CD253 TN
TNFSF11 RANKL, CD254 TN
TNFSF12 TWEAK TN
TNFSF13 APRIL, CD256 TN
TNFSF13B BAFF, CD257 TN
TNFSF14 LIGHT, HVEML, CD258 TN
TNFSF15 TL1A TN
TNFSF18 GITRL TN
TNFSF4 OX-40L, CD134L, CD252 TN
TNFSF8 CD30L, CD153 TN
TNFSF9 4-1BB-L, CD137L TN

TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI,
TNFRSF1A and EDA2R (Table S2). Then, a risk formula was
constructed with the expression levels of five genes and the
corresponding regression coefficients: risk score = 0.1633 £ TNFRSF6B
� 0.1153 £ TNFRSF13C � 0.2234 £ TNFRSF14 + 0.1992 £ TNFRSF1A �
0.1042 £ EDA2R. The expression details of the five enrolled genes and
the corresponding risk scores are shown in Fig. 1(a). This allowed
patients to be divided into high-risk (n=237, score value � 0.2085) and
low-risk (n=265, score value < 0.2085) groups based on the opti-
mal cut-off point. Compared with the low-risk group, patients in
the high-risk group showed significantly worse OS (Fig. 1(b), HR
2.4163, 95% confidence interval (CI) 1.5903�2.8976, P < 0.0001).
Because patients with early- (clinical stage I and II) and advanced-
stage diseases (clinical stage III and IV) require different therapy
strategies and hold different prognoses [27], we further applied
the TNF family-based signature in patients with a clinical stage in
the TCGA training set. Similarly, a high-risk score was associated
with significantly worse OS regardless if the patient exhibited
early- (Fig. 1(c), HR 2.2004, 95% CI 1.5246�3.1756, log-rank test
P < 0.0001) or advanced-stage LUAD (Fig. 1(d), HR 2.0769, 95% CI
1.1834�3.6453, log-rank test P = 0.0092).
ohort.

mily HR 95%CI P value

FRSF 0.8682 0.7858-0.9592 0.0055
FRSF 0.9089 0.8063-1.0246 0.1182
FSF 0.8194 0.7421-0.9049 0.0000
FSF 1.0688 0.9757-1.1708 0.1522
FSF 0.9561 0.8727-1.0474 0.3345
FRSF 0.9107 0.8387-0.9888 0.0259
FRSF 1.0425 0.9744-1.1154 0.2275
FRSF 0.9501 0.8396-1.0752 0.4176
FSF 0.9083 0.8204-1.0056 0.0641
FSF 0.8918 0.8002-0.9939 0.0385
FSF 0.8771 0.7949-0.9679 0.0091
FRSF 1.3077 1.0591-1.6147 0.0126
FRSF 1.0011 0.9123-1.0986 0.9808
FRSF 0.9259 0.7884-1.0873 0.3477
FSF 0.9098 0.8257-1.0024 0.0560
FRSF 1.0582 0.9025-1.2408 0.4858
FRSF 1.0336 0.8482-1.2596 0.7428
FRSF 0.8628 0.7727-0.9634 0.0087
FRSF 1.0799 0.9334-1.2495 0.3015
FRSF 1.1316 0.9925-1.2902 0.0647
FRSF 1.0088 0.9139-1.1135 0.8619
FRSF 1.1040 0.9768-1.2477 0.1131
FRSF 0.8682 0.7987-0.9438 0.0009
FRSF 0.8788 0.7977-0.9682 0.0090
FRSF 0.8253 0.7112-0.9577 0.0114
FRSF 0.9023 0.8370-0.9727 0.0073
FRSF 0.9919 0.9060-1.0860 0.8607
FRSF 0.8596 0.7735-0.9553 0.0050
FRSF 1.3583 1.0542-1.7500 0.0179
FRSF 0.8640 0.7360-1.0142 0.0739
FRSF 1.1041 0.9425-1.2935 0.2201
FRSF 0.9262 0.8376-1.0241 0.1349
FRSF 0.9510 0.8323-1.0867 0.4607
FRSF 1.1399 1.0481-1.2397 0.0022
FRSF 0.9513 0.8343-1.0847 0.4560
FRSF 0.9837 0.9007-1.0744 0.7156
FSF 0.9741 0.8621-1.1007 0.6740
FSF 1.0685 0.9942-1.1484 0.0717
FSF 0.7643 0.6331-0.9226 0.0051
FSF 0.7978 0.6847-0.9296 0.0038
FSF 0.9889 0.8846-1.1056 0.8448
FSF 1.0094 0.9061-1.1246 0.8648
FSF 0.9212 0.8391-1.0113 0.0848
FSF 0.8992 0.7838-1.0316 0.1296
FSF 1.0323 0.9090-1.1723 0.6246
FSF 0.8864 0.7979-0.9848 0.0247
FSF 1.0888 0.9787-1.2112 0.1177

confidence interval.



Fig. 1. Construction of the TNF family-based signature in the TCGA dataset. (a), the distribution of risk score, survival status and gene expression panel. (b), Kaplan�Meier curves of
OS in total LUAD (n=502) are stratified by TNF family-based signature in high and low risk groups based on the risk score. (c), Kaplan�Meier curves of OS in early-stage (stage I and
II) LUAD (n=389) are stratified by TNF family-based signature in high- and low-risk groups based on the risk score. (d), Kaplan�Meier curves of OS in advanced-stage (stage III and
IV) LUAD (n=105) are stratified by TNF family-based signature in high and low risk groups based on the risk score.
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3.3. Validation of the TNF family based-signature in independent
cohorts

To validate the reproducibility of the TNF family based-signature
in patients with LUAD, we first calculated the risk value for each
patient in five independent GEO datasets using the same formula. All
the demographics of these public GEO datasets are listed in Table 1.
Patients in different cohorts were also classified into high- and low-
risk groups based on the optimal risk value cut-off point. As expected,
the Kaplan�Meier analysis revealed that patients in the high-risk
group showed an increased risk of mortality compared to those in
the low-risk group, either in GSE11969 (Fig. 2(a), cut-off
value = �0.0852, HR 2.6731, 95% CI 1.4300�4.9970, log-rank test
P = 0.0014), GSE12313 (Fig. 2(b), cut-off value = �0.5631, HR 2.7285,
95% CI 1.5396�4.8354, log-rank test P = 0.0003), GSE30219 (Fig. 2(c),
cut-off value = �0.5066, HR 1.8202, 95% CI 0.8957�3.6988, log-rank
test P = 0.0937), GSE31210 (Fig. 2(d), cut-off value = �0.6048, HR
2.3162, 95% CI 1.0518�5.1005, log-rank test P = 0.0318), or
GSE41271 (Fig. 2(e), cut-off value = �0.0869, HR 1.9686, 95% CI
1.1774�3.2915, log-rank test P = 0.0085). Moreover, we determined
the prognostic significance of TNF family-based signature in these
public cohorts from TCGA and GEO datasets by conducting a prognos-
tic meta-analysis based on these six groups (n=1198). Our results
confirmed that the TNF family based-signature was a risk factor for
patients with LUAD (combined HR= 2.22, 95% CI= 1.81�2.72, meta-
analysis P < 0.001) (Fig. 2(f)).

To evaluate the robustness of this five-gene signature for pre-
dicting OS for patients with LUAD in clinical practice, we further
validated the TNF family-based signature in an independent cohort
that included 102 LUAD frozen tissue samples using qRT-PCR.
Using the same formula, patients were divided into two groups
according to the optimal cut-off point (Fig. 3(a)). As a result, signif-
icantly different mortality was found between the high-risk group
and low-risk group (Fig. 3(b), cut-off value = 0.0830, HR 4.2524,
95% CI 1.8936�9.5491, log-rank test P = 0.0001). When carried out
a stratified analysis in patients with early- and advanced-stage dis-
ease with LUAD to evaluate the prognostic significance of the sig-
nature. The results confirmed that the signature could classify the
patients into high- and low-risk groups with significantly different
OS results (Fig. 3(c) and (d)).



Fig. 2. Validation of TNF family-based signature in LUAD from different GEO datasets. Kaplan�Meier curves of OS in different GEO datasets, (a) GSE11969 (n=90); (b) GSE13213
(n=117); (c) GSE30219 (n=83); (d) GSE31210 (n=226); (e) GSE41217 (n=180). (f), a meta-analysis was performed using the prognostic results of TCGA and GEO datasets. The overall
P value was calculated by meta-analysis.
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Fig. 3. Validation of the prognostic performance of TNF family-based signature in an independent cohort based on 102 frozen tissues. (a), the distribution of risk score, survival sta-
tus and gene expression panel. (b), Kaplan�Meier curves of OS in total LUAD (n=102) are stratified by the signature in high- and low-risk groups based on risk score. (c), Kaplan�Me-
ier curves of OS in early-stage (stage I and II) LUAD (n=80) are stratified by the signature in high- and low-risk groups based on the risk score. (d), Kaplan�Meier curves of OS in
advanced-stage (stage III and IV) LUAD (n=22) are stratified by the signature in high and low risk groups based on the risk score.
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3.4. Validation of the TNF family based-signature in different clinical
subgroups

To further verify the stability of the signature in different clinical
subgroups, we first evaluated the predictive ability of the signature
in patients of different sexes, ages, and smoking histories. All patients
were ranked by the formula score and divided into high- and low-
risk groups. Kaplan�Meier survival analyses were then used to esti-
mate the difference in OS probabilities between high- and low-risk
groups. Our results indicated that the OS in the high-risk group was
significantly shorter than that in the low-risk group, across all sub-
groups (Supplementary Fig. 2, log-rank test P < 0.05). Next, we fur-
ther explored the performance of the signature in patient subsets
with different mutations. Likewise, we found that no matter in EGFR
wild-type (WT), EGFR mutation (MUT), KRAS WT, KRAS MUT, or
EGFR/KRAS WT group, the TNF family-based signature risk group
provided statistically significant OS stratification (Supplementary Fig.
3, log-rank test P < 0.05). Simultaneously, we tested the signature in
three expression subtypes in LUAD: magnoid, squamiod and bron-
chioid [28]. The TNF family-based signature also statistically signifi-
cantly stratified the patients in different subtypes, through the
optimal cut-off point (Supplementary Fig. 4, log-rank test P < 0.05).

3.5. The TNF family-based signature is an independent risk factor for
patients with LUAD

To explore whether the prognostic value of the TNF family-based
signature performed independently of other clinicopathological fac-
tors, univariate and multivariate Cox regression analyses were first
conducted on the TCGA set. Our results revealed that the risk score



Table 3
Univariable and multivariable Cox regression analysis of the TNF family-based signature and survival in TCGA
dataset.

Univariable analysis Multivariable analysis

Variable HR 95%CI P value HR 95%CI P value

Age
�60 or <60 1.1575 0.7957�1.6838 0.4445
Gender
Male or Female 1.1568 0.8401�1.5928 0.3722
Smoking history
Yes or No 1.0374 0.6532�1.6476 0.8763
T stage
1, 2, 3 or 4 1.5458 1.2602�1.8961 <0.0001 1.2142 0.9556�1.5428 0.1122
Lymphatic metastasis
Yes or No 2.4053 1.7466�3.3124 <0.0001 1.6476 1.0696�2.5381 0.0235
TNM stage
I, II, III orⅣ 1.5587 1.3381�1.8156 <0.0001 1.2344 0.9670�1.5757 0.0908
ERFR status
MUT or WT 1.4658 0.9584�2.2418 0.0777
KRAS status
MUT or WT 1.2159 0.8598�1.7195 0.2689
Risk score
High or low 2.0558 1.4802�2.8554 <0.0001 2.0003 1.4146�2.8285 0.0001

Abbreviations: HR, hazard ratio; CI, confidence interval; WT, wild-type; MUT, mutation.
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was independently correlated with OS in patients with LUAD
(Table 3). Consistently, the TNF family-based signature was validated
as an independent factor after Cox regression analyses in 102 patients
with LUAD with qPCR data (Table S3). All the number of events in
each category of each variable in TGCA and independent cohorts
were shown in Table S4.

3.6. Identification of the TNF family-based signature related biological
pathways

The strong stratification power of the TNF family-based signature
in predicting the OS of patients with LUAD led us to explore signa-
ture-related biological pathways. We first sought to determine the
genes that strongly correlated with the risk score (Pearson |R| > 0.4).
As shown in Fig. 4(a), there were 38 positively related genes, and 392
negatively related genes that were screened out. Then these signifi-
cantly related genes were chosen for GO and KEGG analysis DAVID
(http://david.abcc.nci fcrf.gov). We found that these genes were more
involved in the biological processes of the immune response—T cell
proliferation and costimulation—and other immune-specific pro-
cesses (Fig. 4(b)). Meanwhile, the KEGG analysis revealed that these
genes were more relevant to primary immunodeficiency and other
immune-related pathways (Fig. 4(c)).

3.7. Immune cell infiltration and inflammatory profiles of the TNF
family-based signature

Due to the close relationship between the TNF family-based signa-
ture and immune-related biological pathways, we decided to drive
deeper into the risk score as it related to immune cell infiltration and
inflammatory profiles in patients with LUAD. First, CIBERSORT with
LM22, a signature matrix containing 547 genes that distinguish 22
immune cell subtypes [22], was used in each sample in the TCGA
cohort to estimate the immune cell infiltration. The distributions of
different immune cells between high- and low-risk groups are shown
in Fig. 5(a). More specifically, the high-risk group had a higher popu-
lation of activated NK cells, neutrophils, activated dendritic cells
(DCs), and macrophages M0 (Fig. 5(b) and (c)). In contrast, the low-
risk group had a higher population of memory B cells, resting DCs,
resting CD4 memory T cells, gamma delta T cells and macrophages
M1 (Fig. 5(b) and (c)). The close relationship between risk score and
immune cell infiltration reminded us of another immune profile-
related prognostic marker—FOXM1—in LUAD [23]. Therefore, we
compared the prognostic value of our signature with FOXM1. Our
results indicated that our signature performed better than FOXM1 for
predicting OS in patients with LUAD (Fig. S5).

Next, to better understand risk score-related inflammatory activi-
ties, we examined the relationships among the seven clusters of
metagenes [29]. These differences represent different inflammatory
and immune responses. The TNF family-based signature was
explored and the details of these metagenes are shown in Fig. 5(d).
To validate what we found in the expression detail, a Gene Sets Varia-
tion Analysis (GSVA) was used to emulate the results of correspond-
ing clusters of seven metagenes [26,30]. Our results showed that the
risk score was negatively related to HCK, LCK, MHC_I, and MHC_II
(Fig. 5(e)).

3.8. Relationship between the TNF family-based signature and
immunotherapy response

Immunotherapy targets immune checkpoints and is now the first-
line treatment in lung cancer. The TNF family members are potential
candidate molecules for this therapeutic regimen. We explored the
relationship between the TNF family-based signature and the immu-
notherapy response by analysing the correlation of risk score and a
series of widely used biomarkers [26,31]. First, the tumour mutation
burden (TMB), number of neoantigens, number of clonal neoantigens,
and number of subclonal neoantigens were calculated for the high-
and low-risk groups. Our results showed that high-risk patients
showed a significant mutation load and neoantigens (Fig. 6(a)�(c),
Mann�Whitney U-test P < 0.05). It is widely accepted that patients
with a high TMB (TMB�10 mut/Mb) will achieve a higher objective
response rate to immunotherapy [32]. Given the TMB cut-off point in
many retrospective studies was derived from patients with advanced
lung cancers who underwent immunotherapy, we further analysed
the signature with the TMB cut-off point in patients with advanced
stage (stage III and IV) disease. Using the same risk score cut-off point
(0.2085), our results confirmed that a high risk score was significantly
associated with a high TMB (Figure S6, chi-square test P = 0.0368).
Next, the protein level of PD-L1, another well-known biomarker of
the immunotherapy response in these two groups, was also investi-
gated. We found that higher PD-L1 protein levels were observed in
high-risk patients (Fig. 6(d), Mann�Whitney U-test P < 0.05). Finally,
the TIDE score—a more accurate biomarker than the T cell

http://david.abcc.nci


Fig. 4. TNF family-based signature-related biological pathways. (a), the most related genes of TNF family-based signature in LUAD (Pearson |R|> 0.4). (b) and (c), GO and KEGG anal-
ysis of the identified genes.

C. Zhang et al. / EBioMedicine 59 (2020) 102959 9
dysfunction score and T cell exclusion score [26]—was introduced into
our analysis. As expected, high-risk patients were characterized by a
significantly lower TIDE scores, and higher T cell dysfunction and
exclusion scores (Fig. 6(e)�(g), Mann�Whitney U-test P< 0.0001).

Besides, two subtypes of LUAD—EGFR MUT patients and STK11/
LKB1 and KRAS co-MUT patients—are reported to have a low
response to immune checkpoint inhibitors [33,34]. Therefore, we
also explored the risk score distribution in different mutation sub-
groups. As shown in Fig. S7, although there was no statistical differ-
ence between STK11/LKB1 and KRAS co-mutation groups, and
between the STK11/LKB1-WT and KRAS-MUT groups, a distinct dif-
ference was found between the EGFR-WT group and the EGFR-MUT
group. These results suggested that the TNF family-based signature
identified high-risk patients who may be appropriate candidates for
immunotherapy, especially ICB.

4. Discussion

With advancements in high-throughput sequencing technology
over past decades, increasing numbers of prognostic markers and
therapeutic targets have been continually identified. This has
increased our understanding of cancer. However, reliable bio-
markers—based on the intrinsic microenvironment of tumorigenesis
for the immunotherapy response and prognosis in LUAD—are still
very rare. To bolster clinical tools and the understanding of co-stimu-
latory signalling in LUAD, we present the first TNF family-based gene
prognostic signature. This was the first systematic analysis of the
relationship and prognostic value of the TNF signature based on the
gene expression levels of 47 well-defined TNF family members from
the TCGA dataset. Using a Univariate Cox proportional hazards
regression analysis and the stepwise Cox proportional hazards
regression model, a five-gene based prognostic signature was
constructed. The robust of this signature was well validated in five
independent public cohorts and 102 cases from frozen tissues by
qRT-PCR, which was confirmed by meta-analysis. The TNF family-
based signature was identified as an independent risk factor for
patients with LUAD and was significantly associated with the OS in
different clinical and mutation subgroups. After applying a series of
immune profile relevant analytical methods, the TNF family-based
signature was found significantly related to different tumour-infil-
trating immune cells and inflammatory activities. Interestingly, we
found that the TNF family-based signature score was positively
related to different immunotherapy biomarkers. This indicates that
high-risk patients may be more suitable for immune checkpoint inhib-
itor-based immunotherapies. As far as we are aware, this study is the
first and most comprehensive research to demonstrate the prognostic
accuracy of the TNF family-based signature in patients with LUAD.
With further validation, our signature might provide a more complete
understanding and facilitate precise application of immunotherapy in
patients with LUAD.

TNF family members are promising candidates for immune check-
point blockade after B7-CD28 family members [14]. To identify genes
that were able to predict prognosis in the TNF family, we systemati-
cally analysed a panorama of TNFSF/TNFRSF members with LUAD
from the TCGA cohort. We found that most of the significant genes
were protective factors, which is consistent with the predominant



Fig. 5. The immune landscape of TNF family-based signature in LUAD. (a) Estimated immune cell expression proportion in high- and low-risk groups. (b) and (c) The details of dif-
ferent expression immune cells in high- and low-risk groups. (d) The relationship between risk score and inflammatory activities in patients with LUAD. (e) Correlogram was gener-
ated based on Pearson R-value between risk score and metagenes. *, **, ***, and **** represent P < 0.05, P < 0.01, P < 0.001 and P < 0.0001, respectively.
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co-stimulatory function of TNF family members in the tumour micro-
environment [13]. Finally, five genes, including TNFRSF6B,
TNFRSF13C, TNFRSF14, TNFRSF1A, and EDA2R, were filtered out to
establish the signature. TNFRSF6B, also known as Decoy receptor 3
(DcR3), is a soluble decoy receptor that belongs to TNFRSF, which can
inhibit apoptosis and enhance angiogenesis by neutralizing three
members of TNFSF: Fas ligand (FasL), LIGHT, and TL1A [35�38]. A
recent study revealed that switching off DcR3 expression in the
tumour microenvironment enhanced the efficacy of cancer therapy
[39]. TNFRSF13C, also known as B cell-activating factor receptor
(BAFFR), is a receptor of BAFF, which belongs to the TNFRSF family
and is involved in B lymphocyte development and maturation [40]. A
recent study revealed that antibodies that targeted BAFFR showed
greater potential for translation into clinical use [41]. TNFRSF14, also
known as the Herpes Virus Entry Mediator (HVEM), is a member of
the TNFRSF family and can bind LIGHT to enhance T cell proliferation
and cytokine production, or engage with BTLA triggered the inhibi-
tory signals of T cells [42,43]. Moreover, HVEM had a broader expres-
sion than PD-L1 and acted as a negative prognostic marker for cancer
[44]. TNFRSF1A, also known as tumour necrosis factor receptor type
1 (TNFR1) or CD120A, is a member of the TNFRSF family, and can
mediate signals for either cell survival or cell death after TNFa stimu-
lation [45]. Blocking of the TNFa-TNFR1 axis can overcome resistance
to anti-PD-1 in experimental melanoma [46], indicating a close rela-
tionship between the TNFSF/TNFRSF family and immune checkpoint-
based immunotherapy. EDA2R, also known as X-linked Ectodermal



Fig. 6. Distribution of immunotherapy response markers in high- and low-risk groups. (a), (b), (c), and (d), the distribution of TMB, number of neoantigens, number of clonal neoan-
tigens, and number of subclonal neoantigens in high- and low-risk groups. (e), the distribution of protein level of PD-L1 in high- and low-risk groups. (f), (g), and (h) The distribution
of TIDE score, T cell dysfunction score, and T cell exclusion score in high- and low-risk groups. * and **** represent P < 0.05 and P< 0.0001, respectively.
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Dysplasia Receptor (XEDAR), binds to the related legend EDA2, while
the function of the EDA2-XEDAR pair remains enigmatic [13,47].
With the exception of TNFRSF14 and TNFRSF1A [48,49], the expres-
sion details and functions of all the other three molecules in this sig-
nature in LUAD are not clear, and further investigations are needed.

The performance of the TNF family-based signature was validated
in several independent cohorts and different clinical subgroups.
Despite the fact that the P value in the GSE30219 cohort do not reach
statistically significant, our meta-analysis confirmed the robust per-
formance of the signature in these multiple cohorts. Additionally, the
borderline significance of the signature in the patients with advanced
stage disease, sampled from the independent cohort, might be attrib-
utable to the small size of this cohort. Overall, the signature was
well-validated in different cohorts, which led us to explore the poten-
tial underlying mechanism. Through correlation analysis, we found
that signature-related genes were more involved in immune-specific
biological processes and pathways. This indicated that an immune
heterogeneity between the signature high- and low-risk groups may
be the main cause of the difference in OS. Then, seven immune-
related clusters and immune cell infiltration analyses were used to
provide additional insight into the inflammatory landscape that
exists between these two groups. Our results confirmed that high-
risk patients were under an immunosuppressive state with a low
level of B cell function (HCK) and reduced antigen-presenting capac-
ity (MHC_I and MHC_II). Low-risk patients featured high infiltration
of gamma delta T cells and macrophages M1, indicating that these
patients may be in a relatively active anti-tumour immune response
state. However, all these findings were estimated by bioinformatics
and further experimental verification are need.

The interesting finding in our study was the relationship between
the TNF signature and the well-studied immunotherapy predictive
biomarkers. Although the clinical use of monoclonal antibodies tar-
geting PD-1 and PD-L1 has yielded significant benefits for patients
with NSCLC through inhibiting immune checkpoint activity, predic-
tors of the response to these immunotherapy regimens remain
incompletely characterized. To preliminarily assess the predictive
ability of the TNF family-based signature, three different well-vali-
dated immunotherapy biomarkers were used. The protein levels of
PD-L1 and TMB are two known classic biomarkers of the response to
anti-PD-1/PD-L1 therapies [50,51]. The TIDE score was created to
serve as a more accurate biomarker for the immune checkpoint
blockade response than traditional biomarkers [26]. We found that
signature high-risk patients had significantly higher levels of PD-L1
protein expression, tumour mutation burden, T cell dysfunction, and
exclusion scores. These findings were consistent with the results of
seven clusters of metagenes, indicating that high-risk patients were
under an immunosuppressive state. These novel findings suggest the
potential usage of the TNF family-based signature as a predictive
biomarker for immunotherapy response. However, based on the sig-
nature, high-risk patients were characterized by their immune sup-
pressive states. It is possible that these high-risk patients may not
respond to immune checkpoint inhibitors. Therefore, further studies
are needed to verify the ability of this signature to predict immuno-
therapy response.

Although the TNF family-based signature could act as an effective
independent determiner of prognoses and may predict immunother-
apy responses for patients with LUAD, there are still some limitations
that should be acknowledged. Firstly, all the cases in our study were
retrospective samples, and validation of prospective samples is still
needed. Secondly, the candidate genes enrolled in this study were
restricted to the TNF family members and the immune tumour
microenvironment has high spatial heterogeneity. Hence, the prog-
nosis predictive power of the signature was limited. However, the
signature provides more information about the immune microenvi-
ronment profile and immunotherapy response. Thirdly, patients
treated with immunotherapy were not examined in this study, so the
predictive ability of the signature for immunotherapy response was
evaluated indirectly. Further well-powered prospective studies are
still needed.

In conclusion, this was the first and most comprehensive investi-
gation of the expression profiles and clinical significance of TNF fam-
ily members in patients with LUAD. We also developed and tested
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the first TNF family-based prognostic model in patients with LUAD.
Moreover, these findings may provide a clinically useful tool for bet-
ter prognostic management and optimize the associated immuno-
therapy for patients with LUAD.
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