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Abstract: This study aimed to develop a wearable sensor system, using machine-learning models,
capable of accurately estimating peak ground reaction force (GRF) during ballet jumps in the field.
Female dancers (n = 30) performed a series of bilateral and unilateral ballet jumps. Dancers wore six
ActiGraph Link wearable sensors (100 Hz). Data were collected simultaneously from two AMTI force
platforms and synchronised with the ActiGraph data. Due to sensor hardware malfunctions and
synchronisation issues, a multistage approach to model development, using a reduced data set, was
taken. Using data from the 14 dancers with complete multi-sensor synchronised data, the best single
sensor was determined. Subsequently, the best single sensor model was refined and validated using
all available data for that sensor (23 dancers). Root mean square error (RMSE) in body weight (BW)
and correlation coefficients (r) were used to assess the GRF profile, and Bland–Altman plots were used
to assess model peak GRF accuracy. The model based on sacrum data was the most accurate single
sensor model (unilateral landings: RMSE = 0.24 BW, r = 0.95; bilateral landings: RMSE = 0.21 BW,
r = 0.98) with the refined model still showing good accuracy (unilateral: RMSE = 0.42 BW, r = 0.80;
bilateral: RMSE = 0.39 BW, r = 0.92). Machine-learning models applied to wearable sensor data can
provide a field-based system for GRF estimation during ballet jumps.

Keywords: machine learning; inertial sensor; ballet; ground reaction force

1. Introduction

Ground reaction force (GRF) is a commonly measured biomechanical feature during impact-based
activities such as landing from a jump [1–5]. Peak values of the GRF during jumping typically
exceed several times an athlete’s body weight (BW) [4,5]. For example, laboratory-based studies
have demonstrated that basketballers, volleyball players, and runners exhibit peak GRFs between 2–5
BW [4], and gymnasts land a frontsault with up to 15.8 BW [5]. Ballet dancers are aesthetic athletes
who have been reported to perform up to 220 jumps within a single training session, from over half of
which they land unilaterally [6], with peak GRFs commonly exceeding 4 BW [2,7]. High GRF during
landings may increase the accumulated internal loads that these athletes experience during training,
competition and performance, thus increasing susceptibility to musculoskeletal pain conditions [3,8].
For example, recreational athletes have demonstrated 3.4%–6.5% higher peak vertical GRF on landing
when fatigued [3]. Similarly, high peak GRFs during impact-based activities have been associated with
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the development of lower limb musculoskeletal pain conditions [8]. Therefore, GRF is considered an
important issue for dancers.

GRF is commonly measured in laboratory studies using force platforms [1,2,4,9,10]. The output
from a force platform provides a complete GRF profile, allowing identification of the GRF at any point
during the jump. However, force plates are expensive and restricted by their dimensions, and thus are
typically unable to assess complicated athletic maneuvers, such as series of jumping tasks commonly
performed in ballet. Importantly, these systems are not ecologically valid [11], i.e., they are unable to
capture a dancer’s movement in a normal training environment or across a performance season or
training period, where changes in movement due to factors such as fatigue may be common. As a
result, there is a need for a field-based system for measuring GRF during jumping tasks.

Recent advancements in wearable technology has opened the possibility of field-based GRF
measurement, providing biomechanical insight in sports where laboratory-based measurement is
challenging. For example, force insoles have been added to ski boots for analysis of ski jump
landings [12], and bendable outsoles used for GRF measurement during walking [13]. Within a dance
population, the addition of an insole or outsole to a ballet shoe is not possible due to the aesthetic and
technical requirements of the athletic pursuit. Rather, wearable technology potential in this population
lies in small, body-worn, commercially available wearable sensors [14–19].

Traditionally, wearable sensor accelerometer data has been used in the field during walking
and running activities to estimate force directly using inverse dynamics [16,18–20]. However, given
the noisy signal, this method has variable success [20]. Most current wearable sensors contain
multiple hardware chips such as inertial measurement units (IMUs), which combine an accelerometer,
magnetometer and gyroscope. Rather than directly entering the derived data into calculations, sports
scientists are applying sophisticated machine-learning algorithms to indirectly estimate GRF using
data from these sensors [14,15,17]. Machine-learning models have been applied to both multi-sensor
and single sensor data in order to estimate GRF during running [14]. Using three IMUs, mounted
on the sacrum and legs, Wouda et al. [14] demonstrated a root mean square error (RMSE) of 0.39BW
(range = 0.21–1.25 BW), with a correlation coefficient of 0.96 across the GRF profile, and no significant
difference in peak GRF between the predicted and gold standard force plate values. While these results
are promising, running is characterised by a rhythmical, consistent and predictable movement profile.

Machine learning has also been applied to estimate other biomechanical forces. For example, data
from two IMUs for knee joint force estimation during sports-specific tasks, such as cutting and basic
jumping tasks [21]. This model demonstrated reduced accuracy (average RMSE of 19.1%) compared
to that used in running, potentially due to more variable movement patterns [21]. Further research
is required for development of such models for GRF during complex, sports-specific tasks such as
jumping. Additionally, within the unique context of dance, a system requiring a minimum number of
sensors is required to conform within the aesthetic requirements.

The purpose of this study was to develop a series of machine-learning models capable of predicting
peak GRF during bilateral and unilateral dance-specific jumping tasks. A field-based measurement
of these biomechanical features would enable exploration of the role of GRF in the development of
musculoskeletal pain conditions in people when engaging in lower-limb loading tasks.

2. Materials and Methods

The Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN)
provided guidelines for the design and reporting of this study [17].

2.1. Participants

Thirty female ballet dancers (mean (standard deviation, SD) age: 18.50 (1.68) years, mean (SD)
weight (kg): 54.7 (3.3) kg) were recruited from ballet schools across Perth, Western Australia. Dancers
were included in the study if they were aged 16 years or older and participating in a minimum of 6
hours of ballet training per week. Only female dancers were recruited for this study as the movement
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profile of females and males are different in ballet, and there is greater female participation at a
pre-professional level. Both recreational and pre-professional dancers were included in the study to
allow for greater diversity of skill level, and thus variability of movement for model development.
Dancers were excluded from the study if they were currently injured or unwell. This study was
approved by the university’s human research ethics committee (HRE2017-0185). Informed consent
was obtained from all participants included in the study.

2.2. Data Collection

Dancers attended a single data collection session at the university’s motion analysis laboratory.
Following completion of a short questionnaire detailing their current dance participation and years of
dance experience, body mass, height and limb measurements (lower limb length, knee width, ankle
width) were recorded using calibrated scales (Tanita Corporation of America, Arlington Heights, IL,
USA), a stadiometer (Mentone, Victoria, Australia) and a tape measure.

All jumps were performed on a single force plate (Advanced Mechanical Technology, Inc.,
Water-town, MA, USA) operating at 2000 Hz. The force platform was covered with a thin, soft mat
attached to the platform to better simulate a dance floor.

Dancers were fitted with six ActiGraph Link wearable sensors (ActiGraph Corporation, Pensacola,
FL, USA), operating at 100 Hz and with the gyroscope and magnetometer enabled. The ActiGraph
Link is a small commercially available tri-axial wearable IMU. The sampling frequency of 100 Hz was
selected as this was the maximum sampling frequency available on this device. The ActiGraph sensors
were secured to the skin using double-sided tape (3M 1522 Medical Tape, double sided, transparent,
3M, MN, USA), where the double-sided tape was placed between the sensor and the skin. This
was then further secured using a single piece of hypoallergenic tape (Rocktape, Australia), which
covered the sensor so that it did not dislodge during jumps. The double-sided tape is non-elastic
and commonly used within biomechanical research, the hypoallergenic tape is elastic so as not to
restrict the dancers’ movements. Sensors were placed on the thoracic spine, sacrum (recommended
as this is close to an individual’s centre of mass) and bilateral shin and thigh (to capture lower limb
movement) (See Figure 1). Lower limb sensors were placed anteriorly on the thigh to avoid obstruction
of movement. All sensor locations also allowed for easy attachment to the dancer’s skin, reducing the
potential impact of movement artefact from clothing interfering with the sensors. The sacrum sensor
can be concealed easily, thus conforming with the aesthetic requirements of ballet. Data collection for
each participant took approximately 45 min.
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Figure 1. Anatomical locations of inertial measurement units (IMUs).

2.3. Jumping Tasks

Following a self-directed warm up and sensor attachment, the dancers performed a series
of bilateral and unilateral ballet specific jumps (Table A1). The tasks selected were performed in
progressions that followed a typical ballet class format, i.e., jumps with bilateral landings, followed by
jumps with unilateral landings. The number of repetitions of each task is presented in Table A1 and is
also reflective of performance within a normal ballet class. All unilateral tasks were repeated on both
lower limbs.

2.4. Data Processing

Following data collection, ActiLife software (Version 6.13.3) was used to output date-time stamped
files of each wearable sensor’s raw data: including tri-axial accelerometer, gyroscope and magnetometer
outputs. Force platform data were down-sampled to 100 Hz to match IMU data. Both force plate
and acceleration data were normalised to G-force (Gs). A customised LabVIEW program (National
Instruments, Austin, TX, USA) was designed to allow semi-manual time synchronisation of wearable
sensor data with force platform data. For this purpose, a single reviewer visualised the sum of the
residuals of the sacrum sensor accelerometer data with the force plate data to align and check for
synchronisation. Following time synchronisation, the program outputted a collated file of all wearable
sensor and force platform data for each task.
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2.5. Machine-Learning Model Development and Validation

While data were collected on 30 dancers, wearable sensor data from seven of the dancers had issues
with hardware malfunctions. This was recognised when data was downloaded and visually inspected
after data collection. Hardware malfunction issues included sensors not being accepted by the docking
station to download data and sensors breaking during data collection and not collecting data. Therefore
only 23 of the dancers had data that could be used in the development of the machine-learning
model. Of these 23 dancers, 14 had data which were deemed adequately synchronised across all six
sensors, allowing for exploration of multi-sensor models. Synchronisation issues were caused by a
manufacturer fault in this brand of sensors, which can result in a between-sensor time shift. As a result,
some sensors could not be synchronised due to large time differences between both the other sensors
and the force platform. Adequate synchronisation of sensors was determined via visual observation of
a single researcher, by alignment of the peaks of acceleration data, and matching the periods between
these peaks.

Visual inspection of the data revealed that the magnetometer raw data was unstable and not
representative of the dancers’ movement, thus this data was not utilised. Only the accelerometer
outputs were used in the development of the models. Gyroscope data was not used in the development
of the model to avoid having too much data that was similar to each other, where acceleration is related
to velocity, and is also more closely related to force. The model was developed in a number of stages,
with the final goal being to achieve a model capable of estimating peak GRF. The stages of development
are demonstrated in Figure 2, and described below (Sections 2.5.1–2.5.3)
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2.5.1. Stage One: Initial Model Development and Evaluation

Based on initial experimentation, two pilot model designs were developed using data from 14
of the dancers; one for unilateral landings, and one for bilateral landings. The models were initially
trained on 12 dancers (training set) and evaluated on the remaining two (test set). Model architecture
is shown in Figure 3. The models incorporated a support vector machine (SVM) for flight and ground
phase classification with separate artificial neural networks (ANN) for the GRF estimation during each
phase. The models were constructed so that the final output model only required single data points
and no historic points, thus GRF could be predicted for each data point individually, allowing for the
potential of real-time GRF estimation.
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Support Vector Machine to Classify Ground and Flight Phases

The SVM was developed using a gaussian kernel function, to determine if a data point was
classified within the flight or ground phase of the jump. The input for the SVM was the vector
magnitude of the acceleration data from the IMUs, measured in Gs at 100 Hz for the period of the
activity. During the ground phase, the segment accelerations were coupled to the GRF, whereas during
the flight phase the GRF determined by the force platform is reduced to zero, while the segment
accelerations are not. Segment accelerations refer to the acceleration vector of segments of the body
such as the torso, thigh or shin. Therefore, a data point was assigned a ground phase label if the GRF
recorded by the force plate was greater than 0.05 BW, and assigned a flight phase label if it was less
than 0.05 BW.

An equal number of data points for every type of jump performed by each dancer were
sequentially arranged, before being rearranged randomly using the MATLAB Random Number
Generator (MathWorks, Inc., Natick, MA, USA), to produce an overall training set. As the data was
collected at 100 Hz, a data point is defined as a time period of data that is 1/100th of a second in
duration. The first 500 data points from the overall training set were taken to train the SVM, with a
five-fold cross validation process used, allowing for selection of the best-performing model with a
smaller training set. The first 200 data points from the test set were then used to assess the performance
of the SVM. A reduced sample was decided upon due to the reduced data requirements of a SVM,
requiring smaller training and test data, and to prevent the occurrence of overfitting. Additionally, the
smaller test set was used to enable more efficient training and testing of the models, given the large
number of models being developed. Overfitting is when a model corresponds too closely or exactly to
a particular data set and, therefore, may not be able to predict future observations reliably. Within the
context of machine learning for wearable sensors and human movement, this can occur due to a data
set which does not provide sufficient variability of movement (i.e., is trained on a set of data that is all
very similar, thus the model learns only to recognise these patterns) [22].
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To evaluate SVM classification accuracy for each possible sensor combination, confusion matrices
were constructed using the percentage of data points that were correctly predicted, for both unilateral
and bilateral jumps.

Artificial Neural Networks (ANNs) to Estimate Ground Reaction Force (GRF) During Ground and
Flight Phase

Separate ANNs were developed; one for the ground phase and one for the flight phase of
the jump. Optimal ANN architecture was determined using an iterative loop, to determine which
number of neurons in each hidden layer resulted in most accuracy when all six sensors were used.
For the flight phase, only one hidden layer was assessed, and for the ground phase both single and
double hidden-layer networks were investigated. Single and double hidden-layer networks with a
lower bound of one and an upper bound of 35 in each layer were explored when determining the
hyperparameters. All models were trained starting with randomly generated weights.

Combined 14 Models to Estimate GRF Across Whole Jump Activity

The SVM and two ANNs were combined in two models, one for bilateral landings and one for
unilateral landings. Separate models were used for each type of landing to improve accuracy due to
the differences between bilateral and unilateral landings. In each individual model, once a data point
was classified by the SVM as being within the ground phase or the flight phase of the jump, it was fed
into the corresponding neural network, as demonstrated in previous reporting by Leporace et al. [17].
This structure allowed for each individual data point to be introduced to the machine-learning model
to produce an estimation of GRF profile across the whole activity. The model architecture is shown in
Figure 3.

To evaluate the combined model, incorporating the SVM and both ground- and flight-phase
ANNs, the GRF estimations across the total GRF curve were compared with force platform ‘gold
standard’ GRF using RMSE, as well as Pearson’s correlation coefficients to provide indication of
standardised fit. The total GRF curve of each jump was considered including both the flight phase and
subsequent ground phase.

Determination of Optimal Sensor Number and Locations

The performance of all sensor combinations was compared by utilising a SVM, an ANN and the
Combined 14 Models for each sensor combination. For both unilateral and bilateral jumps, 63 models
were developed, one for each different combination of sensors (all six sensors, all combinations of five
sensors, all combinations of four sensors, etc.). SVM performance was evaluated using a confusion
matrix for classification accuracy. ANN and Combined 14 Model performance was evaluated by
comparison with force platform GRF across the whole jump activity using RMSE and Pearson’s
correlation coefficients. This was determined using a leave-two-out-cross validation approach, where
the model was trained on 12 dancers and evaluated on the remaining two, and this was iteratively
repeated on all combinations of two dancers (total of 91 combinations, yielding a total of 11,466
models trained and tested (63 [possible sensor combinations] × 91 [combinations of dancers] × 2
[unilateral/bilateral]). The 10 best possible combinations (number and locations) of sensors were saved.
The leave-two-out cross validation approach was used to allow greater generalisability of the model
given the smaller sample size. The best single-sensor model based on location was identified for both
unilateral and bilateral jumps. The best single-sensor model was determined by looking at the SVM,
ANN and Combined Model results together and determining which single-sensor location performed
with greatest accuracy. Additionally, one of the top performing models from the leave-two-out-cross
validation for this single sensor was selected to be integrated into a user-friendly program to use for
stage three of this development.
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2.5.2. Stage Two: Refinement and Evaluation of Single Sensor Models Using a Larger Sample

Single sacral-sensor models for both the bilateral and unilateral jumps were refined using data from
23 dancers. The model was developed using a leave-one-out-cross validation where it was iteratively
trained on 22 dancers’ data and evaluated for the remaining one (total of 23 combinations) [13].

To evaluate the performance of the Refined 23 Models, the average RMSE and correlation
coefficients were determined for the GRF profile across the jump activity in comparison with the gold
standard force platform GRF profile. One of the top performing models was selected to be integrated
into a user-friendly program to use for stage three of this development.

2.5.3. Stage Three: Validation of Combined 14 Models and Refined 23 Models to Determine Peak GRF
Using Single Sensor

For both the 14 dancer and 23 dancer single-sensor models, one of the top-performing models
was selected to be integrated into a user-friendly MATLAB (MathWorks, Inc., MA, USA) program to
use for peak GRF output (maximum value within the ground phase) for a selection of trials for each of
the 23 participants. Bland–Altman plots were constructed to determine the level of agreement between
the machine-learning models and the gold standard force platform peak GRF values.

3. Results

3.1. Stage One: Support Vector Machine, Artificial Neural Network and Combined 14 Models Performance

The performance of the SVM when all six sensors were used demonstrated an average 87.8%
degree of accuracy for unilateral jumps and 80.8% for bilateral jumps. Using all 6 sensors, the Combined
14 Models, trained and tested on 91 combinations of dancers, demonstrated an average RMSE of
0.24 BW for unilateral landings and 0.21BW for bilateral landings, with average correlation coefficients
of 0.96 and 0.98, respectively.

3.2. Stage One: Determination of Optimal Sensor Number and Locations

The performance of the stage-one SVMs tended to improve with fewer sensor inputs. This is
demonstrated in Table 1 which shows the best sensor location combinations for one to five sensors.
The sacral sensor had the highest accuracy of any single sensor. Confusion matrices for the single
sacral sensor are demonstrated in Figure 4.

Table 1. Support vector machine (SVM) performance for best sensor location combinations for each
number of sensors.

# Sensors
Unilateral Bilateral

Best Combination % Correctly
Predicted Best Combination % Correctly

Predicted

1 Sx 89.3 Sx 83.6
2 Sx, LSh 88.5 Sx, Tx 82.8
3 Sx, Tx, RSh 88.3 Sx, LTh, RTh 78.5
4 Sx, Tx, LSh, RSh 86.3 Sx, Tx, LTh, RTh 82.3

5 Sx, Tx, RTh, LSh,
RSh 88.5 Sx, Tx, LTh, RTh,

RSh 76.5

Key: Sx- Sacrum, Tx- Thoracic, LTh- Left Thigh, RTh- Right Thigh, LSh- Left Shin, RSh- Right Shin.
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The performance of the top 10 performing sensor combination Stage one ANNs and Combined 14
Models is shown in Table 2.

Table 2. Artificial neural network (ANN) and Combined 14 Model performance of top 10 performing
unilateral and bilateral jump models ranked by degree of accuracy from most to least accurate.

Sensor Combinations
Flight Phase

(ANN1) RMSE
(BW) Mean

Ground Phase
(ANN2) RMSE

(BW) Mean

Combined (Flight and
Ground Phase) RMSE

(BW) Mean

Correlation
Coefficient

Mean

Unilateral

Sx, Tx, LTh, RTh, LSh 0.05 0.27 0.24 0.96
ALL 0.05 0.28 0.25 0.96

Sx, Tx, LTh, RTh 0.05 0.28 0.25 0.96
Sx, Tx, LTh 0.05 0.28 0.25 0.96

Sx, Tx 0.05 0.28 0.25 0.96
Sx, LSh, RSh 0.05 0.28 0.25 0.96

Sx, LTh, RTh, LSh, RSh 0.05 0.28 0.25 0.95
Sx, LTh, RTh 0.05 0.28 0.25 0.95

Sx 0.05 0.29 0.25 0.95
Tx 0.05 0.40 0.35 0.90

Bilateral

Sx, Tx 0.04 0.26 0.20 0.99
Sx, Tx, LTh, RTh, LSh 0.04 0.26 0.20 0.99

Sx, Tx, LTh 0.04 0.27 0.21 0.98
All 0.04 0.27 0.21 0.98

Sx, Tx, LTh, RTh 0.05 0.29 0.22 0.98
Tx, LTh, RTh, LSh, RSh 0.04 0.31 0.24 0.98

Tx, RTh, LSh 0.04 0.31 0.24 0.98
Sx, LTh, RTh 0.04 0.31 0.24 0.98

Sx 0.04 0.32 0.24 0.98
Tx 0.04 0.31 0.24 0.98

Key: Sx- Sacrum, Tx- Thoracic, LTh- Left Thigh, RTh- Right Thigh, LSh- Left Shin, RSh- Right Shin. ANN1-
Flight Artificial Neural Network, ANN2- Ground Artificial Neural Network, RMSE- Root Mean Square Error, BW-
Body Weight.

3.3. Stage One: Combined 14, Best Single-Sensor Models

Considering the performance of the model overall, it was determined that the best single-sensor
model was the sacrum sensor, with an RMSE of 0.25 BW for unilateral landings and 0.24 BW for
bilateral landings, with a correlation coefficient of 0.95 and 0.98, respectively. Considering both the
SVM and the Combined 14 Model results this was also considered the best sensor combination overall.
Examples of the GRF profile output by the force plate and the best single sensor model are shown in
Figure 5.
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3.4. Stage Two: Refined 23 Models

The accuracy of the Refined 23 Models’ capability to estimate the GRF profile, accounting for all
23 dancers’ data, is demonstrated in Table 3.

Table 3. Accuracy of final model estimation of GRF across complete curve.

Model

SVM to Identify
Flight or Ground

Phase Accuracy (%)
Mean (Range)

Flight Phase
(ANN1) RMSE

(BW) Mean
(Range)

Ground Phase
(ANN2) RMSE

(BW) Mean
(Range)

Combined
(Flight and

Ground Phase)
RMSE (BW)

Mean (Range)

Correlation
Coefficient

Mean (Range)

Unilateral 83.17 (69.93–92.66) 0.05 (0.03–0.06) 0.30 (0.19–0.46) 0.42 (0.22–0.61) 0.80 (0.55–0.97)
Bilateral 84.06 (75.40–95.59) 0.04 (0.02–0.05) 0.27 (0.18–0.53) 0.39 (0.25–0.67) 0.92 (0.71–0.98)

3.5. Stage Three: Combined 14 Models and Refined 23 Models’ Ability to Determine Peak GRF

The best bilateral and unilateral model determined for the Combined 14 Models and Refined 23
Models was evaluated. The mean (SD) peak GRF as determined by the force platform was 2.35 BW
(0.38) for the unilateral jumps and 3.13 BW (0.72) for the bilateral jumps. The mean (SD) peak GRF
for the Combined 14 Models was 2.24BW (0.35) for the unilateral model and 2.95 BW (0.58) for the
bilateral model. For the Refined 23 Models the mean (SD) peak GRFs were 2.12 (0.20) and 3.28 BW
(0.62), respectively. The Bland–Altman plots are demonstrated in Figure 6.
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4. Discussion

The overall aim of this study was to validate the estimation of peak GRF from wearable sensor
data during dance jumping tasks against gold standard force plate data. This aim was achieved
through a multistage approach to development. The model architecture was developed within the
first stages using 14 dancers, and evaluation of the different sensor numbers and locations determined
that a single sacrum-mounted sensor performed with the same accuracy as the multi-sensor models
for both unilateral and bilateral jumps. Interestingly, the second-stage model, developed on a larger
sample, yielded poorer accuracy.

Regardless of the number and locations of sensors, all developed models in stage one performed
well. All of the top 10 sensor combinations for the Combined 14 Models demonstrated an RMSE of less
than 0.35 BW for the unilateral models and 0.24 BW for the bilateral models. This model performance
was superior to previous machine-learning model developments for GRF using data from three sensors
on eight participants to predict GRFs during running (average RMSE of 0.40 BW) [14]. Additionally,
the accuracy demonstrated in the current was similar to that shown for a knee joint reaction force
machine-learning model, developed on data from 13 participants [21]. Their model achieved an average
RMSE of 16.7% for unilateral jump landings and 25.9% for bilateral. Table 4 demonstrates a tabulated
comparison of the results of the existing study compared with previous reporting. Additionally, the
single sacrum sensor Combined 14 Models and Refined 23 Models were capable of detecting peak GRF
with a similar mean difference between the model and the gold standard force platform. For the single
sacrum sensor unilateral Combined 14 Models the mean difference was 0.11 BW and for the single
sacrum sensor bilateral Combined 14 Models the mean difference was 0.19 BW. Similarly, for the single
sacrum sensor unilateral Refined 23 Models the mean difference was 0.22 BW and for the single-sacrum
sensor bilateral Refined 23 Models it was 0.18 BW. These mean differences were slightly higher than
that demonstrated by Wouda et al, where the peak GRF mean difference demonstrated between their
model and the force platform was 0.10 BW [14]. Overall the current study’s findings suggest that the
application of a machine learning approach to wearable sensor dancer for GRF estimation during
complex athletic jumping activities, provides an accurate means to field-based estimation of GRF.
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Table 4. The results of the current study compared with results of previous reports for application of machine learning to wearable sensor data for GRF estimation.

Reference Participants Used
for Development

Number of
Sensors Sensor Locations

Machine
Learning
Approach

Movement Tasks
Variable Measured by
Machine Learning
Approach

Average RMSE

Current Study

23 female dancers
(Stage one
developed on 14
dancers, stage two
on 23)

All combinations
of six, five, four,
three, two and one
sensors.
Demonstrated a
single sensor
approach in final
reporting

Bilateral thigh,
bilateral tibia,
sacrum, thoracic

SVM and ANN Unilateral and bilateral
jumps

Resultant GRF across all
data points of GRF
profile, peak GRF.

Stage one
development:
Unilateral: 0.25 BW
Bilateral: 0.24 BW
Stage two
development:
Unilateral: 0.42 BW
Bilateral 0.39 BW

Wouda et al., 2018
[14] Eight runners Three sensors Bilateral leg,

sacrum ANN Running
Vertical GRF across all
data points of GRF
profile, peak GRF

0.40 BW

Johnson et al., 2019
[15] Did not specify One sensor Sacrum Convolutional

Neural Network
Running and side
stepping

Three-dimensional GRF
across all data points of
GRF profile

19.7%
(sidestep)–29.7% (run)
of BW

Stetter et al., 2019
[21] 13 Two sensors Thigh and shin ANN

Running, running with
turn, sprint start, full
stop, side cutting
maneuvers, walking,
walking with turning,
unilateral and bilateral
jumping and landing

Three-dimensional knee
joint reaction force

Vertical: 19.1% of BW
Anterior/ Posterior:
21.8% of BW
Medial/Lateral: 38% of
BW

Abbreviations: SVM- Support Vector Machine, ANN- Artificial Neural Network, GRF- Ground reaction force, BW- Body weight.
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The Combined 14 Models development revealed the most accurate number of sensors and sensor
locations for the unilateral model consisted of five sensors, and the second most accurate of all six.
Interestingly, the single sacrum sensor was almost as accurate as a combination of multiple sensors,
with the same RMSE, of 0.25 BW as these multi-sensor combinations. For the sacrum bilateral model,
the difference between the best performing multi-sensor combination (sacrum and thoracic sensor)
was only 0.04 BW. Additionally, regardless of whether a multi-sensor or single-sensor model was used,
there was excellent correlation between the machine learning models and gold standard force platform
(0.95 and 0.96, respectively). A similar difference existed for the bilateral model, which displayed
stronger correlation than the unilateral. This was unexpected, as previous literature has suggested
that for machine learning applied to wearable sensors and human movement, multiple sensors are
advisable, as it can provide the highest recognition rate [23]. The results of the SVM suggest that,
within the current study, the use of more sensor locations resulted in poorer classification of ground or
flight phase, thus effecting the rest of the model. To date, no other researchers have demonstrated the
use of machine learning with a single sensor; only one other study has utilised a single sensor machine
learning model for GRF estimation during sidestepping and running [15]. There are multiple practical
benefits of using a single sensor as opposed to multiple sensors; a single sensor is more affordable,
has a reduced athlete and analysis burden, and does not require synchronisation with other sensors,
thus reducing overall processing demands.

The best single-sensor location was the sacrum. This was of interest as, currently within the
sporting environment the most common location for a single sensor appears to be on the upper
back [24–27]. For example, when sensors are used in team sports for quantification of training volumes
and impacts, as part of athlete monitoring regimes, the sensor is most commonly mounted to the
upper back [25,27]. While the single thoracic sensor still featured within the top 10 performing sensor
combinations in the unilateral model, as found during feature extraction, it had a 0.10 BW higher
RMSE than the sacrum sensor, thus was less accurate. Interestingly, the RMSE was not different
between sacrum and thoracic mounted sensors in the bilateral model. One other machine-learning
study has demonstrated the use of a single sacrum sensor, showing an error of up to 29.7% during
running, which would equate to approximately 0.7 BW, given that during running the GRF attained
can be up to 2.5 BW [15]. Thus, the models developed in the present study performed with greater
accuracy. A sacrum-mounted sensor is also the most feasible sensor location for the application to
dance, conforming to both aesthetic and movement requirements. Within other sports, the results of
our study suggest that if sports scientists would like to objectively quantify impact loading, particularly
for single limb loading activities as part of athlete monitoring, a sacrum mounted wearable sensor may
be more accurate when compared to an upper back-mounted sensor.

When the single sensor sacrum model was further developed in the Refined 23 Models, the
mean RMSE increased to 0.42 BW for unilateral jumps and 0.39 BW for bilateral jumps. Additionally,
the correlation coefficients also reduced to 0.80 for the unilateral model and 0.92 for the bilateral model.
While in theory, a larger data set should improve generalisability of the model and model performance,
it is likely that the reduced accuracy of the models seen in the Refined 23 Models is due to overfitting.
When the models were trained with the larger data set, the data set was skewed. This is common of
normal human movement and one of the common challenges within machine learning [22], where
in this case the dancers demonstrated a small number of variable GRF profiles. This was clearly
highlighted in the peak GRFs Bland–Altman plots. When peak GRF was output using the Refined 23
Models, the unilateral model did not demonstrate peaks greater than 2.29 BW and the bilateral 4.01 BW,
despite the gold standard force platform demonstrating greater values up to 3.85 BW and 5.51 BW for
unilateral and bilateral jumps respectively. This cropping of values in the Refined 23 Models was not
evident in the Combined 14 Models development. This has not been reported before and, given that
increased data have been reported to increase accuracy, is surprising [22]. Further exploration of the
data set using frequency histograms for the bilateral jumps (see Figure A1), demonstrating the range of
GRFs used for training the models in the development of the Combined 14 and Refined 23 Models
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confirmed this hypothesis. The dancers landed with reasonably consistent GRFs, with the majority of
peaks falling between 1.5–2.5 BW for unilateral jumps and 2.0–2.8 BW for bilateral jumps. Furthermore,
the Refined 23 Models’ data shown in Figure A1 appears to be skewed towards smaller GRFs. This was
likely due to the nature of the jumping tasks that were utilised, and represented an imbalanced data
set [22]. Future research aiming to determine peak GRF during athletic tasks could potentially firstly
endeavour to train the model with a large range of peak GRFs and also train the model specifically to
detect the peak as opposed to the whole curve.

Strengths and Limitations

The models developed in this study can be used to estimate the GRF during impact-based activities
in the athletic area of dance. While the authors acknowledge that dance is a niche athletic area, this
study provides a proof of concept that could be easily applied to other sports, thus is highly translatable.
The accuracy achieved is promising with a number of strengths. The models were developed using a
relatively large sample compared to other studies, and additionally this sample included a range of
dance ability thus increasing generalisability of the models. This study was limited to estimation using
only IMU acceleration outputs. While the use of only accelerometer potentially reduces processing
time and promotes longer battery life in the sensor, it only allows for resultant ground reaction force
estimation with no indication of the direction of the forces. Future developments of machine-learning
algorithms should consider utilising well calibrated magnetometer and gyroscope data to allow for
force direction. Furthermore, by accurately estimating the GRF combined with specific segments
kinematics, traditional inverse dynamics models could be applied to potentially calculate external joint
forces at every joint. Additionally, the ActiGraph Link sensor used in this research was limited to a
maximum sampling frequency of 100 Hz. A higher sampling frequency may provide more accurate
results but also creates a greater burden of analysis.

Despite the very strong correlations and low RMSE reported for the full GRF profile, the Refined
23 Models demonstrated an overfitting error that led to reduced accuracy in estimation of large peak
GRF values during jumping. This suggests that future machine-learning endeavours on athletic
pursuits with large variability need to manage data carefully to ensure it encompasses the full variety
of movement and is normally distributed. Finally, the models developed through the different stages
of this research used different validation techniques dependent on the sample size presented for the
model. Further research evaluating the most beneficial validation of machine learning models based
on sample sizes is needed. Finally, the sensors may not always represent movement of true ‘rigid
segments’ as they are fixed to soft tissue and may come loose. This risk was minimised by attaching
the sensor with tape, participants wearing fitted clothing and securing clothing away from the sensor
where possible to minimise movement artefact.

5. Conclusions

The current study demonstrates that the novel application of machine learning to wearable sensor
data allows for accurate estimation of peak GRF and the GRF profile during dance-specific jumping
tasks. Interestingly, feature extraction testing revealed that a single sensor was capable of predicting
GRF with the same degree of accuracy as a multi-sensor model. No previous reports have demonstrated
the use of machine learning applied to a single wearable sensor on a sample of this size and with the
degree of accuracy shown in this study.

While the results are promising, the development did come with challenges. When the model
was trained and tested on a larger sample, the accuracy of the model deteriorated and there appeared
to be overfitting of the model, resulting in a cropping of peak forces. This is reflective of an imbalanced
data set which is considered typical to normal human movement, and movement that is performed
by a highly trained, aesthetic population. Additionally, challenges of hardware malfunctions and
synchronisation problems reduced the overall data set that was available for model development.
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These results provide scope for the use of a single wearable sensor, combined with machine
learning, to accurately estimate near real-time GRF within a dancer’s normal training environment.
While developed within the niche athletic area of dance, the models developed in this research
demonstrate the feasibility of this approach, which could be applied to other lower limb-loading
sports and activities, providing a field-based measurement system for biomechanical quantification.
This system, and future developments of it, could be used for athlete monitoring, both clinically
and in research settings, for the provision of field-based objective quantification of GRF’s during
training, competition and performance could lead to an improved understanding of musculoskeletal
pain conditions.
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Appendix A

Table A1. Description of Tasks.

Name. Description Image Demonstrating Movement

Bilateral Landings

Sauté in first position

The dancer commences in first position of the feet
(lower limbs externally rotated and heels placed
together) and performs 8 bilateral vertical jumps
landing bilaterally.
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Sauté in first 
position 

The dancer commences in first position of the feet (lower limbs externally 
rotated and heels placed together) and performs 8 bilateral vertical jumps 
landing bilaterally. 

 

Changement in 5th 
position 

The dancer commences in fifth position of the feet (lower limbs externally 
rotated and feet crossed) and performs 8 vertical jumps changing the front 
foot upon landing. 

 

Entrechat Quatre

The dancer commences in fifth position of the feet
(lower limbs externally rotated and feet crossed) and
performs 4 vertical jumps beating the legs in air before
landing bilaterally with the same foot in front. This was
performed with the right leg and left leg starting in
front.

  

 

Entrechat Quatre The dancer commences in fifth position of the feet (lower limbs externally 
rotated and feet crossed) and performs 4 vertical jumps beating the legs in air 
before landing bilaterally with the same foot in front. This was performed 
with the right leg and left leg starting in front. 

 

Unilateral 
Landings 

  

Assemblé  The dancer commences in 5th position and swishes one leg out to the side as 
they take off, they gather the legs in the air together and land before 
immediately taking off for the next jump. 
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Table A1. Cont.

Name. Description Image Demonstrating Movement

Unilateral Landings

Assemblé

The dancer commences in 5th position and swishes one
leg out to the side as they take off, they gather the legs
in the air together and land before immediately taking
off for the next jump.

  

 

Entrechat Quatre The dancer commences in fifth position of the feet (lower limbs externally 
rotated and feet crossed) and performs 4 vertical jumps beating the legs in air 
before landing bilaterally with the same foot in front. This was performed 
with the right leg and left leg starting in front. 

 

Unilateral 
Landings 

  

Assemblé  The dancer commences in 5th position and swishes one leg out to the side as 
they take off, they gather the legs in the air together and land before 
immediately taking off for the next jump. 

 

Jeté ordinaire
The dancer commences in 5th position and swishes one
leg out to the side as they take off, they then land on the
limb that they swished to the side.

  

 

Jeté ordinaire The dancer commences in 5th position and swishes one leg out to the side as 
they take off, they then land on the limb that they swished to the side. 

 

Temps levée A single leg vertical jump and land performed 5 times in succession. 

 

476 

Temps levée A single leg vertical jump and land performed 5 times
in succession.

  

 

Jeté ordinaire The dancer commences in 5th position and swishes one leg out to the side as 
they take off, they then land on the limb that they swished to the side. 

 

Temps levée A single leg vertical jump and land performed 5 times in succession. 

 

476 
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