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The complex mechanisms of ageing biology are increasingly understood.

Interventions to reduce or delay ageing-associated diseases are emerging.

Cancer is one of the diseases promoted by tissue ageing. A clockwise muta-

tional signature is identified in many tumours. Ageing might be a modifi-

able cancer risk factor. To reduce the incidence of ageing-related cancer

and to detect the disease at earlier stages, we need to understand better the

links between ageing and tumours. When a cancer is established, geriatric

assessment and measures of biological age might help to generate evidence-

based therapeutic recommendations. In this approach, patients and care-

givers would include the respective weight to give to the quality of life and

survival in the therapeutic choices. The increasing burden of cancer in

older patients requires new generations of researchers and geriatric oncolo-

gists to be trained, to properly address disease complexity in a multidisci-

plinary manner, and to reduce health inequities in this population of

patients. In this review, we propose a series of research challenges to tackle

in the next few years to better prevent, detect and treat cancer in older

patients while preserving their quality of life.

1. Introduction

During the last century, advances in medicine and san-

itation have increased the average life span. A pro-

found population transformation is ongoing. For the

first time in human history, there are more people in

the world over age 65 than under age 5. This trend,

which has been apparent in more developed countries

for several decades, is increasingly observed in less

developed countries. By 2050, the number of people

ages 65+ is projected to total just under 1.5 billion

(16% of the world population). In 1950, it was only 5

per cent (https://www.prb.org/agingpopulationclocks/).

There is simultaneously a deceleration of our percep-

tion of ageing effects, as people in their 80s nowadays

resemble those in their 60s in the 1950s. A strong chal-

lenge for our health care system is to improve further

healthy lifespan by reducing the pathological conse-

quences of ageing.

Many of the mechanisms that cause ageing have

been deciphered during the last four decades. These

mechanisms appear to be rather complex, yet interven-

tions directed at ageing are emerging, offering the

opportunity to concurrently improve several late-onset

diseases [1,2]. Together with cardiovascular, cognitive,

degenerative and metabolic pathologies, cancer is one

of the diseases that increases with tissue ageing in

humans [3,4]. The risk of suffering any cancer before

the age of 40 is ~ 2%. By age 80, this risk increases to

50% and the incidence of most common cancers rises
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as a function of age [5]. The mechanistic links between

cancer and ageing are beginning to emerge [3–6]. By

controlling the effects of ageing on cells and tissues,

we might be able to both reduce the incidence of can-

cer and facilitate the treatment of ageing-independent

tumours by reducing the impact of comorbidities [1,2].

The European Commission (EC) has identified can-

cer as one out of five mission-oriented research and

innovation topics in which researchers are challenged

to deliver ambitious innovations that improve the

quality of life of European citizens. The EC has also

launched the Europe’s Beating Cancer Plan as a major

political commitment to turn the tide against cancer

with 10 flagship initiatives (https://ec.europa.eu/). The

European population is ageing rapidly, and ageing is

an essential risk factor for many cancer types in

humans. Most human cancers arise in individuals over

the age of 60, and the mean age of death from cancer

is above 70. Therefore, interaction between ageing and

cancer is a key area of intervention for the EC with

two aspects, (a) to better understand how tissue ageing

may promote cancer emergence and progression, and

(b) to improve cancer treatment in older patients while

preventing acceleration of ageing by cancer therapy

(Fig. 1).

The translation of ageing research into cancer pre-

vention and improved cancer care raises several diffi-

culties [1,2]. For example, ageing generates organ-

specific temporal signatures and thus may require

tissue-specific interventions. Nevertheless, the potential

rewards of this translational approach should out-

weigh the difficulties. In this review, we propose a

series of challenges that researchers, oncologists and

geriatricians need to tackle together in order to better

understand the interplay between ageing and cancer

and to improve cancer prevention, cancer care and

cancer survivorship in the growing population of age-

ing people (Fig. 2).

2. From ageing biology to cancer
research

Cancer has long been described as the consequence of

the multistep acquisition of somatically acquired DNA

alterations, usually in stem cells, that lead to a growth

advantage. Human cancers harbour hundreds to sev-

eral thousand of mutations, a minority of which occur

in recurrently mutated cancer genes and which drive

mutated cell expansion into a clone. Recently, how-

ever, deep mutational screens of phenotypically normal

human adult tissues have identified somatically

mutated clones defined by well-known drivers of carci-

nomas such as NOTCH1, TP53, FGFR3 and PPM1D

(List of abbreviated terms, Box 1) in otherwise healthy

epithelial tissues, initially in the skin and the oesopha-

gus [5,7–10]. Importantly, the number and size of these

clones progressively increase with age (reviewed in ref.

[11]) and virtually all renewing tissues become a patch-

work of mutated clones over the time [12,13]. Thus,

mutations in oncogenic drivers are under positive

selection in normal tissues. The accumulation of these

somatically mutated clones might form part of the age-

ing process, which is commonly believed to occur due

to the time-dependent accumulation of cellular and tis-

sue damage over time, which eventually lead to func-

tional decline. The steady-state accrual of some

mutational processes during life is described as a

molecular clock [14]. Exposure to environmental toxins

increases the mutational burden in clones, as observed

in the bronchial epithelium of tobacco smokers [15]

and in the hepatocytes of cirrhotic patients [16].

Fortunately, the mutant lineages identified in

healthy tissues only rarely undergo transformation.

This observation suggests that cancer may require a

distinct evolutionary track from the one that expands

these clones [17]. This is further indicated by the obser-

vation that some genetic variants found in oesophagus

epithelium, such as NOTCH1 mutations, confer

improved fitness to normal cells, relative to cancer

cells, indicating a context-dependent effect of these

variants [8]. Little is known about how the cell compe-

tition (Glossary, Box 2) in normal epithelia influences

the early steps of cancer formation. In short, a tissue

that accumulates damaged cells is at the same time an

ageing tissue and a tissue at risk of developing cancer

[4]. The accumulation of mutated clones with age,

combined with other factors such as stromal cell senes-

cence, may promote cancer development through

diverse trajectories. A clone can toggle to a malignant
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Fig. 1. Main interactions between ageing and cancer.
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tumour or create an inflammatory climate that,

together with lifestyle-related toxic insults, promotes

the independent emergence of a cancer. In the hemato-

poietic tissue, clonal hematopoiesis of indeterminate

potential (CHIP) generates pro-inflammatory myeloid

cells that can progress into overt myeloid malignancy

or promote other diseases such as atherosclerosis or

further enhance ageing hallmarks (Fig. 3). Interest-

ingly, a recent and intriguing study suggests that

mutant clones might also have an unexpected anti-

tumorigenic role through cell competition and preserve

tissue integrity [18].

The presence of mutated clones in ageing but other-

wise healthy tissues has blurred the frontier between

noncancer and cancer clones. Why is it that the clones

that accumulate with age do not generate multiple

cancers remains poorly understood. Some might be

cleared by terminal cell differentiation or by an active

response in the surrounding tissues, involving immune

cells [19] and nonimmune epithelial cells [20]. What-

ever these clearance mechanisms are, their ability to

efficiently eliminate mutated clones may decrease with

age [8].

Telomere shortening and senescence might contrib-

ute to preventing tumour formation [21]. Telomere

shortening typically limits the maximal number of divi-

sions human cells can undergo. After a limited number

of doublings, telomeres become very short and

uncapped, which initiate DNA damage signalling and

senescence [22]. Cellular senescence is a nonprolifera-

tive but viable state that is distinct from G0 quiescence

and terminal differentiation [23]. Senescence was origi-

nally observed in normal diploid cells that cease to

proliferate after a finite number of cell divisions (so-
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called replicative ageing) [24]. Senescence is also a

response to multiple stressful insults, including onco-

genic stresses [25]. Cellular senescence is suspected to

have both beneficial and detrimental effects and pro-

vides typical example of antagonistic pleiotropy (Glos-

sary, Box 2). In young healthy tissues, mutated clones

that enter replicative or oncogenic stress-induced

senescence are cleared away by surrounding cells. In

ageing tissue, their clearance becomes less efficient,

Box 1. Abbreviated terms.

BRCA1 (Breast cancer 1) gene encodes an E3

ubiquitin-protein ligase involved in DNA repair. Con-

stitutive mutations in BRCA1 and related genes pre-

dispose to breast and ovary cancer.

CHEK2 (Checkpoint kinase 2) gene encodes a serine/

threonine-protein kinase involved in cell cycle arrest,

DNA repair and cell death in response to the presence

of DNA damage.

FGFR3 (Fibroblast growth factor receptor 3) gene

encodes a receptor involved in a wide array of path-

ways known to play a significant role in cancer.

NOTCH1 encodes a member of the NOTCH family of

transmembrane proteins involved in cell fate specifica-

tion, differentiation, proliferation and survival.

PARP (poly(ADP-ribosyl)transferase) is a chromatin-

associated enzyme that modifies various nuclear pro-

teins involved in DNA repair, cell differentiation and

cell proliferation.

PPM1D (Protein phosphatase, Mg2+/Mn2+ dependent

1D) is a protein serine/threonine phosphatase involved

in cell cycle regulation through the negative regulation

of p53 expression.

SASP Senescence-associated secretory phenotype

defines the ability of senescent cells to secrete a variety

of extracellular proteins and lipids.

SMO (Smoothened, frizzled class receptor) encodes a G

protein-coupled receptor that interacts with the patched

protein, a receptor for hedgehog proteins, and trans-

duces intracellular signals.

TERT (Telomerase reverse transcriptase) is a ribonucleo-

protein polymerase that, in progenitors and cancer cells,

maintains telomere ends for the replication of chromo-

some termini in most eukaryotes.

TP53 gene encodes a tumour suppressor protein whose

deregulation is detected in many tumour types.

Box 2. Glossary.

Antagonistic pleiotropy. As it applies to ageing, antag-

onistic pleiotropy indicates that animals might possess

genes that enhance their individual fitness early in life

but contribute to the ageing phenotype in later life.

Biological age. Also referred to as physiological age,

biological age relates to decline in organ and tissue

functions, independently of chronological age.

Cell competition. The process by which viable cells are

eliminated from tissues, mostly epithelial tissues, by

comparison with neighbouring cells.

Chronological age. Chronological ageing refers only to

the passage of time, in other words to the actual

amount of time a person has been alive.

Clonal mosaicism. Clonal mosaicism is the presence of

one or more distinct populations of cells within an

individual with an acquired genomic event that is not

present in the inherited genome.

Exposome. This word refers to the measure of all the

exposures of an individual in a lifetime and to how

those exposures relate to health.

Geriatric assessment. A multidisciplinary process that

identifies all the medical, functional and psychosocial

limitations of a frail older person.

Heterochronic parabiosis. An experimental setting whereby

an aged mouse and a young animal are joined surgically to

reveal systemic regulators of ageing or age-related diseases.

Immunosenescence. Ageing-related changes in the immune

system that contribute to the increased sensibility of ageing

people to infections, auto-immune diseases and cancer.

Inflammaging. A chronic, sterile, low-grade systemic

inflammation that develops with ageing and contributes to

the pathogenesis of age-related diseases.

Machine learning. A branch of artificial intelligence and

computer science that uses data and algorithms to imitate

the way that humans learn, gradually improving its accu-

racy.

Neural networks. A subset of machine learning based on

the use of algorithms that recognize underlying relation-

ships in a set of data through a process that mimics the

way that biological neurons signal to one another in the

human brain.

Pre-habilitation care. A series of multidisciplinary health

care interventions that aim to dampen side effects of medi-

cal or surgical therapies.
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and senescent cells thus accumulate and disrupt tissue

homeostasis through a variety of mechanisms. One

such mechanism involves the development of a

distinct secretory profile known as the senescence-

associated secretory phenotype (SASP) [21]. Senescence-

associated secretory phenotype creates a pro-

inflammatory milieu [an effect that is sometimes referred

to as ‘tissue inflammaging’ (Glossary, Box 2)]. The

decreased clearance of senescent cells by an ageing, dis-

rupted tissue microenvironment may account for the

development of a wide spectrum of age-related diseases

[22], including tumours [26].

When cells in which oncogenic changes accumulate

escape senescence, they enter a state known as crisis.

Cells that bypass this crisis usually engage telomerase

reverse transcriptase (TERT) enzyme activity, which is

absent in most healthy tissues and which is closely reg-

ulated in normal stem cells [27]. In most human carci-

nomas, telomerase is up-regulated by diverse

mechanisms. In other tumours, and especially in soft-

tissue sarcomas, an alternative mechanism can be

activated, called the alternative lengthening of telo-

meres (ALT) [28]. Whatever the mechanism, cancer

cells can be distinguished from nonmalignant clones

by the reactivation of telomerase activity to bypass

senescence. As an illustration, recent evidence from

mice implicates TERT in setting the stage for the for-

mation of pancreatic cancer [29]. Telomerase engage-

ment may not be sufficient to generate a tumour, but

telomere length maintenance might be required for the

continuous growth of an established tumour.

Opportunities for early interventions are illustrated

by analyses of hematopoietic tissue in which the pres-

ence of driver mutations generates clonal hematopoie-

sis in the blood of otherwise healthy individuals, the

already mentioned CHIP. Some of these patients will

subsequently develop one or several malignancies [30–
34]. For example, JAK2V617F, a common driver

mutation in myeloproliferative neoplasms (MPN),

appears in a hematopoietic stem cell (HSC) very early

in life, including in utero, and is followed by sequential

driver events separated by decades during life, often

outcompeting ancestral clones [35,36]. It remains

unclear how processes such as stem cell competition

for niche occupancy influence the switch from a pre-

malignant state to a malignant one. Of note, CHIP is

strongly associated with the acceleration of multiple

ageing-associated clocks (Fig. 3) and may identify a

human population that is at high risk of multiple

ageing-associated diseases and thus may be a target

for clinical interventions [37,38].

Current evidence highlights the need for us to better

understand the relationship between ageing and can-

cer. We also need to further investigate age-related

patterns in the tissues and underlying mechanisms of

Senolytic drugs.Drugs that kill senescent cells selectively.

Senomorphic drugs. Drugs that delay the progression of

young cells to senescent cells in the tissues or improve the

functions of senescent cells.

Survivorship. In cancer, survivorship focuses on the health

and well-being of a person with cancer from the time of

diagnosis until the end of life.

Box 2. Continued
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circulating blood cells, increases
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demonstrate a pro-inflammatory

phenotype. Their expansion can

lead to an overt myeloid
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accelerate ageing.
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tumour growth and dissemination. For example, in

colorectal cancer, the incidence and metastatic spread

of which declines with age, further exploration is

needed to decipher how ageing interacts with other

parameters (such as with the exposome and genetic

background) to modulate disease biology, in tumour

cells and their microenvironment (e.g. through inflam-

maging, immunosenescence (Glossary, Box 2) and

modified microbiota) [39]. More generally, exogenous

factors related to lifestyle, dietary factors and toxic

exposure together with internal factors (genetic back-

ground, associated diseases and microbiota) may mod-

ulate both ageing and the risk of cancer (Fig. 4). We

also need to understand how ageing affects treatment

efficacy and to what extent cancer and cancer treat-

ment accelerate ageing, as discussed below.

Future research on ageing and cancer (Fig. 2A) may

address

� The link between cell competition in ageing epithelia

and early steps of cancer.

� The distinct paths to nonmalignant clones and to cancer.

� The boundaries between a nonmalignant and a

malignant clone.

� The biological specificities of ageing-associated cancers.

� The cooperation of ageing and other cancer risk factors.

� The ability of interventions aiming at slowing down

ageing effects to prevent cancer.

3. Biological assessment of ageing
effects

Frailty is common in older patients, making them

more prone to the adverse outcomes of cancer

treatment. In patients aged 65 and older, the ‘risks ver-

sus benefits’ balance can be weighed up by conducting

a geriatric assessment (Glossary, Box 2) of patients for

their functional, emotional and nutritional status,

for their comorbidities and ongoing treatments, and

for their cognition and social support [40]. Ideally, this

geriatric assessment would ensure that the patient’s

treatment is co-ordinated and managed by an interdis-

ciplinary health care team, including hospital- and

home-based professionals, who incorporates into a

personalized care plan the patient’s goals and prefer-

ences. Nononcological interventions such as pre-

habilitation care (Glossary, Box 2) [41] can be

requested from this geriatric assessment to support

cancer resilience. Recently developed web-based apps

can also be used to record medical data, and self-

management guidelines can be provided to patient to

prevent avoidable adverse events. In reality, however,

implementation of geriatric assessment and manage-

ment into daily oncology practice remain difficult in

many places for multiple reasons [40].

Chronological age (Glossary, Box 2) alone is a poor

indicator of the physiological and functional status of

older cancer patients. The quantification of ageing bio-

markers to estimate an individual’s biological age

(Glossary, Box 2) is an actively developing field. This

research in biohorology measures the passage of time

in living systems. It aims to provide better metrics that

can correlate with various clinical parameters as com-

pared to generalized health information associated with

a particular age range [42]. The disparity between pre-

dicted and actual age, also referred to as ‘delta age’,

might better reflect an individual’s overall health [43].

Molecular footprints of ageing include methylated

DNA [44–46], gene expression profiles [47,48], circulating

Chronic diseases
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Cancer
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Death

Disease
specific

risk factors

Biological
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of ageing
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Microbiota
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Fig. 4. From ageing to disability

and mortality. Intrinsic and extrinsic

factors contribute to generate

biological hallmarks of ageing in

tissue cells. In combination with

disease-specific factors, tissue

ageing promotes the generation of

multiple chronic diseases including

cancer, suggesting that a better

control of ageing effects may

prevent multiple diseases

otherwise leading to disability and

death.
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proteins [49,50], metabolites [51,52], biochemical markers

[53,54] and microbiota [55]. In the last decade, these com-

posite analyses have generated a multitude of ageing

clocks that reflect different aspects of ageing and that

identify organ-specific temporal signatures [56,57] and

correlate with various health outcomes. One such clock is

exemplified by the methylation of a subset of age-related

CpG sites on DNA. When the methylation rate of each

of these sites was analysed computationally, researchers

found this measure to provide an accurate biomarker of

age in humans [40]. The observed synchronicity that

exists in the organs despite different proliferation dynam-

ics points to the hypothesis of a master pacemaker of epi-

genetic age acting on tissues via blood-borne regulatory

factors [58].

Systemic factors are powerful regulators of ageing

[59]. For example, young mice exposed to the blood of

old mice via heterochronic parabiosis (Glossary,

Box 2) exhibit decreased synaptic plasticity as well as

impairments in memory and learning [60,61]. It has

also been reported that levels of proteins that are

implicated in the innate and adaptive immune systems

in humans, and that regulate life span in animal

models, accurately predict age [62]. Importantly, indi-

viduals who are predicted to be younger than their

chronological age performed better on physical and

cognitive tests [49]. Further refinement of these ana-

lyses can be anticipated, for example, through

advanced quantitative proteomics analysis exploring

the link between dynamic changes in post-translational

protein modifications and age-associated diseases such

as cancer [63].

Each of these approaches has technological limita-

tions, and the ageing clock concept is still nascent. For

example, different proteomics and ageing studies have

used different proteomics techniques, patient popula-

tions, statistical analyses, tissues and cell types, and

their findings significantly vary from one another

[19,64,65]. It remains largely unknown if the inputs

used to determine biological age represent drivers of

function or downstream effects. Finally, much work

has yet to be done to confidently determine whether

these applications can be translated in clinical oncol-

ogy. Machine learning modelling and neural networks

(Glossary, Box 2), using SHAP (SHapley Additive

exPlanations) and other approaches to explain the out-

put of the models [66], might be the next power tools

to develop this appealing approach. They could, for

example, enable more precise and earlier diagnosis of

cancer [67,68]. Biological age and ageing clocks also

have the potential to guide therapeutic decision, to

indicate anti-ageing intervention [69] and, through

repeated measurement, to evaluate the effects of cancer

treatment on biological age [45]. Thus, serial measure-

ment of biological age taken from safely and easily

obtainable samples (such as from blood, urine and

saliva) might be highly informative on an individual

level, before and after cancer treatment.

Future research on biological age measurements

(Fig. 2B) may address

� The best approach to measure biological age in rou-

tine clinics.

� The link between biological age biomarkers and can-

cer risk.

� The performance of biological age measurements as

compared to geriatric assessment.

� The ability of biological age measurements to guide

anticancer treatment choices.

� Their contribution to the monitoring of individual’s

response and survivorship.

4. Muscle mass and sarcopenia

Another common effect of ageing, which is associated

with adverse outcomes in oncology, is the linear loss

of muscle mass described as sarcopenia. Muscle mass

decreases with age, beginning as early as the fourth

decade, while body fat gradually increases until the

seventh decade of life, sometimes leading to sarcopenic

obesity [70]. In mice, exercise has been shown to

improve the functionality of muscle stem cells, to

restore nicotinamide adenine dinucleotide (NAD+)

metabolism by slowing down age-related decline in

nicotinamide phosphoribosyltransferase (NAMPT) [71]

and to increase the capacity of aged muscle to repair

injury [72].

In the oncology field, total body skeletal muscle and

adipose tissue have been commonly estimated by using

a single abdominal computed tomography cross-

sectional image, which has been shown to be an inde-

pendent determinant of chemotherapy toxicities [73]

and of surgical outcomes [74]. To be accurately mea-

sured and explored, a consensus definition of sarcope-

nia is needed in order [70]. The oncology field focussed

on the association of low muscle mass with an

increased incidence of side effects of cancer treatments

and mortality. Since low muscle mass is also observed

in ~ 25% of adults younger than 60 years who are suf-

fering from cancer, and given that cancer treatment

can accelerate muscle mass loss, more research is

needed to distinguish the mechanisms of sarcopenia in

ageing and cancer patients.

Sarcopenia could also be targeted by nononcological

interventions. For example, a bone to muscle feed-
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forward endocrine axis involving the bone-derived hor-

mone osteocalcin has been shown to reverse the age-

induced decline in exercise capacity in mice. Circulat-

ing levels of osteocalcin dramatically decrease in mid-

dle age and double during aerobic exercise. Exercise

capacity of aged mice increases when they are injected

with this hormone, fully restoring muscle function and

increasing muscle mass [75]. Osteocalcin is only a part

of the story: multiple molecular mechanisms cause for

sarcopenia, including hormones, muscle fibre composi-

tion, myo-satellite cell potential to differentiate and

proliferate, inflammatory pathways, intracellular pro-

teostasis and mitochondrial functions [76].

Future research on sarcopenia (Fig. 2C) may

address

� The best definition and measurement of sarcopenia

in cancer patients.

� The metabolic and inflammatory changes that lead

to sarcopenia.

� The mechanism of muscle loss differs in ageing

patients with and without cancer.

� The efficient interventions to correct or prevent sar-

copenia in older patients with cancer.

5. Cancer prevention in ageing people

Prevention-based approaches might offer the most

promise when it comes to ageing interventions [77].

One approach, called passive prevention, is based on

risk avoidance long before ageing occurs such as not

smoking tobacco. Another approach called ‘intercep-

tion’, as first named by Elisabeth Blackburn [78], is

based on the idea that, as ageing-associated cancers

typically develop over years and sometimes decades, it

might be feasible to actively intercept a malignant

tumour before full-blown clinical expression.

Such an ‘interception’ strategy was proposed in the

context of genetic predisposition, the idea being to

treat an individual before the clinical detection of a

tumour, using a drug that is effective in treating an

established cancer. Examples of those include using an

oral smoothened (SMO) inhibitor to prevent basal cell

carcinoma in individuals with Gorlin syndrome [78,79]

or the use of a poly(ADP-ribose) polymerase (PARP)

inhibitor to prevent cancer in individuals with BRCA1

mutation [80]. This interception approach needs to be

carefully evaluated, however, to detect the potentially

deleterious effects of these drugs when used in a pre-

venting setting.

In ageing-related cancers, a similar active cancer

interception approach would aim to decrease the

number of senescent cells that accumulate in all ageing

organs and disorganize tissue architecture [22]. Target-

ing senescent cells might not only prevent cancer but

also mitigate other chronic diseases by reducing

chronic inflammation generated by the SASP [81].

Novel pharmaceutical interventions that aim to

interfere with the detrimental effect of senescent cells,

either by eliminating (senolytics) or modifying (seno-

morphics) senescent cells (Glossary, Box 2), are enter-

ing the clinical stage [1]. Despite the lack of universal

and specific markers of senescence, and the specifica-

tion of several senescence types, strategies are being

developed to better identify senescence-associated phe-

notypes in order to closely monitor the efficacy of an

anti-senescence therapy [82]. Such ageing interventions,

sometimes compared with hardware defragmentation,

might benefit from the exponential growth of pharma-

cological approaches (see, for example, the DrugAge

database of ageing-related drugs at https://genomics.

senescence.info/) and the appearance of an anti-ageing

biotech sector. In silico-based screening approaches

could also be developed to identify more rapidly

potentially active molecules, given the time and costs

of validating these interventions [83].

Additional cancer prevention strategies might also

emerge from the better identification of specific ecosys-

tems that impact cancer emergence, either in individ-

uals (such as genetic and epigenetic alterations,

disabilities and socioeconomic disadvantages) or in

populations (such as exposure to chemicals, pathogens

and radiations). As of today, it remains unclear if reju-

venating strategies that eradicate nonmalignant clones

in healthy tissues would preserve their tumour suppres-

sive properties and decrease the risk of cancer develop-

ment or whether they would suppress a protective

mechanism [18].

Multiple questions need to be answered to increase

our ability to prevent ageing-related cancer. The analy-

sis of genetically engineered preclinical models might

help us to decipher the main functional, genetic or epi-

genetic routes that drive ageing-related cancer initia-

tion. Collecting data from humans as they age and

analysing it with machine learning tools is also an

important approach with which to explore single-

patient disease trajectories across decades. They might

also help us to predict, and, when possible, to prevent

ageing-associated diseases including cancer [67,84,85].

The development of innovative approaches such as

minimally invasive liquid biopsies to detect the appear-

ance of circulating premalignant cells and cell-free

DNA [86], together with technological advances in

clinical imaging [87], will further enrich these

approaches (see the following discussion on early
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diagnosis). Finally, the use of artificial intelligence-

powered preventive medicine strategies in longevity

medicine could help us to understand whether an indi-

vidual is ageing faster and, if so, how to slow down its

effects [43].

Future research on cancer prevention in ageing peo-

ple (Fig. 2D) may address

� The improvement of the monitoring of senescent

cells in ageing tissues.

� The use of AI-powered preventive strategies to slow

down ageing effects on tissues.

� The safe interventions that could prevent ageing-

associated diseases including cancer.

� The prevention programmes that could avoid sec-

ondary cancer when ageing.

6. Early diagnosis of cancer in ageing
people

Population-based screening for early cancer detection

within specific age intervals has been implemented in

most European countries, usually between the age of

40 and 74 years for breast and colorectal cancers.

These screening programmes ensure informed choice,

confidentiality and respect for autonomy while pro-

moting equity and access to screening for the entire

target population. In older individuals, the benefits of

population-based cancer screening are more uncertain.

The harms of such screens, which typically include

over-diagnosis and complications from downstream

diagnostic interventions, increase with age. For exam-

ple, the balance between breast cancer screening bene-

fits and harms becomes less favourable after 74 years

of age and, at age 90 years, the harms outweigh the

benefits, largely as a consequence of over-diagnosis

[88]. The scarcity of adults older than 75 years in con-

trolled clinical trials is a further barrier to the genera-

tion of scientific evidence of the effectiveness of

screening programmes in this population. A current

recommendation is to individualize cancer screening

for older adults by accounting for life expectancy,

comorbidities, individual values and the risks and ben-

efits of specific cancer screening tests [89].

Population-based and individual screening

approaches have, so far, mostly relied on conventional

diagnostic methods with physicians using visual pat-

tern recognition to identify concerning lesions

detected clinically or radiologically. The landscape

will likely change with the development of artificial

intelligence that has the potential to revolutionize the

early diagnosis of cancer, based on the use of

machine learning algorithms that can analyse large

volumes of cancer diagnosis data [68,90]. This

approach, based on multi-layer neural networks in

which statistical methods are used to train data to

automatically adjust the parameters of a model,

improves diagnosis performance with increasing expe-

rience and data. Machine learning algorithms can be

supervised, where they rely on the use of labelled

data, or unsupervised, where they detect hidden pat-

terns that cannot be detected by humans. In cancer

diagnosis, machine learning is supervised, as the goal

is to classify digitized clinical or radiological images

into predefined categories, such as benign or malig-

nant [91].

The computational analysis of the early steps of

oncogenesis might improve the timely detection of

early-stage cancers as machine learning tools can

incorporate molecular information [92]. As proposed

by the LifeTime Initiative (https://lifetime-initiative.eu)

[93], the analysis of single-cell multi-omics and images

is needed to characterize cell types (transformed cells

and their environment) and cell states in early-stage

cancers. This data can be collected longitudinally from

patients and from patient-derived experimental models

during the progression from health to disease [87].

Machine learning techniques can also be used to ana-

lyse data obtained from liquid biopsies. This minimally

invasive test uses blood samples to look for cancer

cells or pieces of DNA from tumour cells present in

the blood. This search can be extended to the analysis

of miRNAs, epigenetic changes and extracellular vesi-

cles, as well as to the detection of premalignant

lesions. It can also be used to analyse other biological

liquids, such as urine and saliva [86,94,95]. Liquid

biopsy is also a comprehensive approach to evaluating

tumour heterogeneity since every tumour site can

release aberrant signals into body fluid. Ongoing work

will indicate the extent to which this approach can

contribute to early cancer detection strategies for older

individuals, especially in the context of population-

based screening [96].

Following the appropriate generation and analysis of

data, the development of machine learning and of mini-

mally invasive screens should improve the early detec-

tion of cancer. They should also drive an interceptive

approach that aims to eradicate early-stage cancers.

Future research on early diagnosis of cancer in age-

ing patients (Fig. 2E) may address

� The collection of images and molecular data of

early-stage cancers in ageing patients.

� The hidden patterns of early-stage cancers in clinical

images and molecular data.
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� The development of algorithms to improve older

population-based screening of cancers.

� The generation of minimally invasive tests for

screening cancer in older individuals.

7. Improving the treatment of
established cancers in ageing patients

There is a persistent mismatch between the age of can-

cer patients included in clinical trials and that of indi-

viduals who are most likely to get cancer, indicating a

need to redesign clinical trials to address this concern

[97]. A survey of patients who had been enrolled onto

US National Cancer Institute adult trials between

2001 and 2011 showed that < 25% of them were aged

65 or older, and < 10% were aged 75 or older with no

significant increase in the recruitment of these age

groups over the time [98]. Barriers to the participation

of older patients in clinical trials are particularly

marked at 80 years or older [99]. The inclusion of

more older patients in randomized controlled trials

better explores the risk–benefit ratio for cancer treat-

ments as a function of age [100–102].
The geriatric assessment of aged individuals by a

multidisciplinary team to address pro-actively all of

their individual frailties should be more commonly

implemented before any treatment is initiated in geriat-

ric oncology practice. And, more randomized con-

trolled trials must explore the benefit of interventions,

as guided by standardized geriatric assessment [40], in

terms of toxicity reduction without compromising sur-

vival benefits.

In one such trial involving more than 600 patients

with diverse solid tumours, geriatric assessment was

provided to treating oncologists and compared with

the interventions implemented by a geriatrics-trained

multidisciplinary team. The trial demonstrated a signif-

icant reduction in grade 3 or higher chemotherapy-

related toxic effects in older adults with cancer who

had undergone a geriatric assessment [103]. One study

showed that in patients aged 70 years and older,

whose oncologists received a tailored geriatric assess-

ment summary and management recommendations,

toxic effects of their cancer treatment were significantly

reduced as compared to usual care [104]. Ongoing ran-

domized trials will provide further evidence-based

interventions following geriatric assessment [105].

A large retrospective cohort study has also assessed

the postoperative outcome of cancer patients aged

75 years and older. This study observed a significantly

lower 90-day postoperative mortality among those

who received geriatric assessment-driven care versus

those who had not [106]. However, a prospective ran-

domized trial testing the impact of perioperative geri-

atric intervention in patients undergoing surgery for a

gastrointestinal cancer did not confirm a significant

impact of this intervention on postoperative hospital

length of stay, intensive care unit use, hospital read-

mission and complications, indicating the need to fur-

ther refine this strategy [107]. There remains a need to

pursue the implementation of geriatric assessment in

routine surgery practice and to improve the subsequent

geriatric care. This approach should aim to define how

pre-operative geriatric assessment can guide the use of

minimally invasive approaches and, when combined

with tailored recovery protocols, how this assessment

can reduce surgical stress and promote functional

recovery [108].

Over the two last decades, targeted therapies and

immunotherapies that use immune checkpoint inhibi-

tors (ICIs) are being increasingly used in cancer care.

As many of these new drugs have a favourable toxicity

profile as compared to cytotoxic chemotherapy, they

might be offered to frail older cancer patients who

may not have previously been offered this type of

cancer-directed therapy. However, ageing-associated

changes such as immune-senescence require specific

attention in this patient population [109]. Available

evidence indicates that the clinical efficacy and toxicity

of most of these drugs is comparable in fit older and

younger adults included in clinical trials. By contrast,

their effectiveness and toxicity among frail older adults

is still poorly understood as these patients were

excluded from the landmark clinical trials [110–112].
More inclusive clinical trials have now been designed

to specifically address how immunosenescence in frail

patients could alter the therapeutic response to ICIs or

increase their side effects (as with NCT04533451). In

addition to the harms identified in younger patients,

these clinical trials will evaluate the impact of new

drugs on the functional status and quality of life of

older patients.

There is much to learn from ageing biology that

could also benefit to younger patients. One of the

mechanisms by which cancer therapies exert antitu-

mour activity is by inducing tumour cell senescence. In

clinical medicine, in addition to inducing cancer cell

death, radiation and chemotherapy cause the accumu-

lation of senescent cells in the tumour and, in most

cases, in the surrounding healthy tissues. The accumu-

lation of these senescent cells in a tumour and its envi-

ronment can, paradoxically, promote tumour relapse,

metastasis and resistance to therapy, in part, through

the expression of the SASP. Senescent cells in normal

tissues that surround the tumour also contribute to
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radiation- and chemotherapy-induced side effects. In

the ‘one-two punch’ approach to treating cancer, ther-

apeutics aim to induce tumour cell senescence, fol-

lowed by the selective clearance of senescent cells.

According to this concept, senolytic drugs such as

inhibitors of the pro-survival proteins of the Bcl-2

family could be used to convert senescent cells into

dead cells and thus maximize cancer treatment effi-

cacy, preventing relapse while reducing the accelera-

tion of ageing induced by these treatments in cancer

survivors [113,114].

Future research on the treatment of established

tumours in older patients (Fig. 2F) may address

� The generation of evidence-based guidance.

� The risk–benefit ratio for cancer treatment as a func-

tion of age.

� The benefits of geriatric assessment- and biological

age-driven individualized interventions.

� The benefit of robotic and minimally invasive sur-

gery over classical surgical procedures.

� The prevention of cognitive dysfunction induced by

cancer treatment.

� The combination of senolytic drugs with chemother-

apy and radiation therapy.

8. Survivorship in ageing patients
treated for cancer

As a consequence of population growth and ageing as

well as of advances in cancer early detection and treat-

ment, the number of cancer survivors is increasing. A

recent survey in the United States indicates that 56%

of survivors were diagnosed within the past 10 years

and 64% are aged 65 years or older [115]. Older can-

cer survivors have unique medical and psychosocial

needs that concern cancer- and treatment-related

short-term and long-term health effects, yet they

remain under-represented in survivorship research

(Glossary, Box 2).

The first specific need of this population is for clini-

cal oncologists to incorporate pretreatment geriatric

assessment (integrating age, comorbidities and cogni-

tive and physical impairments) in routine practice.

This will help to better predict the feasibility, safety

and efficacy of interventions in this patient group. For

those patients most likely to experience therapy-

induced toxicity, research is needed to generate

evidence-based guidelines for how to adapt therapeutic

schemes and objectives. Guidelines are also needed for

nononcological interventions that could preserve physi-

cal performance, nutritional status and cognition in

cancer survivors. Such evidence-based decisions will

have to be stratified by cancer type. The weighting of

composite endpoints including reduced toxicity and

maintained functions may be as important as improv-

ing survival in older patients. Research should also

move rapidly beyond geriatric assessment and explore

how measurements of biologic age, for example, by

using minimally invasive techniques [54], evaluation of

sarcopenia [70], detection of cellular senescence

[82,109] and biomarkers of inflammation [116], could

measure frailty, improve the prediction of outcomes

and better guide therapeutic intervention.

When adjusted for age, sex and lifestyle factors, can-

cer survivors are more likely to suffer from chronic

diseases, including second cancers, than are their age-

matched counterparts, possibly due to accelerated bio-

logical ageing and treatment-induced adverse events.

Thus, not only is ageing a significant risk factor for

cancer but cancer and its treatment also significant

contribute to ageing, indicating a bilateral relationship

[117–119]. Hallmarks of accelerated ageing include

anatomical, functional and mechanistic effects that are

similar to those of ageing but are detected at a youn-

ger age than usual [120]. Whether cancer by itself pro-

motes ageing or is a marker of ageing remains a

controversial issue. In contrast, many modalities used

to treat cancers damage healthy tissue, either accentu-

ating or accelerating the ageing process. Chemotherapy

and radiation therapy carry a ‘gerontogenicity’ poten-

tial through free radical formation, DNA damage and

telomere shortening [121]. Although paediatric cancers

have different underlying mechanisms, exploring long-

term outcomes in childhood cancer survivors may pro-

vide some insights into this issue.

Another well-known effect of chemotherapy and

radiation therapy for a primary cancer is the induction

of a second cancer, especially a therapy-related mye-

loid neoplasm [122]. These neoplasms have long been

thought to develop from the mutagenic effects of can-

cer therapy, with alkylating agents, topoisomerase

inhibitors and poly(ADP-ribose) polymerase inhibitors

[123] inducing genomic alterations in haematopoietic

stem and progenitor cells through diverse mechanisms.

Murine models and clinical observations both suggest

that, in addition to mutagenic effects, cancer treatment

can shape the selection of clonal mosaicism (Glossary,

Box 2), meaning that they can increase the fitness of

pre-existing clones [124,125]. In such a situation, clonal

mutations detected in peripheral blood cells before

cancer treatment are the initiating events of a therapy-

related myeloid neoplasm. Clonal mutations in the

DNA damage response genes TP53, PPM1D and

CHEK2 are most specifically associated with these
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therapy-related myeloid neoplasms. Among treatment

modalities, radiation and cytotoxic therapies (mostly

topoisomerase II inhibitors and platinum agents) are

again strongly associated with clonal hematopoiesis

evolution, an event that is not observed when targeted

therapies and immunotherapeutic agents are used

[126,127]. In the near future, screening for clonal

hematopoiesis may form part of risk stratification

before cancer treatment, leading to the adaptation of a

therapeutic strategy. This strategy would ideally

include the interception of high-risk clones to prevent

subsequent myeloid neoplasm.

In addition to these biology-driven approaches

[128], improving the survivorship of older cancer

patients may require a personalized survivorship care

plan that includes lifestyle guidance tailored to the

patient’s needs such as on exercise, nutrition, poly-

pharmacy, social support and comorbidities, together

with careful follow-up following a surveillance plan. A

research objective will be to validate the format and

outcomes of such plans, testing different models of

care with interdisciplinary teams coordinating survi-

vorship care delivery.

Future research on the survivorship of older cancer

patients (Fig. 2G) may address

� The mechanisms by which cancer and cancer treat-

ment promote ageing.

� The role of pre-existing clonal hematopoiesis in

therapy-related leukaemia.

� The best predictor of quality of life and biological

resilience in older cancer survivors.

� The optimal, evidence-based survivorship care plans.

� The prevention of social exclusion of cancer

survivors.

9. Health disparities among older
cancer patients

Attempts at measuring health disparities and at ensur-

ing health equity for older adults with cancer can be

challenging. In addition to differences between age

groups, the origins of health disparities such as differ-

ences in socioeconomic status, sex, geography or eth-

nic groups have to be explored within each age group

[129,130]. Some health disparities have biological ori-

gins, for example, mitochondrial determinants contrib-

ute to disparities in cancer susceptibility and severity

among ethnically different populations [131,132]. Nev-

ertheless, better understanding of these biological dis-

parities could help to generate innovative approaches

by reducing their impact on cancer prevention and

treatment. Beyond biology, the highest cause of ineq-

uities in the health of older patients is related to the

sociodemographic index [133]. Socioeconomic dispar-

ities generate lifelong (dietary, lifestyle and exposome;

Glossary, Box 2) disparities that may accelerate tissue

ageing. In turn, tissue ageing will cooperate with

other risk factors to promote cancer development.

To ensure health equity among older cancer patients

while facing the ageing of the population and the

increased survival of cancer patients, we need to

increase the number of oncologists with geriatric

expertise. Such an objective requires training pro-

grammes in combined geriatrics and medical oncology.

An increased workforce in geriatric oncology could

drive the implementation of age-friendly health sys-

tems in which individualized assessment of the 4Ms

(what Matters to the patients and their family, Medi-

cations, Mentation and Mobility) could be provided to

each patient to guide individualized plans of care

[134]. Finally, health equity requires that we ensure

that minority groups are adequately considered among

older adults, for example, equally included in clinical

trials [2,135] (Fig. 5).

The time and resources needed to train and recruit

this additional workforce may further increase inequal-

ities among world regions, for example, among Euro-

pean member states, which have diverse income and

sociodemographic indices. The complexity of cancer

care in ageing patients magnifies the usual pitfalls in

the optimal delivery of health care, including financial,

logistical and medical hurdles. Optimizing the treat-

ment of cancer and the quality of life of survivors in

Socio-demographic
Socio-economic

Geography
Minority group

Gender

Pa nt
Medica on
Menta on
Mobility

what Ma ers

Health system
Geriatric assessment

Mul disciplinary workforce
Infrastructures

Outcome

Fig. 5. Disparities influencing outcome of older patients with

cancer.
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older patients requires both public and policymaker

support. To build this support, we need to disseminate

evidence-based policies in understandable and compel-

ling ways. We also need to solve conflicts between the

common principles of equity and the use of noncost-

effective cancer treatments [136].

Future research on health disparities among older

cancer patients (Fig. 2H) may address

� The biological bases of inequities among older indi-

viduals facing cancer.

� The optimal training of geriatric caregivers and

oncologists.

� The use of social network tools to improve commu-

nication between patients and caregivers.

� The maintenance of social links between ageing can-

cer patients, society and health authorities, including

their contribution to programme funding decision.

� The broadly acceptable definition of value in a can-

cer treatment applied to older patients.

10. Conclusions

The spectacular progress in our understanding of the

biology of ageing in recent decades, together with the

increase in ageing population worldwide, the rising

incidence of cancer, and the rising efficacy and cost of

cancer treatments, justify expanding our research on

cancer and ageing. This research, based on the suspi-

cion that ageing is a modifiable cancer risk factor,

might deliver evidence-based recommendations to

improve the prevention, early diagnosis, care and sur-

vivorship of older patients with cancer (Fig. 2). Five

main biological targets have been identified to reduce

the effects of ageing. They include the insulin growth

factor pathway, the mammalian target of rapamycin

(TOR) pathway, the family of sirtuins, the mitochon-

dria and cells undergoing senescence. Most of these

targets can also interfere with cancer biology [1],

suggesting that modifying ageing could also target

emerging malignant cells. For example, metformin

could favourably interfere with both ageing effects and

cancer [137].

The increasing burden of cancer in older patients

requires that we train a new generation of geriatric

oncologists and researchers to address the complexity

of the disease in a multidisciplinary approach. The

development of geriatric assessment-guided interven-

tions is increasingly used to generate evidence-based

recommendations. When cancer is there, age by itself

does not fully characterize the physiological heteroge-

neity of patients and so, we also need to develop novel

biomarkers that can provide precise information on an

individual’s biological age. With this information in

hand, the outcome of choice for cancer treatment in

older patients must be carefully evaluated with each

individual patient to decide whether survival by itself

is more meaningful than functional independence and

quality of life.
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