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Attentional priorities drive effects of time pressure
on altruistic choice
Yi Yang Teoh 1✉, Ziqing Yao2,3, William A. Cunningham1,4 & Cendri A. Hutcherson 1,4

Dual-process models of altruistic choice assume that automatic responses give way to

deliberation over time, and are a popular way to conceptualize how people make generous

choices and why those choices might change under time pressure. However, these models

have led to conflicting interpretations of behaviour and underlying psychological dynamics.

Here, we propose that flexible, goal-directed deployment of attention towards information

priorities provides a more parsimonious account of altruistic choice dynamics. We demon-

strate that time pressure tends to produce early gaze-biases towards a person’s own out-

comes, and that individual differences in this bias explain how individuals’ generosity changes

under time pressure. Our gaze-informed drift-diffusion model incorporating moment-to-

moment eye-gaze further reveals that underlying social preferences both drive attention, and

interact with it to shape generosity under time pressure. These findings help explain existing

inconsistencies in the field by emphasizing the role of dynamic attention-allocation during

altruistic choice.
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Prosocial behaviour requires people to balance their own
interests against others’ welfare. Faced with such conflicts,
people sometimes altruistically sacrifice self-interest to help

others1–5, but debates about why and how have preoccupied
philosophers, economists and psychologists for centuries6,7.
Recent work has tried to explain altruistic choices using dual-
process models, which assume these choices result from com-
peting dispositional preferences that evolve over time8,9. This
suggests that one of the keys to enhancing prosociality may lie in
understanding whether prosocial dispositions derive from intui-
tion (which arises rapidly and automatically) or controlled
reflection (which emerges slowly and only under optimal pro-
cessing conditions). Resolving this debate would identify funda-
mental psychological processes that sustain social life, as well as
practical approaches to increase prosocial behaviour.

Unfortunately, work on this question has led to conflicting
results and conclusions. Using response times as a proxy for
automaticity and control has suggested both that prosociality may
be rapid and intuitive8–10 and that it requires lengthy delibera-
tion11–14. Although recent work has called into question infer-
ences drawn from deliberation times15–17, stronger causal
manipulations that attempt to interfere with controlled proces-
sing using time pressure or instructions to respond intuitively
have also led to conflicting conclusions, with people sometimes
becoming more selfish18,19 and sometimes becoming more
generous8,9,20–22. More recently, some researchers have proposed
that some individuals have intuitively generous dispositions,
while others are more intuitively selfish15,21,23. Yet other work
suggests that changes in choices may not necessarily reflect dif-
ferences in preferences, but rather differences in choice preci-
sion24–26. Thus a crucial set of questions remains unanswered
despite more than a decade of work: when choosing to act
altruistically, does generosity or selfishness come first, and if so,
why15,21–23,26?

Here, we propose a simple mechanistic alternative to dual-
process models: when making choices involving conflict between
self and others, decision-makers are not simply driven by the
fixed and sequential activation of intuitive and controlled pro-
cesses. Instead, they use a single process—the serial, prioritised
deployment of attention—to actively and strategically gather
information about their own and others’ outcomes according to
their dispositional social preferences. Such a model is consistent
with research showing that selfish individuals attend more to self-
relevant information while prosocial individuals attend more to
other-relevant information27, but goes a step further in suggesting
that time pressure (which may force individuals to make fast
rather than fully informed choices) should amplify the strategic
deployment of attention towards information prioritised by the
individual28,29. For example, a selfish individual with little time to
decide should first ascertain a choice’s consequences for herself,
and only shift to processing its consequences for others if suffi-
cient time remains. For someone who cares more about others,
the order of priorities should be reversed. This strategic deploy-
ment of attention could thus lead to changes in choice under time
pressure, since research suggests that attended information
receives more weight during evaluation30–35. While these
dynamics might produce patterns that appear on surface to
support dual-process models of choice, they would actually stem
from this fundamentally different set of mechanisms.

Our model makes three empirical predictions. First, time
pressure should result not only in systematic changes in proso-
ciality, but also systematic shifts in attention-allocation towards
self- and other-relevant information. Second, these attentional
changes should reflect individual differences in how much an
individual cares about others’ welfare relative to self-interest.
Finally, these attentional shifts, combined with time pressure’s

constraints on serial processing, should better account for chan-
ges in generosity under time pressure than intuition-driven
changes in social preferences.

To test these hypotheses, we experimentally constrained pro-
cessing using time pressure and measured the influence of this
manipulation on participants’ generosity and eye-gaze within a
modified dictator game paradigm. We found that time pressure
neither consistently increased nor decreased generosity. Rather,
supporting our hypotheses, individuals appeared to strategically
deploy their attention under time pressure, which in turn pre-
dicted changes in generosity. Determining whether changes in
gaze were driven by underlying preferences (which might repre-
sent a core individual difference present under both time pressure
and free response conditions) requires some way to measure
those preferences. However, if social preferences drive attention
and attention drives the very choices used to infer preferences,
this leads to a circularity of inference that makes causal analysis
difficult. Thus, to identify underlying preferences independent of
attention’s effect on choice, and determine how those preferences
might shape eye-gaze, we developed an extension of attentional
drift-diffusion models (ADDMs)30,34,35 to simultaneously incor-
porate and account for real-time eye-movements during choice.
As expected, our computational model showed that individuals
exhibit stable social preferences that predicted generosity across
both conditions. Importantly, we found that the model predicted
both early attentional biases and how these biases changed under
time pressure. Further confirming our hypotheses, individual
differences in attention interacted with time pressure and dis-
positional social preferences to predict changes in generosity,
while potential markers of intuition-driven preferences did not.
Finally, forcing individuals to look at others’ outcomes rather
than their own increased generosity, but only under time pres-
sure, illustrating both the power and limits of attention’s causal
influence on choice. Thus, our model suggests that altruistic
choice dynamics result from dynamic attentional selection as
opposed to the sequential activation of intuitive and controlled
processes8,21.

Result
Overview. To examine how time pressure influenced altruistic
choices, we asked participants in Study 1 (N= 60) to make
decisions about proposals consisting of monetary trade-offs
between themselves ($Self) and an anonymous partner ($Other)
under high or low time pressure (1.5 s vs. 10 s). Participants were
asked to accept or reject proposals on each trial relative to a
default payout of $50 each (Fig. 1). Proposals for $Self and $Other
varied from $0 to $100 each such that any party’s gain relative to
the default was accompanied by the other party’s loss. To
incentivize choices, participants were informed that their choice
on one randomly selected trial would determine payoffs for
themselves and their partner at the end of the experiment. We
defined generous behaviour as accepting (rejecting) a proposal
wherein participants’ losses (gains) accompanied gains (losses)
for their partner. To measure selective attention, we tracked
participants’ eye-movements as they made their choices, defining
rectangular areas-of-interest (AOIs) around the two sources of
information (i.e., $Self and $Other). Participants’ fixations within
these AOIs signalled attentional selection of the respective
information sources. To confirm the robustness of the beha-
vioural effects, we also ran two behavioural replication studies
(NREP1= 65 and NREP2= 49, see Supplementary Note 1).

Time pressure moderates individual differences in generosity.
Dual-process models that assume prosociality requires control
predict increases in selfish choice under time pressure.
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Conversely, models that assume prosocial intuitions predict
increases in generosity. We thus sought to determine whether
time pressure led to systematic changes in the proportion of
generous and selfish choices. As expected, individuals made faster
choices under high time pressure (Mhigh= 0.860 s, Mlow= 3.710
s, SEdiff= 0.128 s, t59=−22.333, p < 0.001). Time pressure also
resulted in a small but significant decrease in the proportion of
generous choices (Mhigh= 0.365, Mlow= 0.411, SEdiff= 0.011,
t59=−4.167, p < 0.001, Fig. 2a). However, this effect failed to
replicate in either replication study (see Supplementary Note 1),
contradicting dual-process models that assume that all indivi-
duals have the same set of automatic preferences (i.e., either all
prosocial or all selfish).

We next explored whether time pressure’s effects vary
systematically across individuals15,17,21, testing two possibilities.
On one hand, time pressure could simply exacerbate the same
tendencies present in free responses. In this case, relative
generosity or selfishness in the low time pressure condition
should become more extreme under time pressure. On the other
hand, consistent with our serial attention hypothesis, time

pressure might produce or unmask biases that are mitigated
with extra time. In this case, extreme generosity or selfishness
under high time pressure should generally subside with time.
Consistent with this latter idea, individuals who made more
selfish choices under high time pressure became less selfish with
more time whereas individuals who made more generous choices
under high time pressure became less generous (Pearson’s r=
−0.313, t58=−2.513, p < 0.05, Fig. 2b). However, individuals’
generosity under low time pressure was not associated with time
pressures’ effects on generosity (Pearson’s r=−0.101, t58=
−0.776, p= 0.44, Fig. 2c). Importantly, these effects were robust
in replication samples (see Supplementary Note 1) and were not
explained by alternative accounts such as regression to the mean
(Supplementary Note 2). This result contrasts with work
suggesting that time pressure exacerbates individual differences
observed under naturalistic response conditions21. Rather, our
results suggest an additional source of between-individual
variance emerges only under time pressure and is mitigated
when people had more time to decide. We hypothesised that
these biases reflect changes in early attention’s influence on
choice under time pressure and therefore sought to understand
the mechanisms underlying these changes.

Early attentional priorities emerge under time pressure. Our
model emphasises the importance of attentional priorities in
determining choice-outcomes, suggesting two possibilities for
time pressure’s effects. First, time pressure might simply enhance
the influence of existing early attentional biases on choices.
Alternatively, time pressure might induce early attentional biases
towards social priorities to cope with processing constraints. To
test whether such priorities exist by default, or emerge under time
pressure, we analysed millisecond-by-millisecond eye-movements
during choice, classifying gaze-position of each participant (N=
57) at each moment as falling in the Self AOI, Other AOI, or
neither. Under high time pressure, we found that participants as a
group exhibited a significant gaze-bias towards their own out-
comes during the first 294 ms of the trial (ps < 0.01, permutation-
corrected, see Methods and Fig. 3a). Under low time pressure,
participants exhibited a non-significant bias (Fig. 3b). A direct
comparison showed that biases towards self-information under
high time pressure were significantly larger during the first 286
ms of the trial compared to those under low time pressure (ps <
0.01, permutation-corrected), suggesting that time pressure led to
an emergence of early selfish gaze-biases. This comparison also
revealed a period of more other-oriented gaze under high time
pressure from 353 to 575 ms, and a second, later period of greater
self-oriented gaze under high time pressure, 718–837 ms (ps <
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Fig. 2 Time pressure’s effect on generosity in Study 1. Mean differences across time pressure conditions are displayed in a. Violin plots illustrate the
distribution of participants’ means, coloured by time pressure condition. Central solid line indicates group mean with upper and lower bounds of the box
plot indicating the standard error. Prediction of changes in generosity as a function of proportion generous choices under high time pressure b and as a
function of generosity under low time pressure c. Each point represents a single subject (N= 60). *p < 0.05, **p < 0.01, ***p < 0.001 for two-tailed a paired
t test, b, c one sample t test. Source data are provided as a Source Data file.
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Fig. 1 Trial structure. Subjects saw a proposed monetary allocation for Self
and Other under time pressure or not (indicated by a red bar) and chose
whether to accept or reject the proposal. If they accepted, the proposal was
implemented as shown. If they rejected, both they and their partner
received a default of $50 each.
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0.01, permutation-corrected), although these biases were not
significant in either condition separately (Fig. 3c).

Although we observed an overall selfish gaze-bias under time
pressure, we also predicted variability in this effect across
participants since individuals should cope with time pressure by
prioritising information according to their social preferences but
show less consistent gaze behaviour under low time pressure,
when such prioritisation is not required. Consistent with this
hypothesis, Brown–Forsythe tests of equal variances36 showed
that gaze-biases were significantly more variable (i.e., displayed
more extreme values) under time pressure (F1,108= 4.157, p <
0.05). Furthermore, stronger selfish gaze-biases under high time
pressure predicted a lessening of these gaze-biases (i.e., more
other-oriented gaze) when given more time, while the reverse
(i.e., more self-oriented gaze) held for individuals who were
biased towards other-information under time pressure (Pearson’s
r=−0.548, t55=−4.856, p < 0.001). However, gaze-biases under
low time pressure were not associated with changes in gaze under
high time pressure (Pearson’s r= 0.039, t55= 0.286, p= 0.78). In
other words, early attentional biases towards social priorities (self-
and other-information) emerged under high time pressure but
were attenuated when individuals were given more time to
choose.

Early gaze predicts choice. If attention filters and selects infor-
mation in a way that causally influences choice evaluation, then
attentional biases should predict individual differences in gener-
osity. Furthermore, limits on extended processing under time
pressure should enhance the effect of these biases. To test these
hypotheses, we conducted a logistic mixed-effects regression
predicting proportion generosity as a function of early gaze, time
pressure and their interaction, controlling for later gaze (see
Supplementary Table 1). As expected, we found a main effect of
time pressure on generosity (b=−0.0706, SE= 0.0268, z=
−2.637, p < 0.01, R2= 0.008). However, we also found that self-
biased early gaze negatively predicted generosity (b=−0.494,
SE= 0.169, z=−2.930, p < 0.01, R2= 0.108), especially under
time pressure (interaction: b=−0.151, SE= 0.072, z=−2.103,
p < 0.05, R2= 0.011, Fig. 4). Results were similar if first-fixation
position rather than proportion early gaze was used as a measure
of attention-allocation (see Supplementary Note 3). Together
with the results above, these findings suggest that time pressure’s
effects on generosity are partially driven by its interaction with
early gaze.

The gaze-informed attentional drift-diffusion model. Although
the foregoing results are suggestive, they have yet to demonstrate
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Fig. 3 Attention dynamics of altruistic choice across time. Millisecond-to-millisecond proportion of gaze directed to Self AOI, Other AOI or neither under
a high time pressure, and b low time pressure. c The difference in proportion of trials with gaze position in Self AOI and Other AOI under high and low time
pressure. Lines are coloured by AOI. Bars with asterisks (**) denote time periods (clusters) of permutation-corrected significance (cluster t greater than
95% of simulated tmax) at a threshold of two-tailed p < 0.01 for z-tests of the logistic mixed-effects model parameters: a, b intercept and c main effect of
time pressure. Comparisons were conducted up until 837ms, after which >50% of trials terminated under the high time pressure condition. Source data
are provided as a Source Data file.
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two critical assumptions of our model: that changes in attention
causally influence choice, and that those changes reflect under-
lying preferences for certain kinds of information over others.
However, if underlying preferences shape attention, but attention
also influences the choices used to infer underlying preferences,
this circularity can make it challenging to detect and distinguish
the independent influence of the two. Thus, we sought to isolate
attention’s influence, and estimate social preferences indepen-
dently of this influence, by explicitly incorporating it into a model
of the choice process. This allowed us to determine if changes in
generosity under time pressure were driven by individual differ-
ences in attention, intuitive preferences, or both.

To do this, we developed an eight-parameter gaze-informed
multi-attribute extension of the attentional drift-diffusion model
(ADDM)30,35 (see “Methods”). Our model makes several key
assumptions. First, when choosing to act selfishly or generously,
we assume that people construct evidence for or against the
available options based on a weighted sum of both self-interest
and social preferences about the other and fairness37. These
weights (i.e., wself, wother, wfairness) parameterise individuals’
overall social preferences as they accumulate evidence towards a
threshold for choice38. This threshold is determined by an initial
height parameter b, and its exponential decay, d, towards 0 over
time within the trial24,26,39. Second, we assume that visual
attention towards one type of information (i.e., $Self or $Other)
momentarily reduces the influence of unattended information in
the accumulation process by a factor θ. Unlike previous
applications of the ADDM, which model attention generically
using group or trial averages30,31,35, our model makes full use of
each individual’s moment-by-moment gaze position to determine
exactly when different attributes (1) enter consideration32 and (2)
receive amplification. Finally, the model also allows people to
have starting biases towards a particular response (i.e., to choose
the proposal or default, stbias, or to choose generously or
selfishly, genbias) even before the value of a specific stimulus is
known21.

Our model formalises the intuitive notion implicit in dual-
process models that value-construction of options unfolds over
time, and that interrupting the evidence-accumulation process
through time pressure can alter choices. It considers three
possible mechanisms for these changes. The first mechanism (a

Social Heuristics8,9 or dual-process account) assumes that early
evidence differs from later evidence, because automatic proces
sing generates evidence more rapidly than controlled proces-
sing40. Thus, forcing people to choose quickly pre-empts late
-emerging evidence, revealing the contents of intuitive
preferences8,13. This predicts that changes in weight parameters
should predict changes in generosity since intuitively selfish
individuals initially weight self-interest more highly while
intuitively prosocial individuals initially weight others’ outcomes
more highly. The second mechanism (our prioritised attention
model) also hypothesises differences in early vs. later evidence,
but posits that this results not from fixed activation of internal
processes, but the dynamic and strategic allocation of attention.
This predicts that changes in attention, rather than changes in
weight parameters, should relate to changes in generosity. Finally,
a third mechanism (the biased DDM21) suggests that time
pressure exacerbates the effect of starting biases whose influence
on choice is larger when less evidence is considered, resulting in
automatic default responses towards generosity or selfishness21.
This predicts that the estimated parameter values for starting
biases should predict changes in generosity under time pressure.

Absolute model fit. Before examining model parameters, we
verified that our model fit the data well and captured both inter-
individual (Fig. 5a, b) and intra-individual (Fig. 5c, d) variability.
We observed strong associations between simulated and observed
changes across time pressure conditions in generosity (Pearson’s
r= 0.784, t48= 8.738, p < 0.001) and log-transformed RTs
(Pearson’s r= 0.970, t48= 27.793, p < 0.001). In addition, the
model captured trial-by-trial differences in acceptance rates and
RTs within individuals (acceptance rate: high time pressure: mean
Pearson’s r= 0.875, SE= 0.0246, t49= 35.501, p < 0.001; low time
pressure: mean Pearson’s r= 0.911, SE= 0.0092, t49= 99.154,
p < 0.001; logRT: high time pressure: mean Pearson’s r= 0.616,
SE= 0.0299, t49= 20.609, p < 0.001; low time pressure: mean
Pearson’s r= 0.396, SE= 0.0434, t49= 9.114, p < 0.001, see
Methods). Model-extracted parameters quantifying dispositional
social preferences were also predictive of generosity under high
time pressure (wself : b=−41.120, SE= 3.837, z=−10.003,
p < 0.001, R2= 0.276; wother: b= 74.418, SE= 3.837, z= 19.393,
p < 0.001, R2= 0.656; wfair: b= 32.008, SE= 8.322, z= 3.846,
p < 0.001, R2=0.062) and low time pressure (wself : b=−27.239,
SE= 3.794, z=−7.179, p < 0.001, R2= 0.120; wother : b= 60.077,
SE= 3.507, z= 17.129, p < 0.001, R2= 0.536; wfair: b= 29.469,
SE= 7.921, z= 3.720, p < 0.001, R2= 0.044).

Model comparison. To assess the added explanatory and pre-
dictive value of accounting for attentional dynamics in our gaze-
informed ADDM, we first fit a version of Chen and Krajbich’s
biased DDM21 assuming no influence of attention. Using split-
half cross-validation, we compared the two models on their out-
of-sample predictive accuracy, both for change across time
pressure conditions, and average generosity in each condition.
Notably, the biased DDM failed to predict changes due to time
pressure (Pearson’s r= 0.219, t48= 1.558, p= 0.126), while the
gaze-informed ADDM was significantly more accurate (Pearson’s
r= 0.483, t48= 3.818, p < 0.001; comparison: Fisher’s t= 2.16,
one-tailed p= 0.02, see Fig. 6). We observed similar differences
when examining predictive accuracy for generosity in each con-
dition separately. While both models accurately predicted gen-
erosity under high time pressure (gaze-informed ADDM:
Pearson’s r= 0.911, t48= 15.324, p < 0.001; Biased DDM: Pear-
son’s r= 0.783, t48= 8.730, p < 0.001) and low time pressure
(gaze-informed ADDM: Pearson’s r= 0.859, t48= 11.630,
p < 0.001; biased DDM: Pearson’s r= 0.702, t48= 6.825,
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p < 0.001), the gaze-informed ADDM was significantly more
accurate in both cases (high time pressure: Fisher’s t= 3.58, one-
tailed p < 0.001; low time pressure: Fisher’s t= 3.44, one-tailed
p < 0.001). Thus, while social response biases may partially drive
choice behaviour, they cannot fully account for time pressure’s
effects on altruistic choice. Instead, accounting for attentional
dynamics seems necessary to fully capture time pressure’s effects
on altruistic choice.

Given our strong hypotheses that attention drives time
pressure’s effects on choice, we also expected exclusion of the
social bias parameter from our model to minimally influence
predictive accuracy. As expected, a more parsimonious version of
the gaze-informed model that excluded social response biases was
just as accurate as the full model in predicting changes in
generosity (nested model: Pearson’s r= 0.500, t48= 3.998,
p < 0.001, Fisher’s t=−0.29, two-tailed p= 0.77), and generosity
under low time pressure (nested model: Pearson’s r= 0.848,
t48= 11.091, p < 0.001, Fisher’s t= 0.74, two-tailed p= .46).
However, while the more parsimonious model accurately
predicted generosity under high time pressure (nested model:
Pearson’s r= 0.883, t48= 13.014, p < 0.001), the full model was

slightly but significantly more accurate (Fisher’s t= 2.14, two-
tailed p= 0.04). Thus, while social response biases may contribute
to choice behaviour under time pressure, a more parsimonious
model accounting only for attentional dynamics is sufficient to
capture time pressure’s effects on change in altruistic choice.

Additional model simulations further suggest that if attention
drives early values, models that are ignorant of attention could
erroneously attribute rapid selfish or generous responses to
response biases, possibly explaining previous work attributing
time pressure’s effects to such biases (see Supplementary Note 4).
Altogether, these results strongly suggest that the temporal
dynamics of attention-control play a critical role in driving the
effects of time pressure on altruistic choice.

Time pressure’s effect on computational parameters. Having
shown that our model fit the data well, and that attentional
dynamics are both necessary and sufficient for explaining time
pressure’s effects on altruistic choice, we extracted for further
analyses the estimated parameters from the full gaze-informed
ADDM fitted to all of the observed data. We then computed
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paired t tests of changes in each parameter under time pressure,
Bonferroni-corrected (eight comparisons, see Supplementary
Table 2). As expected, time pressure dramatically decreased
decision thresholds, b, (p < 0.001, corrected) and increased their
decay rate, d (p < 0.001, corrected). Comparatively, changes in
response-option starting biases, stbias (p= 0.018, uncorrected)
and attentional discount, θ (p= 0.032, uncorrected) did not
survive correction. We also observed no significant changes in
intuitive social response biases, genbias (p= 0.24, uncorrected),
although people were selfishly biased on average (Maverage=
−0.0377, SE= 0.0118, t49=−3.173, p < 0.01).

We next turned our attention to weights on self, other, and
fairness, since changes in these parameters come closest to
capturing the idea that rapid or intuitive preferences differ from
more deliberative ones. Specifically, dual-process models suggest
that time pressure should increase the weighting of more rapidly
processed attributes, driving changes in generosity40,41. Compar-
isons revealed an increase in wself (p < 0.05, corrected) and wfairness

(p < 0.01, corrected) under time pressure, but little change in
wother (p= 0.59, uncorrected). These results suggest that time
pressure primarily reduces the decision threshold, but may also
increase preferential processing of self-interest and inequality. We
return to this latter point below in analyses determining whether
attribute weights or gaze-biases better explain changes in
generosity under time pressure.

Stable social preferences shape early attentional dynamics. Our
attention model predicts that people’s dispositional social pre-
ferences (i.e., the weight they place on self vs. others) should
shape how they shift their attention under time pressure. By
modelling attention, we were able to obtain a cleaner measure of
social preferences to test this important prediction. Importantly,
linear mixed-effects regression predicting early gaze-biases from
model parameters (N= 50) revealed that concern for other’s
outcomes, average wother, was negatively associated with selfish
gaze-biases (b=−12.819, SE= 5.294, t47=−2.421, p < 0.05,
semi-partial R2= 0.101), especially under time pressure

(interaction: b=−3.656, SE= 1.568, t47=−2.332, p < 0.05, semi-
partial R2= 0.009). Early gaze-biases were not associated with
individuals’ weight on self-interest, wself, regardless of time
pressure condition (ps > 0.05, see Supplementary Table 3). Fur-
thermore, individuals’ average wother also negatively predicted
tendencies to shift gaze priorities towards $Self under time
pressure (b=−7.312, SE= 3.136, t47=−2.332, p < 0.05, semi-
partial R2= 0.104), even when controlling for average wself (b=
5.273, SE= 3.907, t47= 1.350, p= 0.18, semi-partial R2= 0.037).
Together these results support our model of prioritised attention:
individuals’ early attention tracks their dispositional social pre-
ferences, especially under time pressure.

Attentional shifts drive changes in generosity. Having observed
that time pressure may alter both the weights assigned to self-
interest and other-focused concerns, and the attention paid to
them, we sought to determine how such alterations, as well as
default social response biases21, influence changes in generosity.
We thus conducted stepwise regression on changes in generosity
under time pressure (N= 50, see Supplementary Table 4). The
most parsimonious model revealed only a significant main effect
of average wother (b=−6.077, SE= 2.881, t38= 2.109, p < 0.05,
semi-partial R2= 0.105), and three-way interaction between early
gaze-biases, their change under time pressure, and average wother

(b= 33.228, SE= 14.773, t38=−2.249, p < 0.05, semi-partial R2

= 0.117). We observed no effect of changes in weights or default
social biases.

In other words, for people who cared about others’ outcomes
(i.e., +1SD in wother), inattention to those outcomes was
detrimental to generosity under time pressure: becoming more
self-focused in their early gaze tended to reduce generosity under
time pressure, given that average early gaze was not already
highly self-biased (two-way interaction: b= 0.385, SE= 0.195, t38
= 1.975, p= 0.056; simple effect of change in early gaze-biases at
−1 SD early gaze-bias: b=−0.231, SE= 0.128, t38=−1.802, p=
0.080). When early gaze-biases were already highly self-biased
(mean or +1 SD), further biasing of early gaze towards self-
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outcomes did not change generosity (simple effect at mean: b=
−0.056, SE= 0.071, t38=−0.788, p= 0.436; at +1 SD: b= 0.120,
SE= 0.096, t38= 1.245, p= 0.221). For those who placed little
weight on others’ outcomes (i.e., mean or −1 SD in wother), early
attention did not matter (simple effects of average and change in
early gaze and their two-way interaction, ps > 0.05) Thus, early
attentional biases robustly drive changes in generosity under time
pressure and provide a parsimonious account of choice dynamics.

Forced attention biases generosity under time pressure. Our
model thus far suggests a causal account wherein attention, dri-
ven by social preferences, influences the choices people make
under time pressure. However, to directly test attention’s causal
influence on altruistic choice, we conducted a second, on-line
study where we manipulated participant’s attention to $Self and
$Other. In this study, participants (N= 200) completed similar
dictator games under high and low time pressure (see “Meth-
ods”), using mouse clicks to reveal choice attributes ($Self or
$Other). Importantly, on some trials, they could choose which
attribute to click on first. On other trials, they were forced to click
on either $Self or $Other first. For parallelism with Study 1, we
use the term fixation to describe when participants clicked on an
attribute. If early attention derives its influence on choice only
through its relationship with dispositional social preferences,
first-fixations should have little to no effect when they are exo-
genously controlled. However, if attention has a direct causal
influence on choice, then it should influence behaviour even
when determined by outside forces.

Replicating Study 1, participants in Study 2 were more likely to
choose selfishly if they freely looked first at $Self, specifically
under time pressure (interaction: b= 0.648, SE= 0.259, z=
2.504, p= 0.012; simple effect of first-fixation under high time
pressure: b=−1.016, SE= 0.209, z=−4.855, p < 0.001; low time
pressure: b=−0.368, SE= 0.180, z=−2.048, p= 0.041, Fig. 7a).
Moreover, generosity in forced-attention trials (which provides a
measure of dispositional social preferences controlling for
attention) predicted how selfishly oriented participants’ freely
chosen first-fixations were, especially under time pressure
(interaction: b= 0.710, SE= 0.258, z= 2.748, p= 0.006; simple
effect of generosity under high time pressure: b=−2.636, SE=

0.559, z=−4.718, p < 0.001; low time pressure: b=−1.926, SE=
0.557, z=−3.461, p < 0.001). These findings corroborate results
from Study 1 suggesting that dispositional social preferences drive
attentional priorities, particularly under time pressure, and that
these attentional priorities predict choice.

Finally, we confirmed a causal effect of attention on choice
independent of social preferences: generosity was strongly
influenced by whether participants were forced to fixate on $Self
or $Other first, but only under time pressure (interaction: b=
0.664, SE= 0.184, z= 3.601, p < 0.001; simple effect of first-
fixation under high time pressure: b=−0.833, SE= 0.144, z=
−5.766, p < 0.001; low time pressure: b=−0.169, SE= 0.117, z=
−1.444, p= 0.149, Fig. 7b). Thus, even when holding disposi-
tional social preferences constant, directing participants’ attention
towards their own or others’ outcomes made them more selfish or
more generous, respectively.

Discussion
Do preferences for acting generously evolve over time? Our
results suggest they do but point to a markedly different expla-
natory mechanism than extant dual-process models: the serial,
prioritised deployment of attention to preferred information
during information-search. Three pieces of evidence support this
interpretation. First, we found that individuals differ system-
atically in the extent to which they focused first on self- or other
-relevant information under time pressure. Second, a sophisti-
cated, gaze-informed computational model of choice suggested
that underlying social preferences drive these initial attentional
biases, particularly under time pressure. Third, these attentional
biases causally predicted changes in generosity under time pres-
sure. Our findings help to make sense of the growing body of
literature suggesting that time pressure neither consistently
increases nor decreases generosity8,19,22, but instead reveals
individual differences in social preferences21,23. Moreover, while
some of our findings hint at the possibility of fast and slow sys-
tems of processing8,13,21,42,43, they point firmly to the importance
of attentional priorities in the face of processing constraints.

Our results suggest an important insight into human proso-
ciality: individuals tend to prioritise information about self
-interest over information about others’ welfare. They
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demonstrated a tendency to look first at their own outcomes,
particularly under time pressure, and the model-estimated
influence of this information on choice, even after accounting
for attention, was significantly higher. Yet these results appear to
contradict the idea that individuals often default to pro-social
responses (social heuristic hypothesis)8,15,44. What might recon-
cile such findings? Two possibilities are immediately apparent.

First, much of the research demonstrating intuitive biases uses
single-shot games in which participants self-generate monetary
splits, whereas our study used repeated presentation of specific,
experimenter-determined payouts. Perhaps response-modality, or
the repeated exposure to games of this sort9 results in different
decision processes. However, in supplementary analyses, we
incorporated a series of one-shot games into our measure of
prosociality and found that generosity in one-shot and repeated
binary choices were strongly correlated, suggesting that they both
tap into a common set of processes (see Supplementary Note 5).

Instead, we think a second explanation is more likely. Much of
the literature demonstrating default pro-social biases has emerged
during the study of strategic cooperative behaviour, such as the
Ultimatum or Public Goods Game, rather than purely altruistic
behaviour8,9,15,17. We suspect that when one’s own outcomes are
more clearly predicated on the behaviour or outcomes of others
(as in the Ultimatum Game), attention shifts more decisively
toward social information, yielding pro-social biases under time
pressure. Future work using eye-tracking could test such a
hypothesis by comparing the pattern of eye-gaze during Dictator
and Ultimatum games.

Examining whether people flexibly direct attention towards
self-relevant information in a context-sensitive manner may also
unveil the mechanism that drives the emergence of attentional
biases under time pressure. Based on the relationship between
model-identified underlying preferences and changes in atten-
tional bias, we speculate that strategic goal-directed mechanisms
are at play; people might be able to look in anticipation toward
self-relevant information given salient cues about where it
appears. However, it is also possible that components of these
early attentional biases are intuitive expressions of social
preferences27,45, driven by well-established characteristics of the
automatic attention system46,47. Such an interpretation would be
consistent with studies showing that previously rewarding stimuli
capture attention automatically, regardless of the current goal
context48. In our paradigm, the location of self-relevant infor-
mation was constant throughout. Thus, to the extent that selfish
individuals disproportionately value self-outcomes, the screen
location signalling this value might come to draw attention in an
automatic and habitual fashion. Future work manipulating the
location of self- and other-relevant information from trial to trial
in a predictable way might help to determine the relative auto-
maticity or strategic goal-directedness of attentional prioritisa-
tion. However, effects of strategic deployment and reward-based
attention-capture need not be mutually exclusive. Careful
consideration of how these distinct processes support and
dynamically shape the twin tasks of attention-allocation and
choice-comparison may help to resolve important inconsistencies
in the literature.

Furthermore, the exact mechanisms of attention’s influence on
the evidence-accumulation process remains unclear. Some work
suggests that attention supports the initial construction of the
choice-set while others posit that attention amplifies the value of
evidence in real-time. While we have included both these possi-
bilities as attentional mechanisms in our computational model,
the field continues to debate the relative contributions of these
mechanisms during choice32,35,49. Future work should seek to
characterise and disambiguate between these mechanisms and
their downstream effects on choice. We suspect that

neurocomputational models like the one we have developed here
will be key for resolving such issues. Importantly, these general
cognitive mechanisms (attention and its multiple interactions
with valuation) likely extend beyond altruistic and cooperative
decision-making to other domains such as risky decision-
making50 and dietary choices51,52. Our model clearly reveals the
importance of considering dynamic, reciprocal connections
between externally directed attention and valuation. Future work
will need to explore how other dynamic processes, including
internally directed attention53,54, memory55,56 and affective
responding57 shape and interact with value-construction during
social behaviour and beyond.

Methods
Study 1. Participants (N= 60) completed 160 trials of the modified dictator game
(Fig. 2). To manipulate time pressure, participants had to make these choices either
within 1.5 s after trial onset (high time pressure, 80 trials) or within 10 s (low time
pressure, 80 trials). In the low time pressure condition, participants were also
probabilistically notified they had responded fairly quickly and reminded to take
their time to make the best choice if they responded before 2 s after trial onset.
Supplementary analyses suggest that these prompts to delay responding did appear
to encourage more extensive deliberation before choice (see Supplementary Note 6).
Participants alternatingly encountered the low time pressure condition before high
time pressure trials in blocks of 20 trials. Additional analyses revealed consistent
patterns of effects across all blocks and no effects of block ordering (see Supple-
mentary Note 7).

Stimuli were presented and responses collected using MATLAB and the
Psychophysics Toolbox58,59 on a 23-in. display monitor (100-Hz refresh rate,
resolution 1920 × 1080 pixels). For eye-tracking purposes, participants sat in front
of the computer screen at a distance of approximately 60 cm, with their head in a
chin-rest to minimise head movements.

At the end of the study, a random trial was selected from the participant’s
choice set and the participant and their partner received the monetary outcomes of
their choice on that trial. These outcomes were paid to the participant immediately,
and to another participant in the study completing a subsequent experimental
session. Thus, most participants completed the task once as the decision maker,
receiving the outcome of their choice, and once as a recipient of the outcome of a
previous participant’s randomly implemented choice. Participants discovered their
passive participation as a recipient only at the end of the study. Monetary payoffs
presented during the study ranged from $0 to $100 and were converted to real
payouts using an exchange rate of 5:1. Participants learned that there would be an
exchange rate in the instructions prior to the task but were not informed of the
precise ratio until the end of the study. All participants provided informed consent
in manners approved by the Research Ethics Board at the University of Toronto.

Study 2. Study 2 was designed to examine the causal influence of attention on
choice, independent of dispositional social preferences. Towards this end, we
recruited participants from Amazon mechanical TURK (Final N= 200, 196 pre-
registered exclusions) and compensated $5 for their time, plus an amount deter-
mined by their choices in the study. Participants first completed a series of five one-
shot dictator game where they were given varying amounts of money and asked
how much they would like their partner to have on a continuous scale (see Sup-
plementary Note 5). In the main task, participants completed 136 trials of a
modified online version of the dictator game in Study 1 (see Supplementary Fig. 1)
using Inquisit Web. To measure attention analogous to eye-gaze in Study 1, par-
ticipants had to click on the location of $Self or $Other to reveal it, and could only
view one piece of information at a time. To manipulate time pressure, participants
had to make these choices either within 3 s after trial onset (high time pressure, 68
trials) or only after 3 s had elapsed but within 10 s (low time pressure, 68 trials).
Subjective reports of time pressure on a single-item scale from 1 (Not at all) to 7
(Extremely) (“How rushed did you feel in trials where you had only 3 s to
respond?”) provided confirmation for a manipulation check on this modified
paradigm (Mpressure= 5.082, SD= 1.697). In 22 trials of each of the time pressure
conditions, participants could choose to click on either their own outcomes or the
other person’s outcomes first. In another 23 trials, participants were forced to click
on their own outcomes (self-outcomes) first. In the last 23 trials, participants were
forced to click on the other person’s outcomes (other-outcomes) first. Participants
always encountered a low time pressure block followed by a high time pressure
block in the practice and beginning of the main experiment but all following high
and low time pressure blocks were randomly interleaved.

To signal free vs. forced-click trials, a visual border around the attributes cued
what information was available for access (i.e., only self-outcomes, only other-
outcomes, or both). Upon clicking, the selected information ($Self/$Other)
appeared briefly, after which participants were prompted to access the non-selected
piece of information. The duration of each attribute exposure were designed to
mimic durations from Study 1. Participants were forced to oscillate between these
pieces of information until they made a choice, or the time limit had elapsed. We
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recorded the number and order of clicks on each trial and defined each instance of
information access as a fixation for subsequent analyses.

At the end of the study, a random trial was selected from the participant’s
choice set and the participant and their partner received the monetary outcomes of
their choice on that trial. These outcomes were paid to the participant immediately,
and to another participant in the study completing a subsequent experimental
session. Thus, most participants completed the task once as the decision maker,
receiving the outcome of their choice, and once as a recipient of the outcome of a
previous participant’s randomly implemented choice. Participants discovered their
passive participation as a recipient only at the end of the study. Monetary payoffs
presented during the study ranged from $0 to $100 and were converted to real
payouts using an exchange rate of 50:1. All participants provided informed consent
in manners approved by the Research Ethics Board at the University of Toronto.
All details on experimental design and analyses of Study 2 were preregistered on
the Open Science Framework (OSF) with the identifier CHWM3 [https://doi.org/
10.17605/OSF.IO/CHWM3].

Generous choices. We defined generous choices as trials where the participant
accepted (rejected) a smaller (larger) amount of money for themselves compared to
the default, in order to help their partner receive a larger amount. Choices were
defined as selfish otherwise. Proportions of generous choices were calculated as the
number of generous choices a participant made over the number of trials in which
a response was recorded. Missed response trials (mean percentage of trials: high
time pressure: Mstudy1= 4.67%, MREP1= 3.03%, MREP2= 2.29%, Mstudy2= 1.03%;
low time pressure: Mstudy1= 0.33%, MREP1= 0.03%, MREP2= 0.39%, Mstudy2=
0.03%) were excluded from choice analyses.

Eye tracking. In Study 1, we recorded eye-movements from the right eye (Pupil-
CR tracking mode) using an EyeLink 1000 plus Desktop Mount (SR Research,
Ontario, Canada) with a sampling rate of 1000 Hz. Before starting the experiment,
the eye tracker was calibrated and validated to ensure tracking accuracy. For the
calibration, participants fixated nine random dots on the screen; the eye tracker was
then adjusted until the average tracking error of the visual angle was less than 0.5°.
Following calibration, a nine-point validation phase was performed. The validation
procedure measured the difference between the computed fixation position and the
fixation position for the target obtained during calibration using the same nine
random dots to ensure that the calibration was accurate and eye position errors
were acceptable (average gaze-position error: 0.36° ± 0.01). To analyse the eye-
movement data, we defined two (300 × 370 pixels) non-overlapping areas of
interest (AOIs) around the two attributes ($Self and $Other), positioned at an equal
distance from the centre cross, centred at (x= 320px, y= 540px) and (x= 1280px,
y= 540px) from the left and top of the screen. Attribute positions (left or right) of
$Self and $Other were counterbalanced across subjects to mitigate leftward reading
biases. Eye-movement data were analysed between proposal onset and the
response. We excluded three participants due to technical difficulties with the eye-
tracking equipment during data collection, leaving a total of 57 eligible participants
for remaining eye-tracking analyses.

We first extracted unfiltered eye-position data from all eligible participants
using the Eyelink Data Viewer 3.1 with millisecond precision, classifying eye-gaze
position as within the Self AOI, Other AOI or neither. To identify overall effects of
time pressure, we then analysed gaze position across participants using univariate
logistic mixed-effect models at every time point until 837 ms, the point at which
>50% of trials had terminated under the high time pressure condition. The range of
median reaction times under time pressure across subjects varied from 528 to 1084
ms with more than 50% of individuals’ median reaction times between 727 and
935 ms. To correct for multiple comparisons across the time points, we performed
cluster-based permutation testing using the maximum cluster-level mass statistic,
tmax

60,61. Clusters were defined as time periods with at least two adjacent,
significant time points.

For individual difference analyses, we extracted early gaze-biases, measured as
the average proportion of time individual participants spent fixating on the Self vs.
Other AOI in the first 286 ms of the trial (the time period of significant self-focused
bias identified by the permutation analysis). For 15 of 9120 trials, in which
participants responded before 286 ms, we calculated the proportion bias of early
gaze with respect to their reaction time. Measures of later gaze-biases were
computed as the proportion of time spent in the Self vs. Other AOI for the
remaining trial duration (i.e., overall trial duration—286 ms). In these analyses, we
included trials where participants failed to response before the time limit, given
that these trials still provide information about individual participants’ attentional
deployment. Excluding missed response trials (230 of 9120) yielded similar effects
across all analyses.

In addition to continuous gaze data, we also conducted all analyses using
measures based on first fixation position. In these analyses we excluded all fixations
that were shorter than 100 ms and removed trials where participants failed to fixate
on either of the two AOIs. These analyses revealed similar results to those using
continuous measures of gaze, including the effect of attention on generous choice
(see Supplementary Note 3).

The gaze-informed ADDM. To investigate the effects of early attention on choice,
we adapted the ADDM30, constraining it by millisecond-by-millisecond trial-
specific gaze position for each participant, and combined it with a multi-attribute
extension of the DDM for altruistic choice26. Evidence for accepting the proposal
on each trial (relative to the default) accumulated over time as a function of
samples of the expected value (V). We defined the momentary expected value V(t)
as the weighted sum of three attributes: self-interest ($Self), concern for others
($Other) and inequality (|$Self− $Other | ), with weights on $Self and $Other
discounted by a factor θ when not the focus of visual attention, as shown in Eqs.
(1–3).

VðtÞ ¼ AðtÞself ´wself ´ $Self þ AðtÞother ´wother ´ $Other
þwfairness ´ $Self � $Otherj j þ ϵðtÞ; ð1Þ

AðtÞself ¼
1; if gaze on Self AOI

1� θ; otherwise:

�
ð2Þ

AðtÞother ¼
1; if gaze onOther AOI

1� θ; otherwise:

�
ð3Þ

We further assumed that weights for a given attribute were 0 if the participant
had not yet fixated on the information necessary to compute it (e.g., wother= 0 and
wfairness= 0 if the participant had not yet fixated on $Other at any point prior to t).
In other words, we assumed ignorance of a particular attribute until visual fixations
confirmed acquisition of the necessary information ($Self for wself, $Other for
wother, $Self and $Other for wfairness).

Individual samples of the value V(t) accumulate over time, until they hit one of
two choice-defining thresholds, determined by two parameters: an initial height
parameter b, as well as a collapse-rate parameter d, capturing the exponential decay
of the boundaries towards 0 over time within the trial24,26,39. We also employed
two response bias parameters: a genbias parameter capturing intuitive social
response biases predisposing people towards generous or selfish responses21, and a
starting bias parameter stbias capturing a bias to reject or accept the proposal.
These parameters summed together, such that the overall bias, z, towards accepting
the proposal on any given trial was defined as shown in Eq. (4).

z ¼ stbiasþ genbias; if $Self < $Other;

stbias� genbias; if $Self > $Other:

�
ð4Þ

We fit these 8 parameters [wself, wother, wfair, b, d, stbias, genbias, θ] for each
of both time pressure conditions simultaneously to quantify the unobservable
dynamics of the decision process. Thus, we obtain two values per parameter that
capture individual stability (mean) and contextual effects (change), resulting in 16
parameter values.

Additionally, to account for perceptual and motor processing that adds to
response time without influencing the decision process itself, we included two
separate percept and motor non-decision parameters, fixing each at 0.08 s based on
neurobiological evidence about visual62 and motor processing times63. We added a
single instance of the motor latency to simulated RTs of the model following
termination of evidence at one of the two boundaries for choice. We added one
instance of the percept latency to the final RT for the first instance of fixation on
each unique piece of information (i.e., once if the participant only fixated on either
Self or Other throughout the course of the trial, or twice if participant fixated on
both). We further assumed that the value V(t) during this percept period was a
function only of the previously available information, discounted by attention as
shown in Eq. (5).

VðtÞ ¼
0; if no previous fixation inAOIs;

ð1� θÞ ´wself ´ $Self þ ϵðtÞ; if only sampled Self AOI;

ð1� θÞ ´wother ´ $Otherþ ϵðtÞ; if only sampledOther AOI:

8><
>: ð5Þ

The multi-attribute DDM. For comparison to the gaze-informed ADDM, we also
fit a static multi-attribute DDM21. This model was identical to the gaze-informed
model, with the exception that it did not include a discount parameter θ or
information about eye fixations, and collapsed motor and percept parameters into a
single non-decision parameter, ndt, that was estimated from the data. Thus, the
model estimated 16 free parameters: 8 parameters related to average wself, wother,
wfairness, b, d, stbias, genbias, and ndt and 8 related to change in these parameters
due to time pressure.

Model estimation. To examine overall effects of time pressure, as well as indivi-
dual differences, we identified the best-fitting values of free parameters for each
participant’s data separately, obtaining estimates of their posterior distributions
using the differentially evolving Monte-Carlo Markov Chain (DEMCMC) sampling
method41,64. In brief, this method simulates the likelihood of the observed data
(i.e., choices and RTs) given a specific combination of parameters, and uses this
likelihood to construct a Bayesian estimate of the posterior distribution of the
likelihood of the parameters given the data. To maximise the data in estimating our
model, we included missed responses by estimating the probability that simulations
would fail to result in a choice prior to the time constraints imposed in the high
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and low time pressure conditions. Missed trials constituted 4% and 0.3% of all trials
in the high and low time pressure conditions, respectively.

For each subject fit, we ran 3 × k chains in parallel65, where k is the number of
free parameters, using uninformative priors. To preserve within-individual
consistency in parameter values, we fitted data for both conditions simultaneously.
In addition, to minimise the effects of parameters changing across individual fits of
participants, we constrained possible parameter values as shown in Table 1, in
accordance with values derived from previous model fits26 and theoretical bounds.

Given these constraints, we employed a transformation in parameter sampling
to ensure the prior distributions of the model parameters were truly uniform
(noninformative) across the specified range in each condition. For a diffusion
model with k parameters (k/2 parameters for each of the 2 time pressure
conditions), the DEMCMC sampler sampled k MCMC model parameters
comprising of k/2 individual predispositions (Μparams) and k/2 effects of time
pressure (change in parameters across conditions, δparams). The sum of these
MCMC model parameters: Μparams+ δparams × Condition (effect-coded as high
time pressure: 1; low time pressure: −1) is then transformed using an inverse probit
transformation. The priors for the MCMC model parameters were specified as
normal distributions with mean 0 and variance of 0.5, N(0, 0.5) since inverse probit
transformations of the sum of two normal distributions with mean 0 and variance
of 0.5, N(0, 0.5), yields a uniform distribution across values of [0, 1] for parameters
in both conditions. These transformed values were then scaled by their respective
functions, fsc(x), to the range of values as seen in Table 1 to derive the diffusion
model parameter values.

To construct the estimated posterior distributions of each parameter, we
sampled 500 iterations per chain after an initial burn-in period of 500 samples. For
each iteration, the DEMCMC algorithm41,64 proposes a new set of parameter
estimates for each chain based on the scaled difference between the current
parameter estimates of two other randomly sampled chains. The new parameter
estimates are then evaluated by the Metropolis-Hastings algorithm for inclusion in
the posterior distribution64,66. However, we included three additional features to
our sampling method. Firstly, we implemented a probabilistic migration step, α=
0.1, with every MCMC step in place of the differential evolution to improve chain-
mixing and convergence towards the high probability density region of the
posterior distribution of parameters. The migration step cycles the positions of a
subset of chains (Nmigrate uniformly sampled from the total number of chains) such
that the positions of chains {i, i+ 1.… j− 1, j} were compared against {i+ 1, i+ 2,
…, j, i} and evaluated based on the Metropolis-Hastings algorithm64,66. Secondly,
we resampled likelihoods of the current parameter set of the chain, if proposals
were rejected thrice consecutively, to avoid stuck chains and improve chain
acceptance rates41. Lastly, we also reset MCMC chain positions halfway through
the burn-in period (iteration 250) if they fell outside of the 95% confidence interval
of the chain means. All chains were assessed to have converged to the posterior
distribution with the Gelman-Rubin statistic, R-hat < 1.167, and the overall
acceptance rate of proposals for each model ranged between [0.120 and 0.299].

To evaluate the likelihood of each parameter combination proposed by the
DEMCMC given the observed choice data, we conducted 10,000 simulations of the
candidate model given participant-specific proposal values and (for the gaze-informed
ADDM) trial-specific fixation data. We then obtained the probability of observed
choices (Yes/No) and RTs from these simulations using kernel density estimation
techniques with a Gaussian kernel68,69, obtaining smoothing bandwidths using
Silverman’s rule of thumb70 multiplied by a factor of 0.5 to preserve the non-
continuous nature of eye-movements, since saccades between AOIs could
dramatically change the value evidence sampled, resulting in disjointed probability
density distributions. Participant’s parameters were estimated as the mean of the
posterior distributions. To ensure adequate fits, we excluded the 3 participants with
technical difficulties in eye-tracking and an additional seven participants who
provided the same response more than 90% of the time (i.e., accepting or rejecting
>90% of trials) leaving a final sample for model-fitting of N= 50.

To evaluate the fits of extracted model parameters in predicting the variability
in behaviour within an individual participant, we conducted 10,000 simulations of
each trial for each participant with the fitted diffusion model parameters to obtain
the model-predicted average acceptance rate and reaction time of every choice trial.

To visualise and quantify these fits, we quantised both the choice data and reaction
time data for each individual into 10 quantiles based on the model-predicted values
of those measures per condition. We then computed each quantile mean of both
observed and predicted values. Finally, we correlated the observed and predicted
quantile means for both choice and reaction times for each of the time pressure
conditions for each subject and performed a one-sample t test on these correlation
coefficients across subjects to evaluate the model’s ability to capture variability in
choice and reaction times within an individual.

Model cross-validation. To conduct cross-validation, we fitted versions of both
the gaze-informed ADDM and a multi-attribute DDM to half of the data (odd
trials) and tested model generated predictions on the other half of the data (even
trials). To generate these predictions for testing, we conducted 10,000 simulations
of each trial for each participant with the fitted diffusion model parameters to
obtain the model-predicted average. We then evaluated whether the various models
were able to capture the inter-individual variability in out-of-sample generosity
under high time pressure, low time pressure and the observed relative change in
generosity using correlations. To compare between models, we used Fisher’s t test
of dependent correlations to identify models that were significantly more accurate
in predicting the interindividual variability in the out-of-sample data.

Software. Continuous eye-tracking analyses were conducted using MATLAB
(v2017b) and custom computational model fitting was conducted in Python (v3.6)
based on kernel density estimation with SciPy (v1.4.1), parallelised with the native
MATLAB Distributed Computing Server and the concurrent futures module in the
Python Standard Library. All other statistical analyses were conducted in R 3.6.0.
General linear mixed effects modelling was conducted using the lme4 package
(v1.1-21) with degrees of freedom estimated using the Satterthwaite method. We
conducted stepwise regression as implemented using the stepAIC function from
the MASS package (v7.3-51.4). Effect size statistics of R2 and partial R2 were
computed using the r2beta function from the r2glmm package (v0.1.2) using
standardised general variances.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The experimental data that support the findings of this study are available in OSF with
the identifier VF6A5 [https://doi.org/10.17605/OSF.IO/VF6A5]. Source data are
provided with this paper. A reporting summary for this article is available as a
Supplementary Information file.

Code availability
All computer code generated for the computational models and analyses are available on
OSF at with the identifier: VF6A5 [https://doi.org/10.17605/OSF.IO/VF6A5].
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