
Journal of Intensive Medicine 2 (2022) 69–77 

Contents lists available at ScienceDirect 

Journal of Intensive Medicine 

journal homepage: www.elsevier.com/locate/jointm 

Review 

How much underfeeding can the critically ill adult patient tolerate? 

Oana A Tatucu-Babet 1 , Emma J Ridley 

1 , 2 , ∗ 

1 Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Level 3, 553 St Kilda Road, 

Melbourne, VIC 3004, Australia 
2 Nutrition Department, Alfred Hospital, Alfred Health, Melbourne, VIC 3004, Australia 

a r t i c l e i n f o 

Keywords: 

Critical illness 

Intensive care unit 

Nutrition 

Underfeeding 

a b s t r a c t 

Critical illness leads to significant metabolic alterations that should be considered when providing nutritional 

support. Findings from key randomized controlled trials (RCTs) indicate that underfeeding ( < 70% of energy 

expenditure [EE]) during the acute phase of critical illness (first 7 days of intensive care unit [ICU] admission) 

may not be harmful and could instead promote autophagy and prevent overfeeding in light of endogenous energy 

production. However, the optimal energy target during this period is unclear and full starvation is unlikely to be 

beneficial. There are limited data regarding the effects of prolonged underfeeding on clinical outcomes in critically 

ill patients, but recent studies show that oral food intake is suboptimal both in the ICU and following discharge to 

the acute care setting. It is hypothesized that provision of full nutrition (70–100% of EE) may be important in the 

recovery phase of critical illness ( > 7 days of ICU admission) for promoting recovery and rehabilitation; however, 

studies on nutritional intervention delivered from ICU admission through hospital discharge are needed. The aim 

of this review is to provide a narrative synthesis of the existing literature on metabolic alterations experienced 

during critical illness and the impact of underfeeding on clinical outcomes in the critically ill adult patient. 
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Food shortages and famines have been described throughout

istory. [1] During starvation, adaptive processes are activated to

educe appetite, voluntary physical activity, and energy expen-

iture (EE) in order to preserve muscle mass and slow weight

oss. [2] During stress starvation such as that experienced in crit-

cal illness, adaptive responses are overridden, contributing to

ltered nutrient metabolism and rapid and significant loss of

uscle mass and body weight that may impact recovery. [ 2 , 3 ] 

he effects of nutrient provision on outcomes across different

hases of critical illness are not well understood. The aim of

his narrative review is to synthesize the existing literature on

etabolic alterations experienced during simple vs . stress star-

ation, and to describe the impact of underfeeding on clinical

utcomes across the different phases of critical illness. 
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imple Starvation vs. Stress Starvation 

on-stress conditions: short- and long-term starvation 

Famines have been described throughout history and re-

ain prevalent. [1] Adaptive mechanisms increase chances of

urvival in response to short-term ( < 72 h) and long-term ( > 72 h)

ood shortages in non-stress conditions. These adaptations re-

uce appetite (anorexia) and encourage rest, helping to preserve

acronutrient stores and muscle mass and reduce EE. [ 2 , 4 ] Al-

hough long periods of starvation can be tolerated in non-stress

onditions, survival is unlikely when > 40–50% body weight is

ost or body mass index (BMI) decreases < 13 in males and 11 in

emales. [5] 

In short-term starvation, glucagon and catecholamine secre-

ion is increased while insulin secretion is decreased, result-
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Table 1 

Pathophysiology and metabolic consequences of critical illness over 

time. ∗ [ 3 , 13 , 16 , 102 ] 

Items 

Early acute 

(day 1–2) 

Late acute 

(day 3–7) 

Recovery phases 

( > day 7 –

months) 

Anorexia 

Autophagy 

Endogenous glucose production † 

Hyperglycaemia 

Refeeding risk ‡ 

Resting energy expenditure 

↑↑ 

↑↑ 

↑↑ 

↑↑ 

↑↑ 

↓

↑ 

↑ 

↑ 

↑ 

↑ 

↑↑ 

↑ or ↔

↔

↔

↔

↔

↑ 

∗ Arrows indicate significant increases ( ↑↑ ), increases ( ↑ ), decreases ( ↓), or no 

difference ( ↔) in relation to baseline metabolism. 
† Endogenous glucose production is not inhibited by an exogenous energy sup- 

ply in the early acute phase of critical illness but can be partially inhibited in 

the late acute phase, and can be suppressed in the recovery phase. 
‡ Risk according to pre-admission nutritional status and amount of energy pro- 

vided. 
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ng in increased breakdown of glycogen to glucose (glycogenol-

sis) and of triglycerides to glycerol and free fatty acids

lipolysis). [ 2 , 6 , 7 ] Glycogenolysis supplies the brain with glucose

n the first 24 h, with gluconeogenesis providing essential glu-

ose once glycogen stores are depleted. [ 2 , 8 ] Lipolysis occurs in

dipose tissue, releasing glycerol and free fatty acids into the

irculation as an energy source for skeletal and cardiac muscle,

idneys, and liver. Thus, EE is initially increased in short-term

tarvation. [ 2 , 7 ] 

Insulin secretion further decreases during prolonged starva-

ion. As glycogen becomes depleted, glucose to support brain

unction is supplied via gluconeogenesis using amino acids, lac-

ate, and glycerol, which can result in considerable loss of mus-

le mass. [ 2 , 8 ] In order to slow this loss, EE is reduced through

ecreases in resting EE, diet-induced thermogenesis, and volun-

ary physical activity. [ 2 , 9 , 10 ] Decreases in muscle mass also con-

ribute to a reduction in EE. [ 9 , 11 ] Increased 𝛽-oxidation of fatty

cids in the liver and decreased glucose oxidation increase the

roduction of ketone bodies during prolonged starvation, with

he brain becoming less reliant on glucose and adapting to the

se of ketones. [ 6 , 8 , 12 ] These adaptations help to reduce muscle

ass loss by approximately two-thirds. [2] 

tress starvation 

Adaptive responses to simple starvation that preserve muscle

ass are completely overridden during stress conditions includ-

ng critical illness (e.g., severe trauma, sepsis, and burns). Stress

tarvation is characterized by protein catabolism, increased

E, and glucose turnover, minimal ketosis, anorexia, hyper-

lycemia, insulin resistance, and salt and water retention. [ 2 , 3 ] 

In critical illness, a new set of adaptive metabolic responses

s activated that promotes survival through restoration of vital

unctions and homeostasis. [ 3 , 13 ] This mainly involves a neuroen-

ocrine and immunologic response characterized by activation

f the sympathetic nervous system, hypothalamic–pituitary axis,

mmune system, and an inflammatory response. [ 3 , 13 ] Hormones

eleased from the gastrointestinal system (e.g., ghrelin) and adi-

ose tissue (e.g., leptin) are also thought to play a role in the

esponse to stress. [3] 

The extent of metabolic alterations is proportional to the

everity of stress. [ 13 , 14 ] The physiologic response to trauma

as first described in 1942 as occurring in two distinct

hases —namely, the “ebb ” or early shock phase and “flow ” or

atabolic phase. [14] A third “anabolic ” or recovery phase has

ince been described as part of a new concept of the phased re-

ponse to metabolic stress. [ 3 , 13 ] These phases have been further

efined as the early acute (day 1–2), late acute (day 3–7), and re-

overy (day > 7–months) phases of critical illness in the recent

019 European Society for Clinical Nutrition and Metabolism

ESPEN) critical care guidelines. [15] This terminology will be

sed hereinafter. 

In the early acute phase of illness, which is characterized by

emodynamic instability and hormonal changes in response to

he experienced stressors (e.g., early release of catecholamines),

he body attempts to preserve homeostasis and tissue/organ

unction. [13] During this phase, EE is reduced and macronutri-

nt metabolism is altered to provide fuel to vital tissues and

rgans. [ 3 , 13 ] The late acute phase is characterized by an “all

r nothing ” response in which there is a breakdown of tis-
70 
ue in order to provide substrates to preserve critical organ

unction and reduce the risk of bleeding and infection, along

ith increased oxygen consumption and EE. [ 3 , 13 ] In the recov-

ry phase, metabolic responses normalize and protein and fat

tores are gradually replenished. [13] An interesting adaptive re-

ponse observed during illness is anorexia, which is increased

y inflammation and may be exacerbated by decreased ghrelin

hunger hormone) and increased leptin (satiety hormone) se-

retion. [16–18] Although it may seem counterintuitive to reduce

nergy intake during periods of increased EE and catabolism,

norexia may play an important role in promoting recovery

hrough activation of autophagy – a highly regulated cellular

epair process —and by supporting immune function. [19] How-

ver, the exact role of anorexia in the different phases of critical

llness remains to be elucidated. [ 4 , 16 , 20 ] The processes and con-

equences of the metabolic response to stress that are most rele-

ant to nutrient provision are summarized in Table 1 . At present,

here is no clinical marker for the transition from catabolism to

nabolism, which is likely to vary between patients. [ 3 , 16 , 21 ] 

acronutrient metabolism during stress 

During the acute phase of illness, the body’s ability to use

acronutrients is altered and no longer depends on the timing

nd composition of exogenous nutrient provision. [3] Addition-

lly, absorption of enteral macronutrients is thought to be re-

uced during critical illness. [22–24] 

arbohydrate metabolism 

During stress, glucose is the preferred energy substrate in

he acute phase of illness. Endogenous glucose production is

ncreased, with two recent studies reporting levels of approxi-

ately 150–210 g/day on day 4 and 130–150 g/day on day 9–10

f intensive care unit (ICU) admission in patients receiving en-

eral nutrition (EN) and/or parenteral nutrition (PN). [25–27] Glu-

ose turnover including glycogenolysis and gluconeogenesis in

he liver, kidneys, and intestine is also increased during critical

llness. [ 2 , 3 ] The production of lactate, which serves as a substrate

or gluconeogenesis and as fuel for tissues and organs such as

ed blood cells, heart, and brain, is increased during stress. This

s thought to be due to an increase in anaerobic glycolysis at-

ributable to tissue hypoperfusion and/or hypoxia, although aer-
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bic lactate production may also be increased. [ 3 , 28 ] Stress hyper-

lycemia is common with changes in glucose metabolism, and

s further exacerbated by elevated levels of counter-regulatory

ormones and cytokines that promote insulin resistance and

epatic glucose production. [3] Blood sugar variability including

oth low and high blood sugar levels has been linked to worse

utcomes in critically ill patients. [ 3 , 29 , 30 ] 

ipid metabolism 

The use of lipids is increased during the early phase of criti-

al illness, but to a lesser extent than the use of carbohydrates.

his is likely attributable to the large amount of oxygen and

ully functioning mitochondria required for lipid oxidation as

ell as hormonal changes (such as hyperinsulinemia) that can

nhibit lipid oxidation. [ 3 , 31 ] Lipolysis is accelerated in critical

llness, resulting in increased levels of glycerol (a precursor for

luconeogenesis) and free fatty acid that can exceed energy

equirements. [ 3 , 32 , 33 ] Increased lipolysis, together with reduced

iver oxidation, leads to an elevation of free fatty acid levels

ver the first few days of critical illness, which may promote or-

an damage and inflammation. [ 3 , 34–36 ] Furthermore, derange-

ent in circulating lipids is observed including hypertriglyc-

ridemia, a decreased level of cholesterol, and decreases in high-

nd low-density lipoprotein levels, which have been linked to

orse outcomes. [ 31 , 34 ] 

rotein metabolism 

In critical illness, the rate of protein breakdown is increased

nd exceeds that of protein synthesis. Stress metabolism is char-

cterized by overactivation of the ubiquitin–proteasome path-

ay, which leads to excessive protein degradation and muscle

asting. [3] Along with glycerol, amino acids are the main sub-

trates for gluconeogenesis in the liver and are used for the syn-

hesis of acute phase proteins. [ 32 , 37 ] Critical illness can result in

ignificant protein catabolism; as much as 20% of muscle mass

ay be lost over the first 10 days of ICU admission in severe

ases. [38] Such loss contributes to ICU-acquired weakness, which

s associated with increased morbidity and mortality following

ritical illness. [ 37 , 39 , 40 ] 

mpact of Underfeeding in the ICU: What is the Evidence 

elling Us? 

When considering the impact of underfeeding on the criti-

ally ill patient, it is important to note that studies in this area

ave investigated exogenous supplies of nutrients and energy.

his is due to the complexity of quantifying endogenous energy

roduction, especially in the early acute phase of critical illness.

xploratory studies have been conducted to identify routinely

vailable parameters and models that may aid in predicting en-

ogenous glucose production in practice. [25] 

requency of underfeeding 

The latest ESPEN guidelines describe underfeeding as energy

elivery that is < 70% of estimated or measured EE. [15] Under-

eeding is a common occurrence in the ICU, with approximately

0–60% of prescribed energy targets delivered in practice. [ 41 , 42 ] 

t is important to note that protein and micronutrient intake of-

en follow energy intake; therefore, underfeeding can also lead
71 
o protein and micronutrient under provision. The most com-

on reasons for interruption of EN feeding include intolerance

e.g., high gastric residual volumes), hemodynamic instability,

nd fasting prior to airway procedures and surgical interven-

ions. [43–45] Underfeeding may be more pronounced or may go

ndetected in patients consuming an oral diet as compared to

hose receiving EN and/or PN. [46] 

bservational energy provision studies between 2000 and 

010 

In the past, nutritional support was provided with the aim of

eeting 100% of estimated or measured EE throughout ICU ad-

ission, including in the early acute phase of critical illness. The

esults of observational studies conducted in the 2000s largely

upported this practice [ Table 2 ], with energy deficits associated

ith unfavorable outcomes such as increases in infections, du-

ation of mechanical ventilation (MV), ICU admission, and mor-

ality. [47–54] The largest of these studies, which enrolled 2722

echanically ventilated patients, reported a reduction in overall

0-day mortality and increase in ventilator-free days (VFDs) for

very 1000 kcal/day increase in energy provision. However, in

 subgroup analysis of BMI categories, the association with sur-

ival was only observed for patients with a BMI < 25 kg/m 

2 and

etween 35 kg/m 

2 and 39 kg/m 

2 . [51] Moreover, some observa-

ional studies have reported inverse associations between nutri-

ional adequacy and clinical outcomes such as ICU admission

nd hospital length of stay (LOS). [ 55 , 56 ] 

andomized controlled trials (RCTs) 

Since 2011, five important and large randomized controlled

rials (RCTs) have been published that have investigated the re-

ationship between energy provision using EN and/or PN and

utcomes in critically ill patients [ Table 3 ]. [ 35 , 57–60 ] The results

f these trials have not supported the findings from observa-

ional work. 

In three trials, patients in the intervention group were un-

erfed to varying degrees (25–50% of estimated energy targets)

ompared to control patients (70–80% of estimated energy tar-

ets) for approximately 1 week after ICU admission. [ 35 , 57 , 58 ] The

arly vs. Delayed Enteral Feeding to Treat People with Acute

ung Injury or Acute Respiratory Distress Syndrome (EDEN) and

ermissive Underfeeding vs. Target Enteral Feeding in Adult

ritically Ill Patients (PermiT) trials did not report any differ-

nce in the primary outcomes of VFDs to day 28 and 90-day mor-

ality, respectively. [ 35 , 57 ] Patients receiving trophic EN in the

DEN trial experienced less regurgitation and elevated gastric

esidual volumes, but no differences were observed in frequency

f diarrhea, aspiration, abdominal distention, and cramping. [35] 

n the PermiT trial, no differences in feeding intolerance were

bserved. [57] In the Early Parenteral Nutrition completing En-

eral Nutrition in Adult Critically Ill Patients (EPaNIC) trial,

atients initiated on late supplemental PN ( ≥ day 8) after sev-

ral days of intravenous glucose compared to early PN (within

8 h) had a 6.3% relative increase in the likelihood of being

ischarged alive and earlier from the ICU (hazard ratio: 1.06;

5% confidence interval: 1.00–1.13; P = 0.04). Furthermore,

atients in the late PN initiation group had an increased likeli-

ood of being discharged earlier from hospital and experienced
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Table 2 

Observational nutrition studies between 2000 and 2010. 

Publication Population Duration 

Energy delivery 

(kcal/day) Key findings 

Krishnan et al . [55] 187 MICU patients with ICU 

LOS ≥ 96 h 

Up to ICU discharge NR, median 51 (IQR 

32–70)% energy 

adequacy 

Energy adequacy of (1) 33–65% vs. 0–32% 

associated with ↑ likelihood of spontaneous 

ventilation prior to ICU discharge and (2) ≥ 66% 

vs. 0–32% with ↓ likelihood of hospital discharge 

alive and spontaneous ventilation prior to ICU 

discharge. 

Rubinson et al . [53] 138 MICU patients without 

oral intake for ≥ 96 h 

Up to ICU discharge NR, 49% ± 29% energy 

adequacy 

Energy adequacy of < 25% vs. ≥ 25–49%, 50–74% 

and ≥ 75% was associated with ↑ risk of 

nosocomial bloodstream infections. 

Villet et al. [47] 48 SICU patients staying 

≥ 5 days in ICU 

Up to 4 weeks 1090 ± 930 Cumulative energy balance 

( − 12,600 ± 10,520 kcal) was associated with ↑ 

ICU LOS, complications, infections, days on 

antibiotics, length of MV. 

Petros et al. [48] 61 MICU patients receiving 

EN for ≥ 7 days 

Until ICU discharge 

or a maximum of 

14 days 

NR, 86% ± 30% energy 

adequacy 

Patients who achieved a maximum feed volume of 

2000 mL or 25 mL/kg by Day 4 ( n = 46, 75%) 

compared to after Day 10 ( n = 15, 25%) had a ↓ in 

ICU mortality. 

Dvir et al . [49] . 50 general ICU patients 

requiring MV ≥ 96 h 

ICU admission 1512 (range 400–3210) Maximum negative energy balance ( − 5805 [range: 

0 to − 17,274] kcal) was associated with ↑ ARDS, 

sepsis, renal failure, pressure sores, need for 

surgery, total complication rate. 

Hise et al. [56] 77 SICU/MICU patients with 

LOS ≥ 5 days 

Up to ICU discharge SICU ( n = 41): 991 ± 560 

MICU ( n = 36): 

988 ± 373 

Nutrition adequacy of < 82% vs. ≥ 82% and < 81% 

and ≥ 81% was associated with a ↓ ICU LOS and ↓

hospital LOS, respectively. 

Alberda et al. [51] 2722 MV patients in the ICU 

for > 72 h 

Up to 12 days 1034 ± 514 Every 1000 kcal/day provided was associated with 

↓ 60-day mortality and ↑ VFDs. 

Faisy et al. [50] 38 MICU patients MV for at 

least 7 days 

First 14 days of ICU 704 ± SEM 42 A mean energy deficit ≥ 1200 kcal per day of MV 

after ICU Day 14 was associated with ↑ ICU 

mortality rate. 

Singh et al. [54] 93 respiratory ICU patients 

MV ≥ 24 h and ICU LOS 

≥ 48 h 

Up to ICU discharge Survivors ( n = 57): 1379 

(IQR 1279–1563); 

non-survivors ( n = 36): 

1109 (IQR 765–1325) 

Mean energy adequacy of ≤ 50% was associated 

with ↓ survival probability compared to > 70–90% 

and > 90% energy adequacy. 

Strack van Schijndel 

et al. [52] 

243 MICU/SICU patients 

enrolled Day 3–5 if expected 

to be in ICU for another 

≥ 5–7 days 

NR, LOV period used 

for energy and 

protein balance 

calculations 

Males: 1730 ± 399 

Females: 1536 ± 299 

Achieving both energy and protein goals compared 

to not achieving both goals was associated with: 

Males: ↔ hazard ratio for ICU, 28-day and 

hospital mortality 

Females: ↓ hazard ratio for ICU, 28-day and 

hospital mortality 

Articles were identified via Medline (Ovid) search combining “critical ∗ ill ∗ or Intensive Care Unit or ICU ” terms with “energy or nutrition delivery ”. 

Reported in mean ± standard deviation, unless otherwise stated. Values rounded to the nearest whole number. 

↑ : statistically significant increase in outcome; ↓: statistically significant decrease in outcome; ↔: no significantly statistical difference in outcome. 

ARDS: Acute respiratory distress syndrome, EN: Enteral nutrition; ICU: Intensive care unit; IQR: Interquartile range; LOS: Length of stay; LOV: Length of ventilation; 

MV: Mechanical ventilation; MICU: Medical intensive care unit; NR: Not reported; OR: Odds ratio; SEM: Standard error of the mean; SICU: Surgical intensive care 

unit; VFDs: Ventilator-free days. 
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ewer ICU infections, while relative reductions were reported

n the proportion of patients requiring MV for > 2 days and re-

al replacement therapy. [58] Patients in the Early PN and the

ugmented vs. Routine Approach to Giving Energy (TARGET)

rial were not intentionally underfed, with the aims of meeting

stimated energy targets in the intervention group and provid-

ng care that reflected usual practice in the control group. [ 59 , 60 ] 

o differences were reported in the primary outcomes of 60-

nd 90- day mortality, respectively. [ 59 , 60 ] However, it is diffi-

ult to draw conclusions from this trial regarding the impact of

nderfeeding on clinical outcomes as only a subset of patients

primarily in the control arms) were underfed. 

The findings of these RCTs suggest that a degree of under-

eeding (by design or as part of standard care) based on an

stimated EE in the first week after ICU admission may not

dversely affect outcomes compared to full nutrient provision,

hich may be harmful in some instances. The mode of nutrition
72 
EN vs. PN) is also an important consideration but is outside the

cope of this review. 

easons for differences between observational studies and 

CTs 

A key explanation for the inconsistent results of observa-

ional studies and RCTs is the sample size and study design,

ith RCTs considered superior in terms of controlling for con-

ounders. The above-mentioned RCTs had large sample sizes and

ere powered to detect differences in the primary outcome(s)

f interest. However, nutrition trials are often underpowered to

etect a difference in mortality, even with a large sample size.

ith the exception of two studies, [ 51 , 52 ] the observational stud-

es had a sample size < 200, making it highly unlikely that a

rue association between nutrition and clinical outcomes would

e observed. [ 61 , 62 ] Another important point is that the observa-
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Table 3 

Summary of seminal RCTs exploring the impact of energy provision on clinical outcomes. 

RCTs Population Duration Intervention Control Primary outcome 

Long-term 

follow-up 

EPaNIC trial (2011) [58] 4640 adults with NRS ≥ 3 Up to day 16 ∗ Late PN ( ≥ day 8) Early PN (within 48 h) ↑ Time to discharge alive 

from ICU 

Yes 

EDEN trial (2012) [35] 1000 adults within 48 h of 

ALI onset requiring MV 

Up to day 12 ∗ Trophic EN (Day 

1–6) 

Full EN ↔ VFDs to day 28 Yes 

Early PN trial (2013) [59] 1372 adults with 

contraindications to early 

EN 

NR; target achieved 

by study Day 3 

Early PN (Day 1) Standard care PN ↔ Day-60 mortality Yes 

PermiT trial (2015) [57] 894 medical, surgical or 

trauma ICU adult patients 

Up to 14 days † Permissive EN Standard EN ↔ Day 90 mortality No 

TARGET trial (2018) [60] 3957 adult ICU patients 

undergoing MV 

Up to 28 days 
‡ 

1.5 kcal EN 1.0 kcal EN ↔ 90-day mortality Yes 

RCTs were identified via a Medline (Ovid) search combining the terms “critical ∗ ill ∗ or Intensive Care Unit or ICU ” with “energy or nutrition delivery ”. Articles were 

included if they enrolled ≥ 500 patients and were published in quartile 1 medicine journals such as The New England Journal of Medicine and Journal of the American 

Medical Association . 

↑ : statistically significant increase in outcome observed in the intervention compared to control; ↔: No statistically significant difference reported between the 

intervention and control. 

ALI: Acute lung injury; EPaNIC: Early Parenteral Nutrition completing Enteral Nutrition in Adult Critically Ill Patients; EDEN: Early vs. Delayed Enteral Feeding 

to Treat People with Acute Lung Injury or Acute Respiratory Distress Syndrome; EN: Enteral nutrition; ICU: Intensive care unit; IQR: Interquartile range; MV: 

Mechanical ventilation; NR: Not reported; NRS: Nutrition risk screening; PN: Parenteral nutrition; PermiT: Permissive Underfeeding vs. Target Enteral Feeding in 

Adult Critically Ill Patients; RCTs: Randomized controlled trials; TARGET: Early PN and the Augmented vs. Routine Approach to Giving Energy; VFD: Ventilator-free 

day. 
∗ Actual study duration: NR. 
† mean 9 ± 5 days (intervention) and 9 ± 4 days (control). 
‡ median 6 (IQR: 3–11) days in both groups. 
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ional studies did not always control for important confounders

uch as illness severity and survival bias. 

Other explanations for the observed differences are that the

CTs did not limit recruitment to high nutritional risk ICU pop-

lations, and energy targets were based on estimated rather

han measured EE. Critically ill patients that may benefit from

ull energy provision include malnourished and obese patients

nd those with prolonged MV and ICU admission. [ 50 , 51 , 63 , 64 ] 

igher energy provision was found to be related to a reduc-

ion in overall 60-day mortality in patients with BMI < 25 and

 35–39 kg/m 

2 . [51] It has been suggested that patients with a

utrition Risk in Critically Ill score ≥ 6 (out of 10) may bene-

t more from full energy and protein provision, [ 64 , 65 ] although

his was not supported by post hoc analysis of PermiT trial

ata. The heterogeneous populations of key RCTs —which in-

luded predominantly young patients with few comorbidities,

hort mean ICU lengths of stay (e.g., median duration of ICU stay

as < 5 days in the EPaNIC trial), and BMI between 25 kg/m 

2 

nd 34 kg/m 

2 [ 35 , 57–60 ] —may partly explain the inconsistencies.

dditionally, given the associated challenges such as accessibil-

ty, cost, training requirements, and time needed to complete

easurements, none of the above-mentioned RCTs used indi-

ect calorimetry to guide energy provision, in contrast to four

bservational studies that used this technology. [ 47–49 , 52 , 66 ] This

s a major limitation as discrepancies between estimated and

ctual EE are frequently observed in general and specific ICU

opulations. [67–69] As predictive equations are more prone to un-

erestimating EE, [ 67 , 68 ] RCTs may compare different degrees of

nderfeeding between trial arms, making findings difficult to

nterpret. In a retrospective observational study of 1171 me-

hanically ventilated critically ill patients over a 12-year pe-

iod (2003–2015), a nonlinear relationship between percent en-

rgy adequacy starting from day 3 of ICU admission (as deter-

ined using indirect calorimetry) and 60-day mortality was ob-
73 
erved. [70] An energy adequacy of 70% was associated with de-

reased mortality, while higher values (in particular, > 100% of

E [overfeeding]) were associated with increased mortality. [70] 

hese results remain to be replicated in prospective work. 

Most RCTs have focused only on the acute phase of critical ill-

ess but the timing and duration of nutritional support is likely

o be important. Although some RCTs aimed to deliver nutri-

ional interventions for longer durations (i.e., 28 days of ICU

dmission), this was not achieved in most patients [ Table 3 ].

n keeping with our knowledge of metabolic changes across the

ifferent phases of illness, full provision of energy in the acute

hase may not be beneficial (and may instead be harmful in

ome instances) because of the high endogenous energy produc-

ion that cannot be suppressed. [3] Provision of exogenous en-

rgy during this period can thus promote overfeeding with the

ssociated adverse consequences. [ 16 , 71 ] Autophagy is an impor-

ant process that is activated during the acute phase of critical

llness in response to various stimuli including inflammation,

ypoxemia, and oxidative stress as a mechanism to promote

rgan recovery and survival. [19] Nutrient restriction is another

mportant stimulator of autophagy while amino acids adminis-

ered through PN suppress autophagy. [ 16 , 19 , 72 , 73 ] However, au-

ophagy is difficult to measure and the precise effects of nutrient

rovision via EN and PN on autophagy throughout critical ill-

ess remain to be elucidated. [74] 

urrent clinical practice guidelines for the initiation of 

rtificial nutritional support 

Clinical practice guideline recommendations for the initia-

ion of EN and PN in critically ill patients are summarized in

able 4 . Early initiation (generally within 48 h) of EN is rec-

mmended in all three guidelines, given the potential benefits

f trophic EN on gastrointestinal barrier function, alleviation
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Table 4 

Clinical practice guidelines for the initiation of EN and PN in critically ill patients. 

Clinical Practice Guideline Initiation of EN Initiation of PN 

Canadian Clinical Practice 

Guideline [76] 

Early EN (within 24–48 h) - Exclusive PN (when oral intake or EN contraindicated): 

should be considered early in nutritionally high-risk patients 

- Patients who are not malnourished, are tolerating some EN, 

or when PN is indicated for < 10 days: low dose PN should be 

considered 

- Supplemental PN: should be considered on a case-by-case 

basis 

ASPEN/SCCM 

[77] Early EN (24–48 h) 

- Patients at high nutrition risk or severely malnourished: EN 

should advance to goal as quickly as tolerated over 24–48 h 

(while monitoring for refeeding) 

- Patients at low nutrition risk, well-nourished, and/or with 

low disease severity: Specialized nutrition therapy over the 

first week in ICU not required 

Exclusive PN (when oral intake or EN contraindicated): 

- For patients at high nutrition risk or severely malnourished, 

start PN as soon as possible 

- For patients at low nutrition risk, withhold for the first 7 days 

Supplemental PN: should be considered after 7–10 days if 

unable to meet > 60% of energy and protein requirements by 

EN 

ESPEN [15] Early EN (within 48 h) 

- Early acute phase (ICU Day 1–3): Hypocaloric nutrition ( < 

70% of EE) 

- After Day 3: 

If using predictive equations, continue hypocaloric nutrition ( < 

70% of EE) for the first week 

If using indirect calorimetry, normocaloric nutrition (70–100% 

EE) can be progressively implemented 

- Exclusive PN (when oral intake or EN contraindicated): 

within 3–7 days 

- For severely malnourished patients, consider early and 

progressive PN 

- Supplemental PN: should be considered on a case-by-case 

basis 

ASPEN: American Society for Parenteral and Enteral Nutrition; EE: Energy expenditure; EN: Enteral nutrition; ESPEN: European Society for Clinical Nutrition and 

Metabolism; ICU: Intensive care unit; PN: Parenteral nutrition; SCCM: Society of Critical Care Medicine. 
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f catabolism, and mortality. [ 15 , 16 , 75–78 ] The most recently pub-

ished ESPEN guidelines recommend the gradual introduction

f EN in the acute phase of illness based on the findings of the

bove-mentioned RCTs. Hypocaloric nutrition (not exceeding

0% of estimated EE) is recommended over the first week of

CU admission. Where indirect calorimetry is used, hypocaloric

utrition is recommended for day 1–3 ( < 70%), followed by

socaloric nutrition from day 4–7 (70–100%). [15] 

utrient provision during the recovery period of illness in the 

CU and acute care ward 

The importance of nutrition over the duration of hospital ad-

ission has become apparent with the increasing awareness of

urvivorship and quality of survival. Longer term nutritional in-

erventions are critical, as the impact of deficit/excess on re-

overy is unlikely to be immediately observed owing to the na-

ure of metabolic processes. [79] Data on nutrient intake in the

ate ICU and recovery periods of critical illness are emerging

nd concerning, with oral nutrition as the predominant type of

utrition. [ 80 , 81 ] In one of the earliest published reports, oral in-

ake during the first 7 days following extubation in the ICU was

xamined in 50 patients. [82] The average daily energy and pro-

ein intake failed to exceed 50% of daily requirements on all

 days for the entire population, with lack of appetite and nau-

ea/vomiting as the most common barriers. [82] In a study of 32

atients from two centers in Australia and New Zealand, oral in-

ake was assessed three times a week in the post-ICU period. [81] 

ntake varied markedly among individuals and according to the

ype of nutritional therapy that was provided; energy (37%, in-

erquartile range [IQR]: 21–66%) and protein (48%, IQR: 13–

3%) provision were lowest in patients who received no addi-

ional oral nutrition supplements. [81] In 19 patients followed for

p to 14 days post extubation, a median of 47% (IQR: 29–66%)

f energy and 27% (IQR: 15–41%) of protein targets was con-
74 
umed when an oral diet was the sole source of nutrition, and

 barrier to eating was reported in 79% of study days. [83] The

ssues associated with post-ICU nutrition are complex and multi-

actorial, and are related to individual patient factors following

ritical illness (reduced appetite, nausea, fatigue), clinician fac-

ors (belief of the importance of nutrition, knowledge, compet-

ng clinical priorities), and system factors (hospital food service

nd processes) [ 84 , 85 ] and ultimately contribute to ongoing nu-

ritional inadequacy. It should be noted that the impact of pro-

onged nutrient deficits during the recovery period of illness is

nly hypothesized at this time as there are no definitive relevant

ata. 

ong-term follow-up of critically ill patients 

ong-term outcomes in ICU patients 

In a seminal study on the long-term outcomes of 109 acute

espiratory distress syndrome (ARDS) ICU survivors followed

p for 3 months, 6 months, and 12 months, patients had lost

 mean of 18% of their baseline body weight at the time of

CU discharge, with 71% of patients returning to their baseline

ody weight after 12 months. [86] As body composition measure-

ents were not reported (NR), it is unclear whether fat-free mass

eturned to the baseline level. Functional limitations were re-

orted 12 months after ICU discharge ( n = 83) as determined

ased on the 6-min walk test and percentage of patients that

eturned to work (49%). Furthermore, quality of life domains

ere mostly lower than for age- and sex- matched controls. [86] 

ersistent functional impairments as well as reduced quality of

ife were reported in this same group of patients ( n = 64) up to

 years following ICU discharge. [87] Cognitive impairment has

een observed following critical illness. In a recent systematic

eview of 46 studies examining cognition in patients from ICU

ischarge up to 13 years, the mean prevalence of cognitive im-

airment ranged from 35% to 81% at the 3-month follow-up, [88] 
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ndicating that critically ill patients experience significant and

aried disabilities that may persist over the lifetime. 

ong-term follow-up within trials of nutritional interventions 

It is perhaps unsurprising that the above-mentioned RCTs

nvestigating the efficacy of short-term nutritional inter-

entions have not demonstrated any effects on long-term

utcomes. [ 58 , 59 , 89–91 ] 

mpact of prolonged underfeeding in critically ill patients 

Although anorexia is an adaptive process that may be bene-

cial in the early phase of illness, it is not known at what point

t becomes detrimental to recovery by promoting underfeeding.

As prolonged underfeeding in the recovery phase of critical

llness is unethical, our understanding of its impact can only

e drawn from key starvation papers in noncritically ill popu-

ations. The results of the seminal Minnesota Starvation Study

ublished in 1950 provide insight into the negative impact of

rolonged semistarvation and refeeding. [ 79 , 92 ] In that study,

200 kcal/day was provided (in conjunction with physical ac-

ivity as well as laboratory and other tests including measures of

ognition) to 36 conscientious objectors to World War II during

he baseline period, followed by a 6-month semi-starvation pe-

iod of 1800 kcal/day with 0.7–0.9 g • kg − 1 • day − 1 of protein. [92] 

eight loss initially occurred too rapidly and energy and pro-

ein were increased. Subjects exhibited dramatic reductions in

trength, mood, and cognitive function (including development

f an obsession with food). In the final nutritional rehabilita-

ion period, participants were provided 3000–4200 kcal/day but

any did not gain weight at this level of intake and energy

rovision had to be further increased. For months afterward,

articipants consumed up to 5000 kcal/day at will in order to

ecover. [ 79 , 92 ] 

In hospitalized patients, malnutrition is linked to increased

orbidity, mortality, and healthcare costs. [93–95] Evidence out-

ide of critical care demonstrates that the provision of nutri-

ional support may be beneficial for a range of outcomes includ-

ng anthropometric measures, hospital readmission, and sur-

ival. [96–100] A recent study conducted in 2088 patients at nu-

ritional risk at eight centers in Switzerland reported a benefit

f long-term, protocolized, and individualized nutritional inter-

entions compared to a standard hospital diet. [96] There were

ewer adverse outcomes (the primary outcome measure) and a

ower rate of mortality in the intervention group compared to

he control group and no increase in adverse events associated

ith nutritional support. [96] An RCT currently underway at 23

ites in Australia and New Zealand is investigating whether indi-

idualized nutritional intervention throughout ICU and hospital

dmission is advantageous for critically ill patients. [101] 

imitations 

The main limitation of this work is the narrative rather than

ystematic review process that was used to identify and analyze

tudies, which may have impacted the conclusions. Nonetheless,

ur review is comprehensive and provides a valuable synthesis

f published literature on the impact of underfeeding in different

hases of critical illness while highlighting research gaps that

hould be addressed in future work. 
75 
onclusions 

Critically ill patients may be able to tolerate short periods of

nderfeeding without experiencing adverse outcomes. Nonethe-

ess, the extent of underfeeding (trophic to 70% of EE) that

hould be targeted in the first week of critical illness has not

een established and may differ for each patient. There is also

imited information on the impact of underfeeding beyond the

rst week of critical illness. It is thought that prolonged under-

eeding may negatively impact recovery, function, and cognition

n the critically ill patient; RCTs conducted from ICU admission

o hospital discharge are needed to confirm or refute this possi-

ility. In the absence of definitive evidence, it is recommended

hat at least 70% of predicted or measured energy is targeted in

he first week of illness based on the knowledge that far less is

sually provided. 
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