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Intracellular antibodies (intrabodies) are recombinant
antibody fragments that bind to target proteins expressed
inside of the same living cell producing the antibodies. The
molecules are commonly used to study the function of the
target proteins (i.e., their antigens). The intrabody technology
is an attractive alternative to the generation of gene-targeted
knockout animals, and complements knockdown techniques
such as RNAi, miRNA and small molecule inhibitors, by-
passing various limitations and disadvantages of these
methods. The advantages of intrabodies include very high
specificity for the target, the possibility to knock down several
protein isoforms by one intrabody and targeting of specific
splice variants or even post-translational modifications.
Different types of intrabodies must be designed to target
proteins at different locations, typically either in the
cytoplasm, in the nucleus or in the endoplasmic reticulum
(ER). Most straightforward is the use of intrabodies retained in
the ER (ER intrabodies) to knock down the function of
proteins passing the ER, which disturbs the function of
members of the membrane or plasma proteomes. More effort
is needed to functionally knock down cytoplasmic or nuclear
proteins because in this case antibodies need to provide an
inhibitory effect and must be able to fold in the reducing
milieu of the cytoplasm. In this review, we present a broad
overview of intrabody technology, as well as applications
both of ER and cytoplasmic intrabodies, which have yielded
valuable insights in the biology of many targets relevant for
drug development, including a-synuclein, TAU, BCR-ABL,
ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, b-amyloid protein
and p75NTR. Strategies for the generation of intrabodies and
various designs of their applications are also reviewed.

Introduction

Various strategies are used to study the functions of newly dis-
covered proteins, including gene-targeted knockout animals, tar-
geted gene disruption in mammalian cells and knockdown
techniques such as siRNA, shRNA, miRNA, CRISPR and
TALEN. In addition to these methods, which are active on the
nucleotide level, the use of dominant negative mutants or inhibi-
tor molecules were the most widely used methods to interfere
directly with protein function. Another method with fast grow-
ing relevance that avoids some of the problems encountered with
the above technologies is the use of intracellular antibodies (intra-
bodies). The molecules can be selected and designed to be very
specific to the target, which are advantages of the technology.
Because they can be thoroughly characterized for specificity in
biochemical assays before use in cells, they avoid off-target effects
known from nucleotide-based methods, and they can be designed
to selectively target splice variants, different isoforms or even one
post-translational modification of a protein. Furthermore, the
function of target proteins can be knocked down in specific cellu-
lar compartments exclusively, while their function remains intact
in other cellular compartments, as recently demonstrated by the
knockdown of Sec61 in endosomes while maintaining its func-
tion in the ER.1 Although intrabodies are typically seen as an
experimental tool to reveal the function of proteins by interfering
with their function, this approach is also reported to have thera-
peutic potential against viral infections2-6 brain diseases7-10 or
cancer.11-14 Here, the various protein knockdown strategies
mediated by intrabodies (Fig. 1) are reviewed.

Types of Intrabodies

Intrabodies are antibodies that bind intracellularly to their anti-
gen after being produced in the same cell,15-21 in contrast to anti-
bodies delivered to a living cell from the outside.22-24 Intracellular
antibodies can be subdivided into 2 main subgroups according to
their mechanism of action. These are: 1) cytosolic intrabodies
(cyto-intrabodies) and 2) endoplasmic reticulum (ER) retained
intrabodies (ER intrabodies). While cyto-intrabodies block targets
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in a neutralizing fashion in the cytosol, ER intrabodies knock
down proteins in the secretory pathway even without the require-
ment for the antibody to be neutralizing. By addition of a suitable
signal peptide, intrabodies can also be targeted to the nucleus or
mitochondria (Fig. 2).15,18, 21

As antibodies usually are produced in an oxidizing biochemi-
cal milieu and folded with the help of ER based chaperones, only
a fraction of the repertoire of na€ıve IgGs can be correctly folded
in the reducing environment of the cytoplasm, which does not
allow the formation of disulfide bridges.25,26 However, there are
numerous examples where intrabodies function against cytosolic
targets including examples against EGFR,11 BCR-ABL,13 NSP5
from rotavirus,27 Clostridium botulinum neurotoxin pro-
teases,28,29 core antigen of HBV,6 Bax,30 HIV-1 Vif,2 Etk-
kinase12 or hungtingtin protein.7,8 It has also been shown that
cyto-intrabodies can trace cellular components in living cells.31,32

Variousapproacheshavebeendescribedfortheselectionandgen-
eration of cyto-intrabodies: 1) use of the intracellular antibody cap-
ture technology (IACT);33 2) construction of single domain
intrabodies;12,34-36 3) expression of intrabody fusion proteins;37-42

4) complementarity-determining region (CDR) grafting or intro-
duction of synthetic CDRs into suitable preselected frameworks;43-
46 and 5) selection of single-chain variable fragments (scFv)without
disulfide bonds.7,47 If the functional expression of a particular

antibody in the cytoplasm fails, introductionof externally produced
antibodies into the cytosol has beenproposedusingmethods suchas
protein transfection (profection), peptides as protein transduction
domains, fusion to targeting proteins or the use of translocation
sequences and endosome escape domains.23,48, 49 However, it has
been difficult to achieve endosomal escape and to reach the cyto-
plasmwithmostofthesemethods.24

In contrast to cyto-intrabodies, antibodies targeted to the ER
are made in their native environment (Fig. 2), thus can be
expected to be correctly folded with intact disulfide bridges form-
ing in the oxidizing environment.50 ER intrabodies work by just
retaining antigens that pass the secretory pathway. Typically,
these are cell-surface molecules, secreted molecules, intravesicular
receptors or Golgi-located glycosyltransferases (ref. 3).

ER intrabodies are targeted to the lumen of the ER by a secre-
tory signal peptide, and fusion of the retention sequence KDEL
or SEKDEL to their C-terminus prevents their secretion together
with the antigen bound to it. The KDEL receptor substrate leaves
the ER, is transported to the cis-Golgi apparatus where it binds to
the ERD1 and ERD2 receptors which are then recycled back to
the ER via COPI-coated vesicles.21,51,52 The ER intrabody-anti-
gen complex may then be degraded via an ER-associated degrada-
tion (ERAD) pathway that is either proteasome-dependent or
proteasome-independent.53-55

Figure 1. The intrabody approach for the generation of protein interference phenotypes. Antibody fragments containing the antigen binding domains
(V regions) specific for a particular protein can be selected from antibody phage display libraries or other in vitro selection systems like bacterial, yeast,
mammalian or ribosomal display libraries. Alternatively, the variable region genes can be obtained from hybridoma antibodies by PCR with consensus
primers, RACE or PCR with adaptor ligated cDNA. Antibody fragments, typically in scFv format, are then cloned into a specific targeting vector allowing
expression of the intrabody in the nucleus, cytoplasm or ER.
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Nuts and Bolts: How to
Make Intrabodies

Intrabodies can be generated by
cloning the respective cDNA from
an existing hybridoma clone56,57 or
more conveniently, new scFvs/Fabs
can be selected from in vitro display
techniques such as phage display
(Fig. 1),58,59 which provide the
necessary gene encoding the anti-
body from the onset and allow a
more detailed predesign of antibody
fine specificity.60 In addition bacte-
rial-, yeast-, mammalian cell surface
display and ribosome display can be
employed.61-64 However, the most
commonly used in vitro display sys-
tem for selection of specific anti-
bodies is phage display.59,60,65-67 In
a procedure called panning (affinity
selection), recombinant antibody
phages are selected by incubation of
the antibody phage repertoire with
the antigen. This process is repeated
several times leading to enriched
antibody repertoires comprising
specific antigen binders to almost
any possible target. To date, in vitro
assembled recombinant human
antibody libraries have already
yielded thousands of novel recom-
binant antibody frag-
ments.58,66,68,69 Antibo-dy phage
repertoires can be divided into 4
different types according to the ori-
gin of their frameworks and CDRs:
immune, na€ıve, synthetic and semi-
synthetic antibody libraries.70

Immune antibody libraries are con-
structed from antibody genes of B
cells from immunized animals or
infected patients by PCR, using
IgG primers for the heavy and light chain. Nonimmune (also
named na€ıve or universal) libraries are built up from natural,
unimmunized, rearranged V genes (e.g., from the IgM B-cell
pool.71 Synthetic antibody libraries are constructed entirely in
vitro using oligonucleotides that introduce areas of complete or
tailored degeneracy into the CDRs of one or more V genes.72,73

Semi-synthetic libraries combine natural and synthetic gene frag-
ments encoding different parts of the scFv or Fab molecule.74

Conversion of scFvs from in vitro selection methods into
an ER intrabody only requires a single cloning step into the
ER-targeting vector, e.g., pCMV/myc/ER to add the CMV
promoter, a secretory leader, the ER retention sequence and a
myc tag.56 Additional reporter functions, like green

fluorescent protein (GFP), can also be added by using bicis-
tronic vector designs.75

From hybridoma cells, the variable VH and VL domains can
be amplified from the hybridoma cDNA using 1) PCR amplifica-
tion with consensus primers,57,76-78 2) rapid amplification of
cDNA-ends (RACE79), and 3) PCR amplification using adaptor-
ligated antibody cDNA.80 RACE and adaptor-ligated antibody
cDNA prevent mismatches that might occur if VH and VL are
amplified by consensus primers. VH and VL can be assembled by
overlapping PCR introducing a linker taken from phage sequen-
ces (Gly4Ser)3

56 or human proteins,59 and the assembled scFv
will be cloned into a targeting vector to transport scFvs into spe-
cific cell compartments.81

Figure 2. Differences between cytoplasmic/nuclear intrabodies and ER intrabodies. Via their retention signal
KDEL, ER intrabodies (A) retain antigens passing the ER by binding to them. As antibodies are naturally pro-
duced in the ER, no particular selection for special folding/stability properties is required. In contrast, cyto-
plasmic/nuclear intrabodies (B) need to fold correctly in the reducing milieu of the cytoplasm. Further, they
need to be tested and screened to identify antibodies which are capable, in addition to binding, to neutral-
ise or inactivate their target’s activity in the cytoplasmic biochemical milieu.
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The most commonly used format for intrabodies is the scFv,
which consists of the H- and L-chain variable antibody domain
(VH and VL) held together by a short, flexible linker sequence
(frequently (Gly4Ser)3),

82 to avoid the need for separate expres-
sion and assembly of the 2 antibody chains of a full IgG or Fab
molecule.83,84 Alternatively, the Fab format comprising addition-
ally the C1 domain of the heavy chain and the constant region of
the light chain has been used. Recently, a new possible format for
intrabodies, the scFab, has been described.85 The scFab format
promises easier subcloning of available Fab genes into the intra-
cellular expression vector, but it remains to be seen whether this
provides any advantage over the well-established scFv format. In
addition to scFv and Fab, bispecific formats (for review, see
ref. 86) have been used as intrabodies. A bispecific Tie-2 x
VEGFR-2 antibody targeted to the ER demonstrated an
extended half-life compared to the monospecific antibody coun-
terparts.87,88 A bispecific transmembrane intrabody has been
developed as a special format to simultaneously recognize intra-
and extracellular epitopes of the epidermal growth factor,89 com-
bining the distinct features of the related monospecific antibod-
ies, i.e., inhibition of autophosphorylation and ligand binding.
Another intrabody format particularly suitable for cytoplasmic
expression are single domain antibodies derived from camels36 or
consisting of one human VH domain34,90 or human VL
domain.7,8,12,91 These single domain antibodies often have
advantageous properties, e.g., high stability; good solubility; ease
of library cloning and selection; high expression yield in E.coli
and yeast.

The intrabody gene is expressed inside the target cell after
transfection with an expression plasmid or viral transduction
with a recombinant virus. With respect to the vector technologies
used to supply the antibody mRNA to the target cell, there seem
to be few limitations because, in principle, all the usually func-
tional vector-, promoter- and transfection systems for heterolo-
gous expression could be employed. Typically, the choice is
aimed at providing optimal intrabody transfection and produc-
tion levels. Microinjection of hybridoma derived or in vitro tran-
scribed mRNA was used in initial proof of principle studies,92-94

but, due to more delicate RNA handling and very small number
of transfected cells, this approach has not been used frequently.

Successful transfection and subsequent intrabody production
can be analyzed by immunoblot detection of the produced anti-
body, but, for the evaluation of correct intrabody/antigen-inter-
action, co-immunoprecipitation from HEK 293 cell extracts
transiently cotransfected with the corresponding antigen and
intrabody expression plasmids may be used, or the antigen intra-
body complex can be confirmed to be localized in the ER by co-
staining with the ER marker calnexin.4,5

Examples for Functional Studies with
Cytoplasmic Intrabodies

A quite successful group of cytoplasmic intrabodies has been
developed against proteins playing an important role in the brain
and for Alzheimer’s and Parkinson’s disease. Using the

intracellular antibody capture technology, antibodies against the
microtubule-associated protein TAU found in neurofibrillary
lesions of Alzheimer’s disease brains has been selected.33 This
large panel of anti-TAU intrabodies selected from a na€ıve human
antibody library provides a useful tool to study TAU function in
degenerating neurons and brains. Meli and colleagues10 selected
conformation-sensitive intrabodies by IACT against Alzheimer’s
amyloid-b oligomers starting from a phage display library con-
structed from mice immunized with a truncated version of
human amyloid-b peptide. Some antibodies recognized in vivo-
produced amyloid-b peptide “deposits” in histological sections
from human Alzheimer’s disease brains and significantly inhib-
ited amyloid-b peptide oligomer-induced toxicity. A human
scFv against oligomeric a-synuclein that inhibits aggregation and
prevents a-synuclein-induced toxicity was also isolated from a
na€ıve antibody phage display library.9 a-Synuclein is a presynap-
tic neuronal protein that is linked genetically and neuropatholog-
ically to Parkinson’s disease and other neurodegenerative
disorders. Interestingly, an anti-a-synuclein clone selected from
the same library by a novel biopanning technique based on
atomic force microscopy showed an opposite effect compared
with the scFv mentioned above. It bound to intracellular aggre-
gates of misfolded ataxin-3 and a pathological fragment of hun-
tingtin and accelerated aggregation of these 2 molecules and
increased cytotoxicity.95 Intrabodies have furthermore been
selected against the natural precursor of nerve growth factor
(proNGF).96 These antibodies can be used for the analysis of
intracellular trafficking and signaling of proNGF in living cells.
Intrabodies against gephyrin playing a role in clustering receptors
have also been selected.97 This strategy could be very useful
because the gephyrin knockout mice lead to a lethal phenotype.

Other intrabodies are directed against kinases, for example
against the cytoplasmic protein kinase Syk,98 or the respective
domains of human epidermal growth factor receptor11 or against
the BCR-ABL oncogenic protein.13 Blocking the function of the
latter protein may neutralize the oncogenicity of BCR-ABL, and
could be used as a potential therapeutic agent in Philadelphia
chromosome-positive leukemias. An efficient antibody-caspase 3-
mediated cell killing system based on antibody-caspase 3 fusion
has been developed.99 In the future, this approach may be used
to kill tumor cells expressing tumor-specific proteins. Intrabodies
against intracellular kinase domains of cell surface receptors and
intracellular kinases (in particular against phosphorylation sites)
can also be useful to decipher signaling pathways.11,12, 98-100 Fur-
thermore, oncogenic transcription factors may be attractive tar-
gets to inhibit the transcription of oncogenic genes. An example
is a functional intrabody against the yeast transcription factor
GCN4.46

Another intrabody selected from a na€ıve antibody phage
display library neutralized aggrecanase-2, a factor crucial in
the development of osteoarthritis, and dose-dependently
improved disease progression in an osteoarthritis mouse
model.101 A cytoplasmic intrabody used to investigate the
role of the rotavirus non-structural protein NSP5 in the virus
replication cycle has been described.27 It was demonstrated
that NSP5 is an essential element for the assembly of
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functional viroplasms. These intrabodies were selected from
mice that had been immunized with recombinant GST-
NSP5. Intrabodies have also been employed as a strategy to
target rabies.102

Selection and Engineering of Intrabodies Suitable
for Cytoplasmic Expression

In contrast to ER intrabodies, the prerequisite for a specific
protein knockdown by a cytoplasmatic intrabody is that the anti-
gen is neutralized/inactivated through the antibody binding
(Fig. 2). As said above, any cytoplasmic intrabody approach will
be compromised by failure of the antibody to fold correctly.25,26

Consequently, specialized assays or selection conditions have
been proposed to increase the success rates. While the selection
of cytoplasmic intrabodies is still often a time-consuming trial
and error approach and no reliable standard procedure has
emerged, 5 different approaches to generate suitable antibodies
are described in detail here and in Table 1: 1) In vivo selection
of functional intrabodies in eukaryotes such as yeast and in pro-
karyotes such as E.coli (antigen-dependent and independent); 2)
generation of antibody fusion proteins for improving cytosolic
stability; 3) use of special frameworks for improving cytosolic sta-
bility (e.g., by grafting CDRs or introduction of synthetic CDRs
in stable antibody frameworks); 4) use of single domain antibod-
ies for improved cytosolic stability; and 5) selection of disulfide
bond free stable intrabodies.

Approach 1, intrabody selection strategies, in eukaryotes. An anti-
gen-independent selection method termed “Quality Control”
was developed to identify intrabodies that are soluble in the cyto-
plasm of yeast and mammalian cells.103 For selection in yeast,
the scFvs were fused to a transcriptional activation domain and a
peptide derived from Gal11P binding to the transcription factor
Gal4 (1–100) fragment. Soluble expression of the scFv mediates
the specific interaction of peptide Gal 11P with the DNA-bound
Gal4 (1–100) fragment and then transcription of lacZ and HIS3
reporter genes can be activated, whereas insoluble scFvs are
expected to result in non-functionality of the whole fusion pro-
tein and thus no activation of reporter genes occurs. Selection in
mammalian cells, based on a similar principle, was implemented
by employing scFv-VP16 fusions that bind to the DNA binding
domain Gal4. Using the “Quality Control” approach, growth of
colonies under selection conditions, indicating scFv clones that
are stable and soluble in the cytosol, was below 1% among
screened clones, which gives a rough initial estimate of the frac-
tion of antibodies that can be expected to fold correctly in the
cytoplasm.103

Yeast two-hybrid technology-based IACT is an antibody-
dependent method employed to select suitable intrabodies from
scFvs preselected by phage display. The pre-enriched antibody
fragment library is fused to the VP16 transcription activation
domain. Antigen-specific functional intrabodies are selected after
co-transfection of the scFv-VP16 library with antigen coding
sequence fused to the LexA DNA binding domain in yeast cells.
Complex formation of the antigen and an antigen-specific scFv

in the yeast cytoplasm leads to activation of yeast chromosomal
reporter genes.33 A single pot library of intracellular antibodies
(SPLINT) was generated by amplification of natural V regions
from non-immunized mice and intrabodies selected against dif-
ferent antigens.104 A further modification of the original IACT
technique was established to select for intrabodies that are able to
interrupt protein-protein interactions.105 Concerning the IACT
selection strategy, it is important that the source for intrabody
selection (particularly na€ıve, immunized mouse antibody or na€ıve
human antibody phage display repertoires have been employed)
must have a very large diversity, because functional cytoplasmic
intrabodies were described to be a very small subset of the total
antibody repertoire.

Approach 1, intrabody selection strategies, in prokaryotes.
Another in vivo selection strategy is the selection of functional
cytoplasmic intrabodies fused to a selection marker in E.coli using
the twin-arginine translocation (TAT) machinery. This strategy
is referred to as intrabody selection after Tat export into the cyto-
plasm (ISELATE).106 Selection is provided by fusion of an N-
terminal Tat-specific signal and C-terminal TEM1 b-lactamase
to the coding region of the scFv. With the TAT signal providing
the transport of folded proteins, only non-aggregated (therefore
presumably correctly folded) intrabodies can be transported from
the cytoplasm to the periplasm of E.coli where the fused ß-lacta-
mase provides ampicillin resistance, hence positive selection of
the respective clones. Recently, a variant of this selection
approach for the isolation of correctly folded membrane-
anchored scFvs was developed.107 Karlsson et al found that cor-
rectly folded scFvs fused to the Tat signal peptide are transported
from the cytoplasm to the periplasm of E.coli, but remain
N-terminally anchored with the Tat signal peptide to the inner
membrane. Selection is performed with antibody expression plas-
mid transfected spheroplasts and anti-FLAG antibody, which can
only recognize the FLAG epitope fused to the C-terminal end of
the antibody if the N-terminal signal peptide is anchored in the
inner membrane of E.coli and the scFv localized in the periplasm.
Affinity maturation of selected scFvs using error prone PCR
resulted in scFv clones expressed in the cytoplasm with higher
affinity than the original clones.

A mixed strategy that combined elements described above was
also developed in E.coli. In this case, the scFv is N-terminally
fused to the Tat signal peptide ssTorA and coexpressed with the
antigen C-terminally fused to the b-lactamase gene. It was
observed that only those binding pairs that are correctly folded
and functional in the cytoplasm could be exported to the peri-
plasm and give rise to antibiotic resistant cells.108 Notably, intra-
bodies with high stability and high antigen-binding affinity
could be selected from resistant bacterial clones on high concen-
trations of the antibiotic carbenicillin.109

Approach 2, antibody fusion proteins. Several publications pro-
posed the addition of non-intrabody domains to enhance folding
or stability of cytoplasmic intrabodies. One approach is to use
GFP to improve folding of proteins, including recombinant anti-
body fragments, in E.coli and mammalian cells.37,39,40 It was
shown that GFP variants fold differentially in prokaryotic and
eukaryotic cells.110 Recently, scFv-GFP fusions were used to
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Table 1. Strategies for the selection of functional cytoplasmic intrabodies

Technique Outcome Reference

1) In vivo selection of intrabodies in the absence/presence of
antigen in yeast and in E.coli

Antigen independent selection for cytoplasmic expression in yeast
and mammalian cells using interaction between transcription
activator domain coupled to scFv and DNA binding domain

Selection of stable frameworks from a human na€ıve antibody
library

103

Antigen independent intrabody selection after export into the
cytoplasm mediated by Tat (ISELATE).

Isolation of soluble scFv variants from an insoluble parental
sequence.

106

Modification of ISELATE method. Selection will be performed by
analyzing inner membrane anchored Tat-scFv fusions of
transfected spheroblasts with anti-FLAG antibody.

Selection and affinity maturation of scFvs using error prone PCR
resulted in scFvs with higher affinity than the original clones.

107

Intracellular Antibody Capture Technology based on an antigen-
dependent 2 hybrid system. Cotransfection of antigen fused to
DNA binding domain lexA and scFv fused to transactivator
domain VP16 leads to selection of cytoplasmic active intrabodies.

Selection of intrabodies against Tau, amyloid-b peptide,a-
synuclein, proNGF, gephyrin, Syk, EGFR, BCR-ABL, caspase 3,
aggrecanase-2, NSP5 from rotavirus

33,10,9,96,97,98,11,

13,99,101,27

Antigen dependent selection of intrabodies in the E.coli cytoplasm
based on co-expression of Tat signalpeptide-scFv and antigen-
b-lactamase fusion

Selection of antigen specific binders from a library of randomized
CDR-H3 sequences.

108

2) In vivo selection of stable intrabody fusion proteins
Generation of scFv-protein fusions Fusion to MBP, GFP or the Fc domain are the most reliable

strategies.

41,39,37,40,42,38

3) CDR grafting or introduction of synthetic CDRs into stable
frameworks

Transplantation of CDRs from one antibody to a different stable
antibody framework.

Introduction of synthetic CDR loops into a stable human framework.

Construction of a novel human VH domain antibody library with
restricted randomizations at fixed positions in the CDR2 and
CDR3, respectively.

Generation of a framework stabilized version of an anti-GCN4
intrabody.

Grafting several groups of residues in the CDRs important for
antigen binding of scFv D1.3 into stable framework of scFvF8

Construction of a synthetic antibody library based on the human
framework of scFv13R4 by introducing synthetic CDR3 loops.

Construction of a synthetic single human VH domain antibody
library based on the framework of antibody HEL4. Selection of
thermodynamically stable anti-lysozyme clones expressed in
E.coli.

46,

43,

45

44

4) Cytoplasmic intrabodies in the single domain format
Generation of Camelid VH single domain antibodies from na€ıve or

immune-camelid antibody repertoires

Selection of stable human VH domains from na€ıve or synthetic VH
domain antibody repertoires

Selection of human VL domains from na€ıve or synthetic VL domain
antibody repertoires

Camelid VH single domain antibodies against: F-actin capping
protein CapG, b2-adrenergic receptor, Clostridium botulinum
neurotoxin (BoNT) proteases, core antigen of HBV (HBcAg),
15-acetyldeoxynivalenol, caspase-3, Bax, nuclear polyA-binding
protein, HIV-1 Vif

Most of the VH domains isolated from a human germ-line VH
library by the ISELATE method resulted in soluble clones
expressed in E.coli.

Construction of a large human VH domain antibody repertoire by
combinatorial assembly of CDR building blocks from a smaller
repertoire comprising aggregation-resistant clones

Selection of a human VL domain against Etk kinase from a large VL
domain phage display library, derived from a single human
framework of light chain

Construction of a na€ıve VL domain library and isolation of clones
recognizing B cell super-antigen protein L.

Selection of an a-hungtingtin human VL domain intrabody from
an original non-functional scFv. Affinity maturation of the
original scFv was performed using error prone PCR and yeast
surface display.

14,100, 29,28,6,122,

123,30,124,2

90

34

12

91

8

5) Selection of scFvs without disulfide bonds Isolation of cysteine free scFvs by phage display. After DNA-
shuffling and Error prone PCR cysteine free variants of an
a-levan antibody could be expressed functional in the
cytoplasm of E.coli.

Functional cysteine free VL domains recognizing hungtingtin
protein could be selected by yeast surface display after Error
prone PCR.

47

7

www.tandfonline.com 1015mAbs



screen for intrabody solubility in mammalian cells by fluores-
cence activated cell sorting (FACS).39 Mammalian cells were
transfected with GFP fusions by retroviral gene transfer, the GFP
positive cells sorted and expression of the scFv-GFP fusions ana-
lyzed. The GFP signal correlated with soluble expression levels of
the scFvs in the cytoplasm; however, only 2 different scFvs were
tested. A GFP-tagged cytoplasmically expressed scFv was applied
for in vivo labeling of tyrosinated a-tubulin and measurement of
microtubule dynamics.37 It remains to be proven whether this
strategy is broadly applicable.

In addition to GFP, a Ck domain,111,112 maltose binding
protein (MBP),41 N utilization substance A (NusA) 113 or Fc
domain38,42 have been proposed as fusion partners, although few
successful examples have been presented. Different labs have
focused on the inhibition of p53 and activation of mutated p53
inside tumor cells.111,112,114 The anti-p53 intrabodies derived
from hybridomas showed different stability inside the cytoplasm,
as expected. One of the scFvs targeted to the nucleus or cyto-
plasm was expressed well as a fusion with the Ck domain.111

Another scFv showed very low expression inside the cytoplasm
after fusion with a Ck domain.112 Interestingly, 2 intrabodies
recognizing p53 mutants that were expressed in the nucleus and
cytoplasm restored transcriptional activity of p53 mutants by
themselves,114 which demonstrates that solubility depended on
the properties of the intrabody rather than on the Ck domain.
Because degradation of proteins can be linked to the presence of
regions rich in proline, glutamic acid, serine and threonine
(PEST sequences),115 the low content of potential PEST sequen-
ces might explain the stability of some intrabodies such as the 2
anti-p53 mutated intrabodies.114 However, the fusion of a pro-
teasome-targeting PEST motif to intrabodies recognizing Hun-
tingtin or a-synuclein-mediated increase of intrabody stability
and degradation of the corresponding antigen,116,117 demonstrat-
ing that no simple PEST sequence motif-related algorithm will
predict the intrabody efficacy.

MBP has extensively been used to enhance folding of intra-
bodies inside the cytoplasm of E.coli and mammalian cells.41 It
was found that the folding of some passenger proteins fused to
MBP could be mediated by endogenous chaperones in vivo.118 It
was proposed that the solubility-enhancing activity of MBP is
mediated by its open conformation and it is assumed that the
ligand-binding cleft is involved in the mechanism.119 However,
the molecular mechanism of the process is not known, and some

reports of improved folding may have been mistakenly based on
the improved overall solubility of the fusion.

Approach 3, CDR grafting or introduction of synthetic CDRs in
stable frameworks. Antigen-binding loops can be transplanted
from one antibody to a different antibody framework, a proce-
dure called CDR loop grafting.120 While the technology gained
historical relevance by being used to de-immunize (“humanize”)
therapeutic antibodies, it also can be used to transfer a given spec-
ificity to a preselected V region framework with optimized pro-
duction / folding / stability properties. A stable framework-
engineered stabilized version of an anti-GCN4 antibody was
cytoplasmically expressed as an scFv intrabody in yeast.46 This
variant inhibited the activity of b-galactosidase expressed from a
GCN4-dependent reporter gene compared to the unfolded origi-
nal scFv. Another approach used the scFv(F8), which showed
very high in vitro stability and functional folding in both the pro-
karyotic and eukaryotic cytoplasm.43 Several groups of residues
in the CDRs important for antigen binding of the poorly stable
anti-hen egg lysozyme (HEL) scFv(D1.3) were grafted into the
framework of scFv(F8). Five different variants were constructed,
and 4 of those could be expressed in the cytoplasm of E.coli and
bind to the antigen after purification. The donor framework of
scFv(F8) seems to be able to tolerate extensive CDR substitutions
without loss of stability in the cytoplasm.45 A synthetic antibody
library based on the human framework of anti-b galactosidase
scFv13R4 was expressed in the E.coli, yeast and mammalian cell
cytoplasm. Randomized CDR 3 loops were introduced in the
framework by PCR and a number of functional cytoplasmic
intrabodies against different antigens selected, including an intra-
body that identified a protein of yet unknown function involved
in mast cell degranulation.121 Another approach used amino acid
randomization at 4 and 7 different positions in the CDR2 and
CDR3 loop of the single domain VH of anti-lysozyme antibody
HEL4.44 The library was used for selection of antibodies with
different specificities on both purified lysozyme and whole cells.

Approach 4, single domain antibodies. Single domain antibod-
ies are composed of only one V region, which could be either a
variable domain of the heavy or light chain. They can be pro-
duced from conventional human IgGs (VHs and VLs), from cam-
elid heavy-chain IgGs (VHHs) and from cartilaginous fish
IgNARs (VNARs). As for scFvs, libraries of single domain anti-
bodies can be constructed from na€ıve, synthetic, semi-synthetic,
transgenic animals or immunized sources and clone selection is

Table 2. ER intrabodies applied

Function targeted Targets

Oncogenic receptors VEGFR 2,87,153,198,88 Tie-2,87,88,131 ErbB-2,145,147,150,155,199-202 EGFR,203 metalloproteinases MMP-1 and MMP-
9,204 extracellular matrix metalloproteinase inducer,205,206 human a folate receptor,207 cathepsin L208

oncoprotein E7209

Virus proteins to prevent virus assembly HIV-1 gp120,210,211 HIV-1 gp 160,212 HBV precore antigen,213 HCV ApoB,214 HCV core protein,215 gp46 of
maedivisna virus216

Knockdown of cellular virus receptors
to block virus entry

CCR5,217-219 CXCR4.220,221

Receptors of the immune system MHC I,222-224 integrins,225-227 VCAM-1,134,149 NCAM,56 TLR2,4 TLR9,5 IL-2,148,151,228 CD147,229 IL-6230

Nervous system Neurotrophin Receptor p75,75 b-amyloid protein,132 b-amyloid precursor protein,154 cellular prion
protein231,232
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typically done by phage panning or yeast cell surface display.
Despite providing only half of the binding surface of an anti-
body, camelid VH single domain antibodies have demonstrated
high affinity for many cognate antigens, high solubility and
aggregation resistance. The camelid single domain antibodies are
selected from camelid VHH na€ıve or immune libraries. Several
camelid cytoplasmic single domain antibodies have been success-
fully generated, for example against F-actin capping protein
CapG,14 b2-adrenergic receptor,100 Clostridium botulinum neu-
rotoxin (BoNT) proteases,28,29 core antigen of HBV (HBcAg),6

15-acetyldeoxynivalenol,122 caspase-3,123 Bax,30 and nuclear
polyA-binding protein.124 A nanobody recognizing the F-actin
capping protein CapG was generated after immunization of a
llama.14 It was demonstrated that expression of the intrabody in
breast cancer cells restrained cell migration and lung metastasis in
a xenograft tumor mouse model. Anti-b2-adrenergic receptor
single domain intrabodies from the Camelid family inhibiting G
protein activation, G protein-coupled receptor kinase-mediated
receptor phosphorylation and b-arrestin recruitment have been
published.100 An intrabody against caspase-3 was isolated from a
na€ıve phage display llama antibody repertoire.123 Single-domain
antibodies against the proapoptotic Bax protein have been
selected.30 These anti-Bax VH intrabodies could be used as tools
for studying the role of Bax in oxidative-stress-induced apoptosis
and for developing novel therapeutics for the degenerative dis-
eases involving oxidative stress.

Yeast surface display has also been used to select camelid
VHHs as immune inhibitors of Clostridium botulinum neuro-
toxin (BoNT) proteases. VHHs were selected from an immu-
nized llama single domain repertoire that remained functional
when expressed within neurons and bound to BoNT proteases
with high affinity.29 VHHs from a non-immune llama single-
domain library have been isolated.28 The X-ray crystal structure
of the most potent intrabody in complex with the protease was
solved and the structure revealed that the VHH binds in the
a-exosite of the enzyme, far from the active site for catalysis.
Camelid VHH domain antibodies selected from a non-immune
llama single-domain phage display library prevented oculophar-
yngeal muscular dystrophy associated aggregation of nuclear poly
(A)-binding protein.124 Notably, intrabodies also reduce the
presence of already existing aggregates. VHH intrabodies against
the hepatitis B core antigen (HBcAg) were selected from a single
domain phage display library constructed from llamas immu-
nized with noninfectious HBV particles.6 Intrabodies targeted to
the nucleus affected HBcAg expression and trafficking in HBV-
transfected hepatocytes. Camelid VHH domains selected from a
hyper-immunized phagemid library were selected against toxin
15-acetyldeoxynivale.122 Expression of the corresponding intra-
bodies in yeast resulted in significant resistance to the toxin. The
authors suggested that VHH expression in plants may lead to
enhanced tolerance to mycotoxins. A camelized rabbit – derived
VH single-domain recognizing HIV-1 Vif was constructed start-
ing from an original rabbit scFv.2 A set of 3 mutants of the
derived VH single domain antibody with gradual increasing cam-
elization was performed. There was a strong correlation between
the improvement in protein solubility in mammalian cells and

the gradual increasing camelization. The intrabodies neutralized
HIV-1 infectivity. Anti-ß catenin llama single domain intrabod-
ies that inhibit Wnt signaling were recently reported, providing a
tool for further study of the Wnt pathway.125

In contrast to the VH domains of camels and llamas, human
heavy chain variable domains and human light chain variable
domains are more prone to dimerization and aggregation and
exhibit poor solubility.35 Nevertheless, several human single
domain antibodies have been selected, for example against Etk
kinase,12 huntingtin protein7,8 and B cell super-antigen protein
L.91 As for scFvs, a Tat signal peptide and b-lactamase-based
strategy was used to isolate human VH domains from a human
germ-line VH library, with increased level of thermodynamic sta-
bility, reversible folding and soluble expression in E.coli.90 In
another approach, aggregation-resistant human heavy chain vari-
able domains were selected on phage by heat denaturation.126 A
large human VH domain antibody repertoire was constructed by
combinatorial assembly of CDR building blocks from a smaller
repertoire comprising a high frequency of aggregation-resistant
antibody domains.34 Barthelmy and colleagues127 evolved and
analyzed stable human VH domains from a phage display anti-
body library. By building libraries comprising the framework of
humanized anti-HER2 scFv and different diverse synthetic VH

CDR3 loops, they selected the most stably expressed VH domains
secreted in E.coli and then introduced mutations that increased
the hydrophilicity of the former light chain interface by replacing
exposed hydrophobic residues with structurally compatible
hydrophilic substitutions. The stability of many in vitro evolved
VH domains seemed to be essentially independent from the
CDR3 sequence and instead derived from mutations introduced
in the second step.

A repertoire of stable human VL domains was isolated after
panning with a human na€ıve VL library with B cell super-anti-
gen protein L. Isolated clones exhibited improved reversibility
of thermal unfolding after purification from the periplasm of E.
coli.91 Nevertheless, it remains to be demonstrated whether the
isolated variable domains can also be stably expressed in the
cytoplasm as stable functional intrabodies. An a-hungtingtin
single domain antibody comprising a human light chain variable
domain (VL) was selected from an original nonfunctional scFv.8

Affinity maturation of the original scFv was performed using
error-prone PCR and yeast surface display, and it was shown
that the paratope was localized in the VL. However, this selec-
tion approach is only applicable when the binding energy of the
scFv is provided predominantly by only one of the 2 V
domains. A human VL against Etk kinase was selected from a
large single domain phage display library, derived from a single
human framework of light chain.12 When expressed in Src-
transformed cells, the single-domain antibodies interacted with
endogenous Etk in the cytoplasm and efficiently blocked its
kinase activity, leading to partial inhibition of cellular
transformation.

Approach 5, cyto-intrabodies without disulfide bridges. Many
stabilizing and destabilizing mutations in the framework or
CDRs have been described.128,129 In this context, stable cysteine-
free scFvs have been selected and expressed in functional form in
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the E.coli cytoplasm starting from the levan binding antibody
ABPC48. Affinity maturation was performed using DNA-
shuffling and random mutagenesis.47 An engineered single
domain VL antibody without disulfide-bridge and with high
affinity preventing aggregation of huntingtin was selected after
affinity maturation of the VL domain of an original anti-hunting-
tin scFv using error-prone PCR and yeast surface display.7 These
intrabodies may have therapeutic potential for the treatment of
hungtingtin disease. However, no na€ıve library strategy has yet
emerged from this interesting approach, limiting this method to
the tedious optimization of individual antibody clones.

Targeting the “Outside” from the “Inside”: The ER
Intrabody Approach

The use of various signal sequences attached to antibody frag-
ments allows its targeting specifically to different intracellular
compartments. ER targeting in particular allows interference
with the function of the members of the membrane and the
plasma proteome (secretome), relying on a different mechanism
than cytoplasmic antibodies. Hence, generation of suitable ER
intrabodies is much easier because they do not require special
folding or stability features, and, in particular, no neutralizing
activity toward the antigen is needed. Reasonable antigen binding
is sufficient (Fig. 2). This eliminates the necessity for any special-
ized selection strategy and allows immediate utilization of the
vast and quickly growing resource of recombinant research anti-
bodies currently generated.130

Reports of ER intrabodies published so far have shown protein
knockdown in vitro and recently in vivo in a mouse model. As a
step toward in vivo use, ER intrabodies have been applied in pri-
mary tissue explants (Zhang, Korte and D€ubel, unpublished data)
and against the oncogenic receptors VEGFR-2/KDR and Tie-2
in xenograft mouse tumor models.87,88,131 In addition ER intra-
bodies specific to amyloid-ß demonstrated an inhibition of amy-
loid-ß accumulation in an Alzheimer’s disease mouse model.132

ER intrabodies have been applied for various purposes (Table 2).
Intrabodies have also been used in plants to interfere with cell

functions and plant cell-pathogen interactions.133 The first
transgenic ER intrabody mouse that constitutively expresses an
a-VCAM1 intrabody, resulting in a clear phenotype (aberrant
distribution of immature B cells in blood and bone marrow), has
recently been described.134 In the future, by using inducible or
cell- and tissue specific promoters, this important approach will
facilitate the functional analysis of proteins in specific subpopu-
lations of cells or tissues, or with different time kinetics. More-
over, this study hinted at possible quantitative effects, which
would allow regulation of knockdown strength.

A therapeutic application of intrabodies would require trans-
fection systems allowing gene therapy, typically viral or non-viral
systems.135 Despite growing numbers of clinical studies using
gene therapy, some issues are yet unresolved, like risks from inser-
tional mutagenesis136 or low gene transfer efficiency of nonviral
vectors.137 The construction of retroviruses with low safety
risk138 and the development of transductional and transcriptional

targeting for cell-specific gene transfer139 are new promising
approaches. Furthermore, gene therapy with mRNA might be
possible in the future.140

Parameters Influencing the Efficiency of ER
Intrabodies

ER antibodies work by retaining their antigen in the ER. For
this simple approach, and despite publication of many successful
cases, our systematic understanding of the many parameters
involved in a successful knockdown by intrabodies is still very
limited. The influence of target and antibody expression levels,
antibody affinity and epitope structures is still largely unexplored.
For instance, a study by Beerli et al141 reported efficient target
knockdown by only one of 2 ER intrabodies with nanomolar
affinity,141-144 which suggests that high affinity is not sufficient
as a predictive criterion for successful ER intrabody-mediated
knockdown. This is further supported by a report on the lack of
correlation between the affinity and antineoplastic effect of anti-
erbB2 targeting ER intrabodies.145 Different knockdown effi-
ciencies not correlated to monovalent affinities have also been
reported by others.75 An anti-erbB2 antibody has been reported
to bind to its target if transported to the cell surface but not
within the cell146 and the reasons for this are not fully under-
stood. The exact reasons for these differences are not yet fully
clear, but it can be assumed that individual differences in the
epitopes play a key role. Alternatively, the local biochemical
milieus may influence individual epitope/idiotype combinations.
Study of these parameters in the future is needed, as the results
will allow pre-selection of the intrabodies accordingly. If, for
instance, the different pH in the Golgi does not allow binding of
the ER intrabody to its target in this compartment, in vitro anti-
body selection strategies such as phage display could easily be
adapted by carrying out the selection procedure under buffer
conditions that mimic those in the Golgi.

In spite of numerous examples for the successful application
of ER intrabodies that can be found in literature (Table 3, ref.
3), the majority of these reports mainly focus on the analysis of
phenotypical effects and on study of a particular target. Ques-
tions concerning the intrinsic properties of the ER intrabody
technology and the underlying principles that determine success
or failure of ER intrabody-mediated knockdowns have not been
satisfactorily addressed so far. For wider and more systematic
application of the ER intrabody technology, further insight into
the parameters influencing the success of the method itself is
needed. A more detailed characterization of the ER intrabody
knockdown process will allow elimination of potential off-target
effects when interpreting results and identification of specific
properties of ER intrabody-mediated knockdowns. Opening new
ways of analysis, in addition to the already known unique advan-
tages of ER intrabodies over other methods, is critical.

In the following, we review ER intrabody-mediated knock-
down studies with a particular focus on methodological aspects
(Table 3A and 3B). The first example of in vivo efficacy of
ER intrabodies has recently been described,134 but ER
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intrabody-mediated knockdowns have so far been employed in
vitro3 in a large variety of setups. ER intrabody mediated knock-
downs have been performed either in cell lines with constitu-
tive75,147 or inducible148 endogenous expression of the target or
in cell lines that had been either transiently149 or stably141,149, 150

transfected with the target. Correspondingly, transfection of ER
intrabodies into these cell lines has been performed tran-
siently,75,149 inducibly stable151 or constitutively stable.151-153 A
significant quantitative biochemical analysis of the involved
parameters is lacking in most studies published so far. Further,
the information on the knockdown process has come from very
diverse assays usually optimized for one target, which prevents a
systematic analysis of these datasets to obtain general conclusions.

Hence, it is currently difficult to attribute knockdown effi-
ciencies to the biochemical properties of the respective intrabody,
e.g., affinity, because knockdown efficiency may also be influ-
enced by the particular expression levels of the ER intrabody and
its antigen. Individual developments of transient expression levels
over time will also surely affect the knockdown efficiency and a
respective time dependence of knockdown efficiency after tran-
sient transfection of ER intrabodies has been observed.149

Despite the lack of a systematic analysis of these important
parameters, we can nevertheless gain some valuable insights from
some examples. For instance, the analysis of 3 different ER intra-
bodies transiently expressed in the same cell line against the same
target allowed some interesting observations.75 The ER intrabod-
ies in this study were analyzed for affinity, expression levels and
their ability to bind a linear or conformational epitope. Interest-
ingly, the ER intrabody with the lowest affinity but the highest
expression levels gave rise to the highest knockdown efficiency,75

underlining once more the need for further understanding of the
knockdown process in a quantitative manner. Moreover, while all
antibodies in this study recognized the native target on the cell sur-
face, the ER intrabody with the highest knockdown efficiency also
efficiently recognized a linear epitope.75 Recognition of a linear
epitope of an unfolded or only partly folded protein, possibly
already while the protein is still in the process of translation into
the ER, can be imagined to efficiently interfere with the folding
process and in this way accelerate degradation of this protein. A
systematic characterization of ER intrabody epitopes, particularly
of ER intrabodies that are known to accelerate degradation of the
target, will in the future be required to evaluate this hypothesis. If
the recognition of linear epitopes by ER retained antibodies can
indeed promote accelerated degradation of target proteins, this
mechanism may in the future be harnessed by selectively generat-
ing antibodies against short linear peptide sequences within the
target protein instead of whole proteins, and would also allow an
important acceleration of the method since the necessity for anti-
gen protein production – the single most retarding process in
today’s antibody generating pipelines – can be completely avoided.

An important question to understand intrabody generated
phenotypes and to avoid incorrect conclusions due to unspecific
and off-target effects is for the fate of the intrabody/target protein
complex. Only few studies are available so far which tried to
assess these questions. It was shown that the ER intrabodies tar-
geting ß-amyloid precursor protein (APP) and the anti-TLR2 ER

intrabody are degraded by the proteasome (Ref. 154, B€oldicke
and Burgdorf, unpublished). Although ER intrabodies have been
reported to cause accelerated degradation of a target protein,155

there are also reports on accumulation of the target within the
cell, although it is depleted from the surface.150,151 The deter-
mining factors that are responsible for accelerated degradation,
accumulation or even unchanged intracellular target levels are
still not clear. However, no detectable ER stress response
(unfolded protein response) was observed following substantial
overexpression of an anti-p75NTR ER intrabody, confirming the
specificity of this particular approach75 and recommending mea-
surement of UPR as a good control allowing for rating the rele-
vance of any future intrabody approaches. Another observation,
with possible relevance to the question of the post-translational
fate of intrabodies and their antigens, is the lack of target protein
glycosylation upon expression of an ER intrabody as a result of
the retention in the ER.148,150,153

To compare the results of different ER intrabody-mediated
knockdowns, the choice of methods used for detecting knock-
downs is critical. The heterogeneity of analysis methods used so
far is therefore an obstacle for correlating antibody properties
with knockdown efficiency. Methods for detection of ER intra-
body-mediated knockdowns ranged from proof on the biochemi-
cal level by cell surface stainings followed by flow cytometry to a
variety of functional assays including entirely qualitative analysis
(see Table 3A and 3B). While flow cytometric analysis of cell
surface stainings are preferable to other methods because they
provide direct biochemical evidence for a potential membrane
expression knockdown, cell surface stainings have also not been
done in a standardized way. In some reports, the same antibody
clone that was used as an ER intrabody was also used for the
detection of the target on the cell surface,148 which bears the risk
of artifacts due to ER intrabodies that still mask the target
protein’s epitope on the cell surface after being released by cell
lysis. Although retention by the KDEL receptor has been
described to be very efficient (retention of a 10-fold molar excess
of substrate may be possible156), masking of target proteins on
the cell surface due to secretion of ER intrabodies must be
excluded. In order to avoid this artifact, cell surface stainings
have therefore increasingly been performed with detection anti-
bodies that have been mapped to bind to a different epitope than
the ER intrabody.75,134, 149,151

In conclusion, although there are already initial findings that
suggest a link between particular antibody properties and knock-
down efficiency, a more systematic analysis of these links is
required to allow better a priori predictions, and thus to allow
the selection of optimal antibodies for future intrabody knock-
down approaches.

The ER Intrabody Approach in Comparison to other
Knockdown Methods

The cell surface and its receptors provide an interface for commu-
nication between the individual cell and its environment, and is
therefore a crucial element of cellular decision processes, determining
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the organization and function of cells, tissues and organs. Comple-
mentary to cell surface receptors, secreted factors control cellular
decisions by transducing signals via transmembrane receptors to the
inside of the cell. Because both the soluble extracellular factors as
well as cell surface receptors pass the secretory pathway, the ER intra-
body technology can be employed to systematically target these cru-
cial control elements at the protein level.

There have been other attempts to target these proteins at the
post-translational level by pharmacological inhibition of receptor
tyrosine kinases,157 blocking cell surface receptors or secreted fac-
tors extracellularly with antibodies158,159 or even by targeting the
intracellular part of cell surface receptors or signaling molecules
downstream of the cell surface receptors via cytosolic intrabod-
ies11,23 or phosphopeptide mimetics.160,161 Most of these
approaches have very narrow application ranges and require
tedious individual developments for every case. For instance, not
all of the cell surface receptors are receptor tyrosine kinases, and
therefore not all of them are accessible to the respective pharma-
cological agents, and pharmacological inhibitors are only avail-
able for some of the receptor tyrosine kinases. The same is true
for phosphopeptide mimetics: inhibitory and at the same time
cell permeable drugs are only available for a very small number of
the signaling molecules, allowing only specialized applications.

Another drawback of pharmacological agents for protein inhi-
bition is the dependence of their effectiveness on biodistribution
and bioavailability and the potential side effects that may occur
due to lack of specificity, especially as tyrosine kinase inhibitors
are generally less specific than antibodies,162,163 which for exam-
ple, has been shown for protein kinase inhibitors and inhibitory
oligonucleotides of TLRs. It was shown that the compounds
KT5720, Rottlerin and quercetin inhibited many different pro-
tein kinases.164 Inhibitory CpG comprising oligonucleotides
developed to inhibit the function of TLR9 inhibit TLR9 signal-
ing, but also bind signal transducer and activator of transcription
1 and 4 (STAT1 and STAT4) and interact with TLRs 3, 7 and
8.165,166 Finally, there is no systematic way to generate them for
any possible protein, very much in contrast to antibodies, which
can be rationally and systematically generated to almost any tar-
get within a few weeks.167

Dominant negative mutants (for review see Ref. 168) interfere
with protein function by competing with the wildtype, and usu-
ally require detailed knowledge of the role of individual amino
acids in the protein function. In addition, its dependence on vast
overexpression is prone to cause unspecific effects and cell stress.
Intrabody approaches do not require any knowledge of the target
protein, but even may be used to reveal phenotypes of yet
completely unknown proteins, because they can be generated
from the genomic sequence information of unknown open read-
ing frames (ORFs), without requiring the antigen for their gener-
ation, e.g., by the well-established method of phage display based
on synthetic peptides.169

The application range for antibody-based targeting of the cyto-
solic part of kinase receptors and of the corresponding signaling
molecules downstream of cell surface receptors similarly suffers
from limitations. As described above, antibodies that can fold cor-
rectly if expressed in the cytosol are not easily obtained19,23, 25

and, although the delivery of antibodies as proteins to the cytosol
has been demonstrated in vitro,24 protein delivery from the out-
side still remains a challenge. ER intrabodies, in contrast, are gen-
erally applicable both in vitro and in vivo and can be generated
with high specificity against any protein of the secretome, pro-
vided that the target protein or a sufficient fragment of it (e.g., syn-
thetic peptide) are available for the selection
procedure.60,130,169,170 In vivo studies by ER intrabody gene
delivery include knockdown in xenograft tumor models and in an
Alzheimer’s disease mouse model.88,131,132 The successful in vivo
protein knockdown in transgenic intrabody mice by ER intrabod-
ies has opened new opportunities to study genetically lethal phe-
notypes.134 If the hypothesis can be confirmed that the strength of
the in vivo knockdown can be influenced by the strength of an
exogenous promoter, different or inducible promoters in mice
will certainly facilitate the establishment of novel disease-related
preventive and therapeutic mouse models. The potential for intra-
body expression restricted to specific tissues by appropriate pro-
moters will yield new insights into the in vivo function of new
proteins in subpopulations of cells. Although blocking cell surface
receptors by secretion of antibodies to the cellular environment is
broadly applicable to cell culture and has also been performed in
vivo in transgenic mice,159 this type of interference at the protein
level is little defined because the location of the effect in vivo can
only poorly be controlled. Since secreted antibodies can be trans-
ported to different locations in a transgenic mouse, a secreted
antagonistic antibody may not only have an autocrine and para-
crine, but also an endocrine effect, which renders tissue specific
knockdowns at the protein level impossible by this method.

The most commonly used techniques to knock down pro-
teins of the secretome are so far not those taking action at
the post-translational level, but methods that take effect at
the RNA or DNA level. RNA interference (RNAi) has
become a widely used standard method for knocking down
proteins as it is generally applicable provided that the
sequence of the target mRNA is known. Only a short RNA
sequence (short interfering RNA, siRNA) that can induce
degradation of all the homologous cellular mRNA as part of
an RNA induced silencing complex (RISC) is required.171,172

Generating siRNA technically was less challenging and less
time-consuming than ER intrabody generation by the hybrid-
oma technology, but this situation is currently changed due
to the availability of automated miniaturized in vitro anti-
body selection methods, which provide the antibody gene in
the correct format (scFv) for immediate subcloning.

Consequently, the increasing availability of antibody genes and
efforts to generate databases with detailed descriptions for affinity
reagents60,169, 173,174 can in the future provide a well-annotated
resource of already existing antibody genes that are ready to use as
ER intrabodies. For these “ready to use” antibody genes, which are
available in the thousands already, generating a knockdown with
the ER intrabody will not require any more time than is required
for an RNAi-based approach. Although confirmation by a larger
data set is needed, a claimed advantage of the ER intrabody tech-
nology over RNAi is the potentially longer half-life of the protein-
based ER intrabodies compared to RNA-molecules.175 Another
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inherent property of ER intrabodies that represents an advantage
over RNAi concerns specificity, which can be thoroughly assessed
biochemically by a multitude of assays before applying an antibody
intracellularly, while specificity and off-target effects of RNAi are
often more difficult to predict.

RNAi, which is thought to have its origins in nature from an
antiviral defense mechanism,176-178 has been found to cause sev-
eral off-target effects, including an interferon response179-183 and
aberrant expression of up to more than 1000 genes as found by
Persengiev et al.181 Off-target silencing of siRNA/shRNA results
from imperfect pairing of siRNA strands with sequence motifs
that reside primarily in 30 UTR regions of cellular mRNA.
siRNA and miRNA share the same silencing machinery and the
magnitude of regulation of siRNA off-target transcripts is similar
to that of micro RNAs.184 Furthermore, siRNA recognize TLR3,
TLR7 and TLR8 resulting in secretion of interferon-a and syn-
thesis of pro-inflammatory cytokines.185 RNAi and the ER intra-
body technology both have broad application areas as they both
can be applied in vitro and in vivo. Applications in vivo have
already been performed both for RNAi and the ER intrabody
technology in the form of in vivo delivery88,131,186 and in the
form of transgenic mice.134,187 However, therapeutic applica-
tions are hampered by the hurdle posed by the need for efficient
in vivo delivery of nucleic acids, and are still subject to safety con-
cerns for both RNAi and the ER intrabody technology.175,188-190

Consequently, applications have primarily focused on use of the
technologies as research tools. The same is true for the classic
knockout strategies at the DNA level.

Genetic knockouts in mice have greatly contributed to a better
understanding of human disease, and, as a consequence, can yield
new therapeutic approaches. However, in spite of substantial
efforts aimed at cataloging the mammalian genome, e.g., the
International Mouse Phenotyping Consortium (www.mousephe-
notype.org), genetic knockouts do not always allow complete
analysis of essential genes because approximately 30% of genetic
knockouts are embryonically lethal.191 If a complete knockout of
a gene is lethal early in development, alternative strategies for
functional knockdown are required to study functions of the
gene in later developmental stages and adults. ER intrabodies
offer a solution. Although the genetic knockout of the cell adhe-
sion molecule VCAM1 leads to early embryonic death, mice
with an anti-VCAM1 ER intrabody exhibited depletion of
VCAM1 at the cell surface, but were nevertheless viable.134 This
demonstrates the potential of the ER intrabody technology as an
alternative strategy for studying the phenotype of embryonically
lethal knockouts in adult mice.

In conclusion, the inherent properties of ER intrabodies
implicate some limitations, but also specific strengths that can
serve to compensate shortcomings of the other established tech-
nologies for functional studies of the secretome.

The Promising Future of Intrabody Approaches

Although intrabody approaches have been known for more
than a quarter of a century, and the above examples are very

encouraging, this approach is not as widely used for cell biologi-
cal research as could be expected given the possible benefits. In
particular, the technology had a very slow start. What is the rea-
son for that? The answer is not simple, and comprises a multitude
of factors. The first intrabody studies used microinjection of
mRNA, a cumbersome and inefficient method of limited speci-
ficity, resulting in a first decade of very rare applications. In the
early nineties, the method gained some momentum with the
advent of essential technological elements like the single chain
format and recombinant antibody technologies. Typical applica-
tions followed the cytoplasmic intrabody approach. In light of
the quite substantial requirements of getting an antibody com-
bining both functional neutralization of its target and correct
folding in reducing milieu, it can be assumed that those candi-
dates were not easily identified from the collection of available
hybridomas. In the early days of intrabody technology, a substan-
tial number of intrabody trials may have failed due to the limited
availability of suitable monoclonal antibodies and the limited
knowledge about the biochemical requirements. Further, gener-
ating recombinant scFv antibodies from hybridoma, and particu-
lar expressing it in E. coli for functional validation, was a
technology not widespread among the typical cell biology lab of
the time. Quite a number of scFvs generated from hybridoma
showed very poor production yields in E. coli,192 generating sub-
stantial problems for the necessary biochemical characterizations.
Another problem, which originated from the use of early hybrid-
oma cell lines as sources for the isolation of antibody DNA, was
the frequently observed expression of multiple antibody mRNAs
in these cells due to the aneuploid/deregulated state of the
hybridoma cells, lacking allelic exclusion and allowing accumula-
tion of mutations.193-196 This mandated substantial experimental
efforts to confirm that the predominant V region PCR bands
found from any hybridoma indeed encoded the V region subset
providing the specificity identified in the supernatant.197 These
factors contributed to give the intrabody technology a mixed rep-
utation among the typical possible users who were not acquainted
with recombinant antibody technology. Nevertheless, successful
projects using hybridoma cells as a starting point accumulated
over time and provided a slow but steady development of the
technology.

Only in the last decade have recombinant in vitro antibody
selections from gene repertoires been utilized in substantial num-
bers, allowing much quicker access to the antibody and providing
the V region encoding DNA without any additional experimen-
tal effort. This also substantially increases the chances of getting
antibodies with the required complex property combination
using appropriately tuned libraries and panning strategies from
the start. The technology to generate research antibodies from
phage display in large numbers is now robust and reliable,65-67,
69,169 and international research consortia like the “Affinomics”
initiative (www.affinomics.org) in the EU and similar initiatives
in the US have already generated several thousands of antibodies
to hundreds of new potential intrabody targets together with
their V region genes, providing right away a vast resource of scFv
DNA for future intrabody approaches. Studies on introducing
antibodies from the outside to interfere with intracellular
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functions show the limitations of this approach,24 so the quick
availability and fast generation of recombinant antibodies for
intrabody approaches may motivate more researchers to try this
technology for their functional analysis. Protein functions of bio-
informatically predicted ORFs of so far unknown function could
be evaluated in respect of resulting knockout phenotypes, even
without the availability of the resulting protein, because antibod-
ies can efficiently be generated by phage display to chemically
synthetized peptides based on the ORF sequence. In the future,
this strategy allows a completely new systematic approach to
identify protein functions of yet uncharacterized members of the
proteome, particularly straightforward for the membrane prote-
ome where most binders may be able to generate a phenotype
after just a single subcloning step into an ER intrabody vector.
Further, new methods for the rapid generation of transgenic
organisms, like CRISPR/Cas9 or TALEN, are maturing, and will
further facilitate the experiments required to screen for a pheno-
type in vivo.

The application of the intrabody technology, in particular
the most facile ER intrabody approach, can thus be expected
to grow much more rapidly in the near future than in its first
2 decades.
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