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Abstract: Paclitaxel is a microtubule-stabilizing chemotherapeutic agent approved for the treatment
of ovarian, non-small cell lung, head, neck, and breast cancers. Despite its beneficial effects on
cancer and widespread use, paclitaxel also damages healthy tissues, including the skin. However, the
mechanisms that drive these skin adverse events are not clearly understood. In the present study, we
demonstrated, by using both primary epidermal keratinocytes (NHEK) and a 3D epidermis model,
that paclitaxel impairs different cellular processes: paclitaxel increased the release of IL-1α, IL-6,
and IL-8 inflammatory cytokines, produced reactive oxygen species (ROS) release and apoptosis,
and reduced the endothelial tube formation in the dermal microvascular endothelial cells (HDMEC).
Some of the mechanisms driving these adverse skin events in vitro are mediated by the activation
of toll-like receptor 4 (TLR-4), which phosphorylate transcription of nuclear factor kappa B (NF-κb).
This is the first study analyzing paclitaxel effects on healthy human epidermal cells with an epidermis
3D model, and will help in understanding paclitaxel’s effects on the skin.

Keywords: paclitaxel; epidermis; NHEK; 3D epidermis model

1. Introduction

Paclitaxel is an anticancer drug, extracted from the bark of the Pacific yew tree Taxus
brevifolia [1]. It was first approved in 1992 by the US Food and Drug Administration (FDA)
for the treatment of advanced ovarian cancer and since then, it has been used in several
cancers such as breast cancer, endometrial cancer, non-small-cell lung cancer, bladder cancer,
cervical carcinoma, and AIDS-related Kaposi sarcoma [2]. Paclitaxel exerts its anticancer
activity through its microtubule stabilization properties, which impair the dissociation of
microtubules during mitosis. Therefore, paclitaxel disrupts mitosis and blocks cell cycle
progression, leading to cell death [1–3]. The mechanisms by which paclitaxel leads to
apoptosis are not clearly understood. However, several signaling pathways have been
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described. Depending on paclitaxel concentration, it can lead to apoptosis through the
induction of Raf-1 activation, which is responsible for apoptotic control, or under the
influence of p53 and p21, which also regulate proliferation and apoptosis [4]. Paclitaxel has
been shown to exert its mechanism of action activating other signal-transduction pathways
associated with proapoptotic signaling. Paclitaxel is a ligand to toll-like receptor 4 (TLR4);
after binding to TLR4, it can trigger the MyD88, mitogen-activated protein kinase (MAPK)
and transcription of nuclear factor kappa B (NF-κB) pathways, which result in the release
of cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-8 (IL-8) [5].
Amongst the transcriptional factors activated, NF-κB plays an important role in coordinately
controlling apoptosis [6]. Paclitaxel, related to MAPK, modulates the regulatory proteins of
the BCL2 family, and is involved in programmed cell death [7–9]; treatment with paclitaxel
activates the c-Jun N-terminal kinase (JNK), which is also associated with apoptosis [10,11].

Dermatological adverse events are frequent in patients under paclitaxel treatment.
However, these events are often neglected in clinical practice and the true incidence is
not known. The evidence of the skin adverse effects caused by paclitaxel are described in
case reports. Amongst the adverse events described, erythematous rashes, inflamed skin,
macules, papules, pustules and scaling, swelling of hands and feet, oedema and dorsal
hand-foot syndrome can be found. The paclitaxel-induced rash is often found on warm sites
prone to trauma, such as the folds, contact areas, or under dressing. Pigmentary changes
in sun-exposed areas, alopecia, and nail changes have also been described [12–19]. These
effects are generally mild to moderate, classified by Common Terminology Criteria for
Adverse Events (CTCAE) as grade 1 or 2 in severity. When the severity is grade 3 or higher,
it is often caused by a toxic and non-immunoallergic mechanism. Therefore, they are usu-
ally dose-dependent, and sometimes necessitate transient dose interruptions, reductions,
or termination of the treatment. Most evidence of these adverse events comes from case
reports and oncology studies, but the mechanisms driving paclitaxel skin adverse events
have not been well described [18]. Although the mechanisms of paclitaxel-induced skin
alterations have not been described, a few reports examine its effects on keratinocytes: in
proliferating human hair follicle matrix keratinocytes, paclitaxel induces extensive mitotic
defects and apoptosis [20,21] and also induces an apoptotic response in transformed HaCat
keratinocytes paclitaxel [22]. Further, cutaneous biopsies from skin lesions of patients
under paclitaxel treatment show atypical keratinocytes and abundant apoptotic bodies
throughout the epidermis layers [23,24]. Other studies in zebrafish larvae showed that
paclitaxel promotes epithelial damage and induces keratinocyte-specific gene upregula-
tion [25]. These findings suggest that paclitaxel skin adverse effects might be mediated by
its effects on epithelial keratinocytes. Of note, studies on keratinocyte monolayer cultures
can lack the physiological functions of the stratified epithelium and could misinterpret
the results obtained in preclinical studies. Thereby, various three-dimensional (3D) skin
equivalents reproducing in vivo conditions have been developed for pharmacologic and
toxicologic in vitro testing as an alternative to animal models [26,27]. One of these models
is characterized by the growth of keratinocytes on a feeder layer of lethally irradiated 3T3
fibroblasts. The feeder layer supports and maintains keratinocyte colony growth and strati-
fication [28,29], producing a 3D model that is compatible with autologous and allogenic
transplantation [30,31].

Paclitaxel maximum plasma concentrations achieved are dose-related, for instance,
single-dose intravenous administration at 135–350 mg/m2 produces a mean plasma concen-
tration of 0.23 to 10 µM. Of note, exposure to paclitaxel is higher in tumor tissue compared
with other tissues [32], but despite its beneficial effects on cancer, paclitaxel also damages
healthy tissues, including the skin. To our knowledge, the direct effects of paclitaxel on pri-
mary human keratinocytes remain elusive, and the mechanisms that promote keratinocyte
alterations are yet to be elucidated. The previously described observations of paclitaxel
in hair follicle keratinocytes and skin biopsies, along with the lack of investigation on the
effects of paclitaxel (0.3, 3 and 30 µM) in keratinocytes, lead us to investigate its molecular
effects on primary human keratinocytes and in a 3D epidermis model.
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2. Results
2.1. Non-Cytotoxic Doses of Paclitaxel Induce Inflammation in a 3D Epidermis Model

The effects of paclitaxel on cell viability were examined in NHEK cells. Incubation
with the positive control SLS demonstrated that both assays were sensitive to changes in
viability and cytotoxicity. Treatment with increasing doses of paclitaxel (0.3–30 µM) for
24 h was safe for NHEK keratinocytes as it did not induce significant viability reduction
and LDH release. The mean viability percentages were 86.53 ± 3.5%, 94.46 ± 0.8%, and
97.35 ± 1.085% at concentrations 30 µM, 3 µM, and 0.3 µM, respectively (Figure 1A). The
LDH release was lower than 2.5% in all doses examined and was not significant compared
to the control (Figure 1B). The stratification of the 3D epidermis cell model was confirmed by
the hematoxylin-eosin staining as shown in Figure 2A. Keratinocytes were distributed into
the principal epidermis layers. The basal, spinous, and granular layers are present in the
reconstructed model and its terminal differentiation resulted in the presence of the stratum
corneum, analogously to the epidermal in vivo structure of healthy skin. Since IL-1α, IL-6,
and IL-8 are known as skin inflammation molecular markers [33–35], and these markers
have been found to be upregulated by paclitaxel in some cancer cell lines [7,11,36], we
analyzed whether paclitaxel could mediate an inflammatory response in the 3D epidermis
model through the induction of such cytokines. Incubation of the 3D model with paclitaxel
induced a significant dose-dependent release of IL-1α, IL-6, and IL-8 (Figure 2B–D).
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by LDH assay. Results are expressed as mean ± standard deviation of three independent experi-
ments (n = 3). Multiple comparisons analysis of variance (ANOVA) was followed by the post hoc 
Bonferroni test. * p < 0.05 vs. control. PTX: paclitaxel. SLS: sodium lauryl sulfate. 

Figure 1. Paclitaxel does not modify cell viability and cytotoxicity. NHEK cells were incubated for
24 h with increasing paclitaxel concentrations. (A) Paclitaxel, at the concentrations assayed did not
show alterations on cell viability measured by the MTT assay (B) nor in the cytotoxicity measured by
LDH assay. Results are expressed as mean ± standard deviation of three independent experiments
(n = 3). Multiple comparisons analysis of variance (ANOVA) was followed by the post hoc Bonferroni
test. * p < 0.05 vs. control. PTX: paclitaxel. SLS: sodium lauryl sulfate.

2.2. Paclitaxel-Induced Oxidative Stress Response

As it has been proposed that the apoptotic effects of paclitaxel may be mediated by
its capacity to induce the release of reactive oxygen species (ROS) [25,37,38], the effect of
paclitaxel on intracellular ROS levels was analyzed in NHEK cells and in a 3D epidermis
model. As shown in Figure 3A, exposure to paclitaxel doses of 0.3, 3, and 30 µM for 4 h,
caused a significant increase in ROS production. To assess which molecules might be taking
part in the oxidant induction of paclitaxel, gene, and protein expression of nuclear factor
erythroid-2-related factor 2 (Nrf2), superoxide dismutase (SOD1), and NADPH oxidase
4 (NOX4) were analyzed in the 3D epidermal model. Nrf2 is a transcription factor that
regulates the endogenous antioxidant defense, SOD1 is a ROS scavenging gene and NOX4
is one of the primary enzymatic sources of ROS. Treatment of this model with paclitaxel for
24 h induced a decrease in the mRNA expression of SOD1 and Nrf2 in a dose-dependent
manner (Figure 3B). The same incubation time induced the upregulation of NOX4 in all
paclitaxel doses (Figure 3B). Figure 3C shows that incubating the 3D epidermis model for
24 h with paclitaxel produced the same response in the protein expression as in the mRNA
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expression: A concentration-dependent decrease in both SOD1 and Nrf2 protein expression
and a concentration-dependent increase in NOX4.
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Figure 2. Paclitaxel induces a dose-dependent inflammatory cytokine release in a 3D epidermal
model. (A) Paraffin section from the 3D epidermis model stained with hematoxylin and eosin.
Scale bar 100 µM. The 3D epidermal model was incubated for 24 h with increasing paclitaxel
concentrations. (B) IL-1α, (C) IL-6, and (D) IL-8 levels were measured by ELISA. Results are expressed
as mean ± standard deviation of three independent experiments (n = 3). Multiple comparisons
analysis of variance (ANOVA) was followed by the post hoc Bonferroni test. * p < 0.05 vs. control.
PTX: paclitaxel.

2.3. Paclitaxel-Induced Apoptosis

Detection of annexin V-FITC by flow cytometry was used to analyze the apoptosis
percentage induced by paclitaxel in NHEK cells (Figure 4A,B). Keratinocytes incubation
with paclitaxel for 24 h induced an increase in cellular apoptosis. Representative propidium
iodide versus annexin V-FITC plots are shown in Figure 4A for each condition. Higher
doses of paclitaxel induced significantly higher apoptosis rates, reaching up to 25.8 ± 2.9%
apoptosis at the highest dose 30 µM (Figure 4B). To analyze the apoptosis molecular markers
in the 3D epidermis model, gene and protein expression of p53, p21, and BCL2 were
measured (Figure 4C–E). 24 h of paclitaxel incubation reduced BCL2 mRNA expression
while p53 and p21 were upregulated. All markers showed a dose-dependent modulation
and statistically significant variations. Protein levels of BCL2 and p53 were also analyzed
by Western blot and showed a dose-dependent increase in the case of p53, while protein
levels of BCL2 decreased significantly (Figure 4F).
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Figure 3. Paclitaxel induces a dose-dependent oxidative stress response in normal human epidermal
keratinocytes (NHEK) cells and in a 3D epidermal model. (A) NHEK cells were incubated for 4 h
with increasing paclitaxel concentrations. Quantification of reactive oxygen species (ROS) levels
measured by the H2DCF-DA assay. Data are expressed as reactive oxygen species (ROS) DCF
relative fluorescence units. (B) 3D epidermal model tissues were incubated for 24 h with increasing
paclitaxel concentrations. SOD1, Nrf2 and NOX4 mRNA levels were measured by real-time PCR.
Data are expressed as 2−∆Ct. (C) 3D epidermal model tissues were incubated for 24 h with increasing
paclitaxel concentrations. SOD1, Nrf2 and NOX4 protein levels were analyzed by western blotting.
Quantification was performed by densitometry and normalized to β-actin. Results are expressed
as mean ± standard deviation of three independent experiments (n = 3). Multiple comparisons
analysis of variance (ANOVA) was followed by the post hoc Bonferroni test. * p < 0.05 vs. control.
PTX: paclitaxel.
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measured by flow cytometric analysis. (A) Representative plots for each paclitaxel concentration
are displayed. (B) Apoptosis plots were analyzed by FlowJo software (TreeStar Inc., Ashland, OR,
USA). Results are expressed as the mean apoptosis percentage of annexin-positive and propidium
iodide-negative cells, which represent early apoptotic cells. (C–E) 3D epidermal model tissues were
incubated for 24 h with increasing paclitaxel concentrations. P53, p21, and BCL2 mRNA levels were
measured by real-time PCR. Data are expressed as 2−∆Ct. (F) 3D epidermal model tissues were
incubated for 24 h with increasing paclitaxel concentrations. P53 and BCL2 protein levels were
analyzed by Western blotting. Quantification was performed by densitometry and normalized to
β-actin. Results are expressed as mean ± standard deviation of three independent experiments
(n = 3). Multiple comparisons analysis of variance (ANOVA) was followed by the post hoc Bonferroni
test. * p < 0.05 vs. control. PTX: paclitaxel.

2.4. Paclitaxel-Targeted Angiogenesis

Paclitaxel has a strong anti-angiogenic activity in cancer cells through the suppression
of the vascular endothelial growth factor (VEGF) expression, which plays a main role
in the growth of new blood vessels, by activating the endothelial nitric oxide synthase
(eNOS) [39–41]. To evaluate these events in the skin, the effect of paclitaxel on endothelial
tube formation was examined in human dermal microvascular cells. Representative images
for each condition are shown in Figure 5A. HDMECs in the control condition formed
capillary-like structures. However, incubation with paclitaxel for 16 h showed an impair-
ment of angiogenesis in all doses. The analysis was performed by measuring the significant
decrease of the tube length, total branches and total loops created by HDMECs in the
gel matrix after paclitaxel incubation (Figure 5B). The molecular markers of angiogenesis,
VEGF and eNOS, were also evaluated in the 3D epidermis model. After paclitaxel treat-
ment, VEGF and eNOS mRNA expression were significantly reduced in a dose-dependent
manner (Figure 5C). The same decrease was induced by paclitaxel in VEGF protein levels
(Figure 5D).

2.5. NF-κB Transcription Factor Activation by Paclitaxel

The effect of paclitaxel on NF-κB activation was evaluated in the 3D epidermis model.
The 3D model was incubated for 1 h with paclitaxel and both NF-κB unphosphorylated
(Figure 6A) and phosphorylated (Figure 6B) forms were analyzed by Western blot. While the
unphosphorylated form of the protein remained stable after incubation with all paclitaxel
concentrations, NF-κB phosphorylation increased at all doses.

2.6. TLR4 Mediates Paclitaxel Effects on Human Keratinocytes

Previous evidence indicates that paclitaxel is a ligand to TLR4, which is expressed
on innate immune cells, including macrophages [5,42]. However, there is no evidence in
human skin. In this work, NHEK cells were transiently transfected with siRNA (-) control
and siRNA-TLR4 to reduce TLR4 expression. The stimulation of NHEK cells with paclitaxel
3 µM on pro-inflammatory IL-1α, IL-6, and IL-8 cytokine release, and ROS production
including SOD1, NOX4, and Nrf2 was significantly inhibited in cells transfected with
siRNA-TLR4 (Figure 7A–G). The effects of paclitaxel reducing the anti-apoptotic protein
BCL2 were reduced in siRNA-TLR4 treated cells (Figure 7H). The siRNA-TLR4 transfection
also abrogated the effects of paclitaxel on eNOS and VEGF expression (Figure 7I,J) and
reduced the phosphorylation of NF-κB in NHEK cells (Figure 7K).
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generated by WimTubeTM software (Onimagin Technologies SCA, Córdoba, Spain), in which each 
color represents a structure: blue represents the covered area, red the tubes, white the branching 
points and yellow the number of loops. (B) Quantitative evaluation of morphological features of the 
capillary-like network structure. Tube length, total branching points and total loops after treating 
HDMEC with increasing paclitaxel concentrations. The analysis was performed using WimTubeTM 
software (Onimagin Technologies SCA, Córdoba, Spain). (C) 3D epidermal model tissues were in-
cubated for 24 h with increasing paclitaxel concentrations. eNOS and VEGF mRNA levels were 
measured by real-time PCR. Data are expressed as 2−ΔCt. (D) In vitro 3D epidermal model was incu-
bated for 24 h with increasing paclitaxel concentrations. VEGF protein levels were analyzed by 
Western blotting. Quantification was performed by densitometry and normalized to β-actin. Results 
are expressed as mean ± standard deviation of three independent experiments (n = 3). Multiple com-
parisons analysis of variance (ANOVA) was followed by the post hoc Bonferroni test. * p < 0.05 vs. 
control. PTX: paclitaxel.  

Figure 5. Paclitaxel inhibits endothelial tube formation in human dermal microvascular endothelial
cells (HDMEC) and reduces eNOS and VEGF expression in the 3D epidermis. (A) HDMEC were
incubated with increasing paclitaxel concentrations for 16 h, and angiogenesis was analyzed by
the endothelial tube formation assay. Representative images of the tubular structures formed are
displayed. Top images show the green, fluorescent calcein staining. Bottom images show the overlay
generated by WimTubeTM software (Onimagin Technologies SCA, Córdoba, Spain), in which each
color represents a structure: blue represents the covered area, red the tubes, white the branching
points and yellow the number of loops. (B) Quantitative evaluation of morphological features of the
capillary-like network structure. Tube length, total branching points and total loops after treating
HDMEC with increasing paclitaxel concentrations. The analysis was performed using WimTubeTM

software (Onimagin Technologies SCA, Córdoba, Spain). (C) 3D epidermal model tissues were
incubated for 24 h with increasing paclitaxel concentrations. eNOS and VEGF mRNA levels were
measured by real-time PCR. Data are expressed as 2−∆Ct. (D) In vitro 3D epidermal model was
incubated for 24 h with increasing paclitaxel concentrations. VEGF protein levels were analyzed by
Western blotting. Quantification was performed by densitometry and normalized to β-actin. Results
are expressed as mean ± standard deviation of three independent experiments (n = 3). Multiple
comparisons analysis of variance (ANOVA) was followed by the post hoc Bonferroni test. * p < 0.05
vs. control. PTX: paclitaxel.
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and incubated for 24 h with paclitaxel 3 µM. (A–C) IL-1α, IL-6 and IL-8 supernatant levels were
measured by ELISA. (D) Reactive oxygen species (ROS) were measured using H2DCF-DA assay in
NHEK stimulated with paclitaxel for 4 h. (E–J) The expression of SOD1, NOX4, Nrf2, BCL2, eNOS,
and VEGF was measured by real-time PCR. Data are expressed as 2−∆Ct. (K) NHEK cells were
incubated for 1 h with paclitaxel concentrations. NF-κB and p-NF-κB protein levels were analyzed
by Western blotting. Quantification was performed by densitometry and normalized to NF-κB/β-
actin. Results are expressed as mean ± standard deviation of three independent experiments (n = 3).
Multiple comparisons analysis of variance (ANOVA) was followed by the post hoc Bonferroni test.
* p < 0.05 vs. siRNA (-) Control. # p < 0.05 vs. siRNA (-) PTX 3 µM. PTX: paclitaxel.

3. Discussion

Paclitaxel’s skin adverse effects have been described from a clinical point of view and
the mechanisms underlying these events have not been described thoroughly. The effects
of paclitaxel on the cellular mechanisms triggering its toxicity have been studied predomi-
nantly on malignant cells [43]. To date, few studies have examined these effects in normal
cells. Therefore, we wanted to investigate in this study paclitaxel in primary keratinocytes
and in a 3D epidermal model, to further comprehend the mechanisms triggering its skin
alterations. This is the first study analyzing paclitaxel effects on both models, showing that
paclitaxel induced inflammation, oxidative stress generation, apoptosis, and angiogenesis
inhibition through the activation of TLR4 and NF-κB pathways. There is a limitation of
the study to be mentioned. The feeder layer that supports the epidermal growth and
differentiation of the keratinocytes in the 3D model is made by BALB/3T3 fibroblasts.
There is a minor possibility that the presence of fibroblasts could affect the measurements
performed in this study. However, due to the substantial difference in cell number between
keratinocytes and fibroblasts, and the fact that the feeder layer is irradiated and therefore,
growth-arrested, we considered that the contribution of fibroblasts to the results are minor
and will not significantly bias our data.

We first examined the cytotoxic effects of paclitaxel within the clinically achievable
plasma concentrations, ranging from 0.3 to 30 µM, on NHEK cells. None of the concentra-
tions reduced cell viability significantly, nor induced LDH release. These concentrations
were innocuous to keratinocytes and therefore were selected for further experiments. To
validate the reconstruction of the 3D epidermis model, the hematoxylin–eosin staining
demonstrated the development of a fully differentiated epidermis. The 3D epidermis
model was used as a mimicker of a healthy epidermis to evaluate the molecular modulation
induced after treatment with the clinically achievable plasma concentrations of paclitaxel.

As paclitaxel-induced inflammation may be a trigger in the development of skin
adverse effects, we analyzed the expression of cytokines IL-1α, IL-6, and IL-8 in the
3D epidermis model. IL-1 is constitutively produced by keratinocytes in the stratum
corneum [33] and released as a primary response to various stimuli. It also induces the
release of secondary mediators, such as IL-6 and IL-8 [44]. IL-6 stimulates keratinocyte
proliferation and is studied in diseases associated with epidermal hyperplasia and in wound
healing. IL-8 promotes dendritic cell migration and the recruitment of monocytes and
neutrophils after external stimuli, as key steps in the initiation phase of skin inflammation.
Additionally, keratinocyte production of IL-8 has been observed in autoimmune-mediated
diseases [35,45]. The levels of IL-1α, IL-6, and IL-8 released by the 3D epidermis model were
increased after paclitaxel treatment. While there is a lack of information that relates IL-1α to
paclitaxel, previous works have described that paclitaxel induces the upregulation of IL-6
in ovarian cancer cells through the TLR4–NF-κB cascade [7]. Further, plasma levels of IL-6
and IL-8 were increased in patients with breast cancer after paclitaxel administration [46].
Paclitaxel has been shown to activate IL-8 transcriptionally in ovarian carcinoma cells [47]
and increases IL-8 synthesis in a subset of human lung carcinoma cell lines through an NF-
κB-dependent mechanism [36]. Other authors have related paclitaxel to the upregulation
of IL-8 through the kinase JKN in a human ovarian cancer cell line [11]. These findings
show that paclitaxel can upregulate different cytokines in patients and cancer cell lines, in
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agreement with the results obtained in this report. However, this is the first study reporting
paclitaxel-induced increase of IL-1α, IL-6, and IL-8 in a 3D epidermis model.

Regarding apoptosis, paclitaxel induces the activation of the kinase Raf1, which is
responsible for the apoptotic control through the suppression of BCL2, an antiapoptotic
protein [41,48]. In the absence of Raf1 activity, it can induce apoptosis under the influence of
the proteins, p53 and p21 [4]. The tumor suppressor protein p53 regulates proliferation and
apoptosis. In normal cells, DNA damage increases levels of p53, which then triggers a cell
cycle arrest mediated by the p21 protein, to promote DNA damage repair mechanisms or
apoptosis [4,49]. As expected, we observed an increase in apoptosis in NHEK keratinocytes
after treatment with paclitaxel. In agreement with these results, paclitaxel has been shown
to cause apoptosis in hair matrix keratinocytes [20,21]. Additionally, paclitaxel modulates
the expression of BCL2 and increases p53 expression levels [50,51]. Here, we showed that
treatment with paclitaxel in the 3D epidermis model reduced the BCL2 gene and protein
levels and increased gene and protein expression of p21 and p53. These results show that
the effects derived from the antineoplastic action of paclitaxel also occur in epidermal cells
and its apoptotic effects in the skin might be driven by different signaling pathways, as
shown by the modulation of BCL2, p53 and p21.

It has been proposed that the apoptotic effects of paclitaxel may be mediated by its
capacity to induce the release of ROS [25,37,38]. However, the relationship of oxidative
stress to the overall mechanism of paclitaxel is not well established. Therefore, we analyzed
the oxidative stress response induced by paclitaxel in keratinocytes and the 3D epidermis
model. Paclitaxel has been shown to induce ROS in multiple cell lines, such as the hu-
man breast cancer line [37,52,53], A549 cells [53], stromal fibroblasts [54], and endothelial
cells [38]. Similarly, our results showed that exposing NHEK cells to increasing doses of
paclitaxel increased ROS production. We then examined, in the 3D epidermis model, the
gene and protein expression of SOD1, Nrf2, and NOX4, proteins involved in the regulation
of ROS, and used as markers in the study of cellular oxidation. The SOD1 enzyme acts
by dispersing oxygen superoxide and hydrogen peroxide in the cell and the transcription
factor Nrf2 plays an important role in regulating the transcription of antioxidant proteins.
On the other hand, NOX4 is a key factor in the intracellular homeostasis of oxidation
reactions and is recognized as one of the main ROS producers [50,55–57]. Treatment with
paclitaxel in the 3D epidermis model led to a reduction in SOD1 and Nrf2 gene and protein
expression, which implies that paclitaxel impairs its antioxidant response, as well as in
cancer-associated fibroblasts [58]. Contrarily, NOX4 was upregulated by paclitaxel in the
3D epidermal model, consistently with the increase in ROS production seen on NHEK cells.
Of note, NOX4 upregulation associated with an ROS increase has also been described by
other authors in human breast cancer lines [37,52,53].

Paclitaxel accumulates in endothelial cells [59] and exhibits a strong anti-angiogenic
activity in cancer cells through the suppression of VEGF expression [39,40]. VEGF takes
part in the angiogenesis signaling pathway by activating the endothelial nitric oxide syn-
thase eNOS [60], which has reduced expression after paclitaxel treatment in endothelial
cells [41,51]. Physiological levels of nitric oxide (NO) are required to maintain the nor-
mal functioning of cells, including keratinocytes. NO is vital as a signaling molecule
regulating multiple epidermal functions, including keratinocyte proliferation and differ-
entiation, apoptosis, migration, and oxidative stress, as well as cytokine production [61].
NO is produced by eNOS, that is expressed in human keratinocytes in a similar way that
VEGF [61,62]. In this work, we examined if the anti-angiogenic activity of paclitaxel could
happen as well in the skin, by analyzing endothelial tube formation in primary human
dermal microvascular endothelial cells (HDMEC). Treatment with paclitaxel in HDMEC
produced a decrease in the generation of the endothelial tube. It affected the number of
branches and loops formed, and the total length of the tube network. In the 3D epidermis
model, VEGF and eNOS expression was reduced as well as the protein expression of VEGF.
From these results, we speculated that reduced levels of eNOS imply low levels of physio-
logical NO. This could affect the proper epidermis permeability and wound healing, and
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induce an imbalance of pro-inflammatory cytokines [61], as we have seen in our results. As
some authors propose that paclitaxel anti-angiogenic properties may be regulated by ROS
production in endothelial cells [38], we can infer that elevated levels of oxidative stress in
skin keratinocytes might also drive the anti-angiogenic properties in HDMEC. Then, our re-
sults obtained in skin cells regarding the modulation of angiogenesis by paclitaxel, correlate
with those seen on cancer cell lines and show that, since angiogenesis is a process closely
related to skin alterations [63], it may be taking part in paclitaxel’s skin adverse effects.

After paclitaxel treatment, activation of NF-κB transcription factor has been shown
to play an important role in the regulation of inflammation, apoptosis, and cell cycle
progression [64]. This transcription factor has also been associated with paclitaxel-induced
ROS production and angiogenesis [38]. Given that, we decided to examine the activation of
the transcription factor in a 3D epidermal model. Treatment of this model with paclitaxel
induced the phosphorylation of the factor NF-κB, which indicated its activation, and its
possible implication in driving the cellular processes investigated in this report. Between the
different activators of NF-κB, TLR4 plays an important role in the innate immune response.
The activation of TLR4 triggers different molecular pathways including JNK, P38 and
NF-κB [65]. Previous reports have shown that paclitaxel can activate TLR4 in macrophages
and dendritic cells, mimicking the effects of lipopolysaccharide secreting inflammatory
cytokines [5,66]. TLR4 is expressed in human keratinocytes and its activation has been
related to inflammatory, oxidative, and anti-proliferative effects [67], showing antineoplastic
effects in cutaneous squamous cell carcinoma [68]. In this work, we showed novel evidence
on the effects of paclitaxel activating TLR4 and promoting NF-κB phosphorylation to
induce keratinocyte inflammation, oxidative stress, apoptosis, and dermal antiangiogenic
activity. The reduction of TLR4 expression by siRNA-TLR4 partially abrogated the cellular
effects induced by paclitaxel in keratinocytes. Currently, the dermatological adverse effects
of paclitaxel have been described from a clinical perspective, but the knowledge about
their cellular and molecular mechanisms is lagging. There is limited literature in which the
effects of paclitaxel in healthy keratinocytes are explained. However, our results present
novel evidence of the effects of paclitaxel on skin. This report shows that paclitaxel activates
TLR-4 and promotes NF-κB phosphorylation, which results in the increase of oxidative
stress, inflammation, and apoptosis, and the reduction of angiogenesis. These events could
explain the direct skin side effects of paclitaxel in healthy skin, although the interplay
between the different cellular processes and the associated signaling pathways are yet to
be discovered.

4. Materials and Methods
4.1. Cell Culture and 3D Epidermis Model Reconstruction

Cellular experiments were performed in normal human epidermal keratinocytes
(NHEK) (PromoCell, Heidelberg, Germany) and primary human dermal microvascular
endothelial cells (HDMEC) (PromoCell, Heidelberg, Germany). NHEK were cultured in
keratinocyte growth medium-2 (KGM-2), supplemented with SupplementMix and CaCl2
(60 µM) (Promocell, Heidelberg, Germany). HDMEC were cultured in endothelial cell
growth basal medium-2 (Lonza, Basel, Switzerland). All cell lines were maintained in a
humidified 5% CO2 atmosphere at 37 ◦C.

3D epidermis cell models were reconstructed using the BALB/3T3 feeder-layer tech-
nique adapted from Mak et al. [69] and Arnette et al. [28]. In brief, 106 BALB/3T3 fibroblasts
(Lonza, Basel, Switzerland) were seeded on collagen-coated Millicell inserts (Millicell-CM
12 mm, transparent Biophore Membrane; Millipore CORP., Bedford, UK) and placed into 6-
well plates (Corning Incorporated; Corning, NY, USA). Fibroblasts were cultured for 2 days
in 1 mL Dulbecco’s Modified Eagle Medium (DMEM, high glucose) (Gibco®, Life Technolo-
gies Corporation, Madrid, Spain) supplemented with 10% fetal calf serum (FCS) (Gibco®,
Life Technologies Corporation, Madrid, Spain) and added to the apical and dorsal side of
the insert. When fibroblasts reached 60–70% confluence, the monolayer was irradiated with
UV light at 0.048 mW for 1 h with UVACUBE 400 (Honle UV Technology, Gilching, Ger-
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many) to establish the feeder layer. Then, primary adult epidermal keratinocytes (192627,
Lonza, Basel, Switzerland) were seeded at a density of 0.5 × 106 cells/cm2. Cultures were
grown at 37 ◦C and 95% air/5% CO2 until approximately 60% confluency and then were
switched to KGM-2, supplemented with SupplementMix and CaCl2 60 µM (Promocell,
Heidelberg, Germany) until confluent. Confluent cultures were raised to the air–liquid
interface and cultured for 21 days until epidermal stratification was achieved. To validate
the stratification, histological analysis was performed after 21 days. The reconstructed
epidermis tissues were fixed with 10% formalin solution, dehydrated, and embedded
in paraffin. Six-micrometer-thick sections were cut and stained with hematoxylin–eosin.
Random photographs were taken of each sample with a Leica DM6000B microscope (Leica
Biosystems; Wetzlar, Germany).

4.2. Cell Viability and Cell Death Assay

NHEK cells were cultured in a 96-well plate (Corning Incorporated, New York, NY,
USA) until reaching 60% confluence. Then, cells were incubated for 24 h with different
concentrations of paclitaxel (30, 3, 0.3, and 0.03 µM). Paclitaxel was dissolved in dimethyl
sulfoxide (DMSO) and then, dilutions were performed in cell culture medium. The final
concentration of DMSO in the culture did not exceed 0.001%. Cell viability 24 h after
removal of the treatment was determined using the MTT assay. 1 mg/mL MTT solution
was added to the treated cells and incubated for 3 h at 37 ◦C. After incubation, cells were
washed with phosphate-buffered saline (PBS), and DMSO was added for 10 min to dissolve
the formazan precipitate. Absorbance was measured at 572 nm using the plate reader
Infinite M200 (Tecan Group Ltd., Männedorf, Switzerland). Data were normalized to
control values. 24 h after treatment, the cell death assay was performed by measuring
lactate dehydrogenase (LDH) release in the medium using the commercially available
LDH cytotoxicity assay kit (Thermo Fisher Scientific, Waltham, MA, USA), following the
manufacturer’s instructions. Absorbance was measured at 490 nm using the plate reader
Infinite M200 (Tecan Group Ltd., Männedorf, Switzerland). LDH contents were normalized
to the maximum LDH release. Sodium lauryl sulfate (SLS) was used in both experiments
as a positive control at 80 µg/mL.

4.3. Cytokine Determination by ELISA

3D epidermal model tissues were incubated for 24 h with different paclitaxel con-
centrations (0.3, 3, and 30 µM). After incubation, the culture medium was collected for
each condition. IL-8, IL-6, and IL-1α cytokine levels were analyzed using commercially
available Quantikine® ELISA kits (R&D Systems, Madrid, Spain) according to the manufac-
turer’s protocol.

4.4. DCF Fluorescence Measurement of Reactive Oxygen Species

2′, 7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) (Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA) is a cell-permeable compound. When intracellular ester
hydrolysis is oxidized to fluorescent 2′, 7′-dichlorofluorescein (DCF) by O2 and H2O2, it can
therefore be used to monitor intracellular generation of ROS. To quantify ROS levels, NHEK
were cultured in 96 black cell culture plate with transparent bottom, washed twice with PBS
and incubated for 30 min with 50 µM H2DCF-DA diluted in Opti-MEM. Then, cells were
stimulated with different paclitaxel concentrations (0.3, 3 and 30 µM) for 4 h. Fluorescent
intensity was measured using a microplate spectrophotometer (Victor 1420 Multilabel
Counter, PerkinElmer, Madrid, Spain) at excitation and emission wavelengths of 485
and 528 nm. Results were expressed as ROS fluorescence intensity, which indicate DCF
fluorescence in relative fluorescence units.

4.5. Real-Time RT-PCR and siRNA Experiments

3D epidermal model tissues were incubated for 24 h with different paclitaxel con-
centrations (0.3, 3, and 30 µM). After incubation, total RNA was extracted using TRIzol®
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Reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) following the man-
ufacturer’s instructions. Reverse transcription was performed in 500 ng of total RNA
with a TaqMan reverse transcription reagents kit (Applied Biosystems, Thermo Fisher
Scientific, Waltham, MA, USA). cDNA was amplified with specific primers and probes pre-
designed by Applied Biosystems for SOD1 (Hs00533490_m1), Nrf2 (Hs00975961_g1), NOX4
(Hs01379108_m1), p21 (Hs01040810_m1), p53 (Hs01034249_m1), VEGF (Hs00900055_m1),
BCL2 (Hs04986394_s1) and eNOS (Hs01574665_m1) in a QuantStudio™ 5 Real-Time PCR
System, using a universal master mix (Applied Biosystems, Thermo Fisher Scientific,
Waltham, MA, USA). β-actin (Hs01060665_g1) was used as an endogenous control. The
mean value of the replicates for each sample was calculated and expressed as the cycle
threshold (Ct). The level of gene expression was then calculated as the difference (∆Ct)
between the Ct value of the target gene and the Ct value of β-actin. The fold changes in the
target gene mRNA levels were designated 2−∆Ct.

Small interfering RNA (siRNA) experiments were carried out in NHEK. The scrambled
siRNA control (siRNA (-)) was purchased from Ambion (Huntingdon, Cambridge, UK;
catalogue No. 4390843). TLR4 gene-targeted siRNA (siRNA-TLR4) (identification No.
s14195) was designed by Ambion. Cells were transfected with siRNA (50 nM) in serum
and antibiotic-free medium. After 6 h, the medium was aspirated and replaced with
medium containing serum for a further 42 h before cell stimulation. The transfection
reagent used was lipofectamine-2000 (Invitrogen, Paisley, UK; catalogue No. 11668-027)
at a final concentration of 2 µg/mL. Transiently silenced NHEK were incubated with
paclitaxel at 3 µM for 24 h.

4.6. Western Blotting Analysis

3D epidermal model tissues were incubated for 24 h with different paclitaxel concen-
trations (0.3, 3 and 30 µM) and transiently silenced NHEK were incubated with paclitaxel at
3 µM for 24 h. After incubation, protein extraction was performed incubating samples with
lysis buffer (1 M HEPES, 4 M NaCl, 0.5 M EDTA, and 0.1 M EGTA) supplemented with
the protease inhibitory cocktail complete™ and phenyl–methyl–sulfonyl fluoride (PMSF)
(Roche Diagnostics; Indianapolis, IN, USA). Total protein concentration was quantified
using the BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Protein elec-
trophoresis was performed to separate proteins according to their molecular weight. 12 µg
of denatured proteins along with Rainbow™ molecular weight marker (Sigma–Aldrich, St.
Louis, MO, USA) were loaded into Mini-PROTEAN® polyacrylamide gels TGX™ (Bio-Rad,
Herts, UK), by application of 100 V during 1 h. Proteins were transferred from the gel to a
nitrocellulose membrane Trans-Blot® Turbo™ Transfer Pack, using the Trans-Blot® Turbo
™ Transfer System (Bio-Rad Laboratories; Herts, UK). Then, membranes were incubated
with 5% bovine serum albumin (BSA) for 2 h and labelled overnight at 4 ◦C, with various
primary antibodies. The secondary antibody was incubated for 1 h at room tempera-
ture. The primary antibodies and concentrations used were the following: SOD1 1:2000
(ab16831, Abcam, Cambridge, UK), Nrf2 1:1000 (ab89443, Abcam, Cambridge, UK), NOX4
1:1000 (NB100-58849, Novus Biologicals, Cambridge, UK), p53 1:1000 (ab131442, Abcam,
Cambridge, UK), BCL2 1:500 (NB100-92142, Novus Biologicals, Cambridge, UK), VEGF
1:2000 (ab46154, Abcam, Cambridge, UK), NF-κB 1:2000 (ab16502, Abcam, Cambridge,
UK) and p-NF-κB 1:1000 (ab86299, Abcam, Cambridge, UK). To normalize results, β-actin
antibody 1:7000 (A1978, Sigma–Aldrich, St. Louis, MO, USA) was used as housekeeping
control. Signal visualization of proteins was carried out by incubating the membranes
with chemiluminescence reagents (ECL Plus; Amersham GE Healthcare, Buckinghamshire,
UK). Densitometry of films was performed using the Image J 1.42q software (USA). Results
of target protein expression are expressed as the percentage of the densitometry of the
endogenous controls β-actin.
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4.7. Apoptosis

NHEK cells were seeded on 96-well plates and incubated for 24 h with different
paclitaxel concentrations (0.3, 3 and 30 µM). Apoptosis was measured using a commercially
available Annexin V-FITC apoptosis detection kit (ab14085, Abcam, Cambridge, UK). Cells
were detached and collected along with the supernatant and incubated with annexin V-
FITC in a final concentration of 3 µg/mL for 15 min. Then, annexin V binding buffer was
added and prior to flow cytometric analysis, propidium iodide was added at 5 µg/mL.
Flow cytometric analysis was performed by a BD LSRFortessa™ X-20 flow cytometer (BD
Biosciences; San Jose, CA, USA). A minimum of 10,000 cells per sample were analyzed
with Flow-Jo standard software (TreeStar Inc., Ashland, OR, USA).

4.8. Angiogenesis

Determination of changes in the angiogenesis process was analyzed using the com-
mercial endothelial tube formation assay kit (Cell Biolabs, San Diego, CA, USA). HDMEC
cells were seeded on the plates coated with the matrigel provided by the kit. Incubation
with paclitaxel at different concentrations (0.3, 3, and 30 µM) was performed for 16 h,
following the manufacturer’s instructions, to allow the endothelial tube formation. After
incubation, cells were stained with a calcein-acetoxymethyl-based staining solution (calcein-
AM) for 30 min. Images were captured by fluorescence microscopy (Spectral Leica TCS
SP2 microscope, Leica Biosystems; Wetzlar, Germany). The morphological features were
quantitatively measured to characterize the capillary-like tube structure using the software
WimTube™(Onimagin Technologies SCA, Córdoba, Spain). The software analysis provides
the tube length, branching points, loops, and cell-covered area. Besides that, detailed
overlay images are provided in which all branching points, tubes, and cells are noticeable.

4.9. Statistical Analyses

Results from cellular in vitro experiments were expressed as mean ± standard er-
ror (SE) of n experiments. Normal distribution for each data set was confirmed by the
Kolmogorov—Smirnov test. Statistical analysis was carried out by multiple comparisons
analysis of variance (ANOVA) followed by Bonferroni post hoc test. p < 0.05 was considered
statistically significant.
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