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Chromatin phenotype karyometry can predict
recurrence in papillary urothelial neoplasms
of low malignant potential
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Abstract. Background: A preceding exploratory study (J. Clin. Pathol. 57(2004), 1201-1207) had shown that a karyometric
assessment of nuclei from papillary urothelial neoplasms of low malignant potential (PUNLMP) revealed subtle differences in
phenotype which correlated with recurrence of disease. Aim of the study: To validate the results from the exploratory study on a
larger sample size. Materials: 93 karyometric features were analyzed on haematoxylin and eosin-stained sections from 85 cases
of PUNLMP. 45 cases were from patients who had a solitary PUNLMP lesion and were disease-free during a follow-up period
of at least 8 years. The other 40 were from patients with a unifocal PUNLMP, with one or more recurrences in the follow-
up. A combination of the previously defined classification functions together with a new P-index derived classification method
was used in an attempt to classify cases and identify a biomarker of recurrence in PUNLMP lesions. Results: Validation was
pursued by a number of separate approaches. First, the exact procedure from the exploratory study was applied to the large
validation set. Second, since the discriminant function 2 of the exploratory study had been based on a small sample size, a new
discriminant function was derived. The case classification showed a correct classification of 61% for non-recurrent and 74% for
recurrent cases, respectively. Greater success was obtained by applying unsupervised learning technologies to take advantage
of phenotypical composition (correct classification of 92%). This approach was validated by dividing the data into training
and test sets with 2/3 of the cases assigned to the training sets, and 1/3 to the test sets, on a rotating basis, and validation of
the classification rate was thus tested on three separate data sets by a leave-k-out process. The average correct classification
was 92.8% (training set) and 84.6% (test set). Conclusions: Our validation study detected subvisual differences in chromatin
organization state between non-recurrent and recurrent PUNLMP, thus allowing a very stable method of predicting recurrence of
papillary urothelial neoplasms of low malignant potential by karyometry.
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1. Introduction plasm of low malignant potential, low-grade papillary
carcinoma, and high-grade papillary carcinoma. It re-
places the 1973 WHO system which included urothe-
lial papilloma, and papillary carcinoma of grade 1,
grade 2 and grade 3 [24]. PUNLMP basically corre-
sponds to papillary carcinoma of grade 1 [7].
PUNLMP is a clinically important lesion because
the patients are at increased risk of developing recur-
rence. It is not possible to identify those PUNLMP
cases that will recur based on conventional histopatho-

The 2004 WHO classification of the non-invasive
papillary urothelial tumors [31] subdivides the mor-
phologic spectrum of the non-invasive urothelial papil-
lary neoplasia into papilloma, papillary urothelial neo-
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logic assessment [2]. A variety of immunohistochemi-
cal and molecular markers have been applied to predict
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disease recurrence [11,15,27,29]. However, conflicting
results have been reported. Recent studies have shown
that the evaluation of the nuclear chromatin organiza-
tion state by karyometry is useful in the identification
of patients at risk for recurrence of superficial urothe-
lial carcinoma [22,34].

A preceding exploratory study had shown that a
karyometric assessment of nuclei from papillary uro-
thelial neoplasms of low malignant potential revealed
subtle differences in phenotype which correlated with
recurrence of disease [32]. That study had involved
only 20 subjects, ten with recurrence and ten without
recurrence. The exploratory study’s sample size was
too small to run an independent test set, but feature
selection had been done with a Bonferroni-correlated
significance level of 0.005.

It is the objective of the current study to validate the
results from the exploratory study on a larger sample
size.

2. Materials and methods

Eighty five cases of PUNLMP were retrieved from
the tissue archives of the Section of the Pathologi-
cal Anatomy and Histopathology, Polytechnic Univer-
sity of the Marche Region (Ancona). This series also
included the 20 cases of the exploratory study [32].
45 were from patients who had a solitary lesion, less
than 1 cm in diameter, diagnosed as PUNLMP who
were disease-free during a follow-up period of at least
8 years. This group was defined as “non-recurrent”
(NR). The other 40 were from patients with a uni-
focal lesion, less than 1 cm in diameter, diagnosed
as PUNLMP, one or more recurrences being seen in
the follow-up (none of the these cases progressed to
a higher grade and/or became invasive) (in most of
the cases the first recurrence was seen six months to
one year after the removal of the primary tumor). This
group was defined as “recurrent” (R). The recurrent le-
sions showed a histological appearance identical to that
seen in the first presentation. From this group only the
primary or initial tumors were included in the investi-
gation. As far as sex and age of the patients (their mean
age was 62.5 years) were concerned, there were no dif-
ferences when the NR and R groups were compared.
The initial tumors and the recurrences were treated by
trans-urethral resection. None of the patients received
adjuvant therapy, e.g., BCG or intravesical chemother-

apy.

All the cases had been fixed in 4% buffered formalde-
hyde for 24 hours before processing. For the purpose
of this study, five-micron thick sections were cut from
the paraffin blocks and stained with haematoxylin and
eosin (H&E) in the same batch and at the same time.

2.1. Karyometric analysis

Karyometry was carried out at the Arizona Cancer
Center, Tucson, AZ, on the fresh H&E stained sec-
tions. H&E staining was used so that the results from
image analysis could be directly compared and cor-
related with histopathologic assessment. Bahr [3] and
Keenan et al. [18] showed that data derived from H&E
and Papanicolaou stains are linearly correlated with
those from Feulgen.

The nuclei were recorded on a video-microscope
equipped with a 63:1 Zeiss (Zeiss, Oberkochen, Ger-
many) planapochromatic oil immersion objective,
N.A. 1.40, and a COHU (San Diego, CA, USA) black
and white video camera. An interference filter with a
maximum bandpass at 610 nm was used to enhance
contrast of the H&E stained sections. The relay op-
tics provided a sampling density of six pixels per linear
micrometer. Individual nuclei from the images were
edited using an interactive procedure and then filed for
feature extraction. Enough fields were recorded to pro-
vide 100 nuclei per case. The nuclei were randomly
selected from the intermediate and basal layers.

A total of 93 karyometric features were analyzed
in this study. These are related to nuclear area, to-
tal optical density and chromatin distribution and pat-
tern [4,14,35]. A sample list of features is given in Ta-
ble 1 (all features are given in relative units of mea-
sure; the values in parenthesis refer to an arbitrary code
number with which the feature is identified in the com-
puter program).

2.2. Statistical analyses (including a summary of the
approach adopted in the preceding exploratory
study)

Data analysis in the exploratory study had led to a
hierarchic classifier [5,6,9,12,19,32,33]. The same ap-
proach was used for the cases recorded here.

The first classification stage was based on a first or-
der linear discriminant function referred to as DF 1,1
to discriminate between nuclei from the non-recurrent
and from the recurrent cases.

The distribution of discriminant function scores had
shown considerable overlap. However, if one chose, as
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Table 1
Sample list of features used in the current study (the values in paren-
thesis refer to an arbitrary code number with which the feature is
identified in the computer program)

o Total optical density (Feature No 001)

o Nuclear area (Feature No 002)

e Variance of Optical Density (OD) values (Feature No 006)

e Pixel OD histogram (0.2-0.3 bin) (Feature No 010)

e Run length feature (OD 0.0-0.3, 1-2 pixels) (Feature No 267)
o Run length feature (OD 0.3-0.6, 3—4 pixels) (Feature No 274)
o Percentage of long runs (Feature No 304)

o Gray level non-uniformity (Feature No 305)

o Run length non-uniformity (Feature No 306)

e Percentage of pixels occurring in a run (Feature No 307)

o Mean OD value (Feature No 317)

o OD value 20% above mean OD (Feature No 318)

o Total number of very dark pixels (Feature No 319)

o Total number of medium density pixels (Feature No 320)

a metafeature, a certain percentage of nuclei with high
discriminant function scores, a substantial percentage
of non-recurrent cases could be classified without er-
ror. This “rule 1” was retained for the current valida-
tion study, with the same threshold in the discriminant
function score distribution, and the same percentage of
nuclei expected beyond that threshold.

For the remainder of cases — the great majority of
the recurrent cases and the as yet unclassified non-
recurrent cases — a second discriminant function, re-
ferred to as DF 1,2 had been derived. In the exploratory
study the case mean scores for the functions DF 1,1 and
DF 1,2 had been submitted to a box classifier [9] which
resulted in a correct classification of all NR cases, and
of 9/10 of the R cases.

However, the performance of a box classifier on
samples of small size can result in too optimistic an
estimate. To derive an estimate of a correct classifica-
tion rate on a more conservative basis, the data from
the exploratory study had been submitted to the non-
supervised learning algorithm P-index [5]. Its classifi-
cation, based on a Bayesian criterion, had resulted in
an 85% correct classification rate.

The current validation study followed the above de-
scribed analytic approach. However, the larger sam-
ple size allowed a more detailed analytic assessment.
Validation was pursued by a number of separate ap-
proaches. First, the exact procedure from the ex-
ploratory study was applied to the large validation set.
Second, since the DF 1,2 function of the exploratory
study had been based on a small sample size, a new
discriminant function was derived. Next, the validation

data set was divided into training and test sets with 2/3
of the cases assigned to the training sets, and 1/3 to
the test sets, on a rotating basis, and validation of the
classification rate was thus tested on three separate data
sets by a leave-k-out process. Finally, the larger sample
size allowed a different use of non-supervised learning.

2.3. Statistical rationale for multiple discriminant
functions

A sequential decision procedure involving two dis-
criminant functions was chosen because it allows a
more specific feature selection and hence, better clas-
sification success. In this particular case both of these
functions were employed as metafeatures which essen-
tially served for dimensionality reduction (Appendix).

3. Results
3.1. Nuclear abnormality and lesion signature

In the enlarged data set of 85 cases, the differences
between the NR and the R cases were again found to
be very small. The average nuclear abnormality val-
ues, computed using as normal reference data set nu-
clei from normal bladder epithelium recorded in an
earlier study [22], are virtually identical for the R and
the NR cases (Table 2). The lesion signatures, i.e., the
distribution of the nuclear abnormality values, provide
clear evidence that the nuclei sampled from the pap-
illary neoplastic lesions in both the non-recurrent and
in the recurrent cases deviate significantly from nuclei
from normal urothelium. However, the lesion signa-
tures of the non-recurrent and of the recurrent cases are
very similar (Fig. 1).

3.2. Discriminant analysis

In the preceding study the discriminant function
DF I,1 was based on six features descriptive of nu-
clear chromatin texture. This function was applied di-
rectly to the new data. The score distributions for the
NR and the R cases looked virtually the same as those
obtained earlier (Fig. 2). The cases in the pilot study
thus were representative. The scores for non-recurring
cases again extend farther into the high score range.

Figure 3 shows the plot resulting from applying
rule 1 (see Materials and methods) from the pilot study
to the large data set. On the left side of the threshold
in this plot one finds extensive overlap for cases from
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Fig. 1. Lesion signatures for normal, non-recurrent, recurrent, and invasive cancer cases (data on normal urothelium and invasive urothelial
carcinoma obtained from a previous study) [20].
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both the NR and the R groups. For these cases the pi-
lot study had derived discriminant function DF 1,2, as
second stage in the hierarchic classifier. This resulted
in a classification of 10/10 of the NR cases, and 8/10
of the R cases. However, this function was based on
only 3 and 4 cases respectively from the NR and R
groups. When applied directly to the enlarged data set
in the validation study the correct recognition was only
about 60%.

A new discriminant function derived from all the
cases left after the application of rule 1, combined
with the metafeature based on the percentage of nu-
clei above a certain threshold on the DF 1,1 score axis,
leads to the plot shown in Fig. 4. There is a correct
recognition rate of 82% of the NR cases, and of 73%

Table 2

Average nuclear abnormality (data on normal urothelium and inva-
sive urothelial carcinoma obtained from a previous study) [22]

e normal urothelium 0.432
e non-recurrent papillary neoplasm 0.739
e recurrent papillary neoplasm 0.726
e invasive urothelial cancer 1.074
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of the R cases, based on the non-linear decision bound-
ary seen in Fig. 4. The score distribution of this new
discriminant function shows a marked shift, and a sec-
ond order discriminant analysis appeared promising, as
seen in Fig. 5.

A Kruskal-Wallis (KW) test offered eight features
with a p-value <0.005. The second order discriminant
algorithm (DF II,1) reduced Wilks Lambda to 0.799.
The two distributions of case mean values for the NR
and the R data sets are statistically different at a high
level of significance. The case classification matrix
showed an average correct classification of 61% for
NR and 74% for R cases, respectively. This means that
there is no gain over the first order discriminant analy-
sis.

It is evident that the nuclei from the NR group and
the R group have statistically significantly different
chromatin patterns. The discriminant analyses and the
bivariate confidence ellipses in Fig. 4 demonstrate this.
The case classification is a more difficult problem.
With 73% (NR) and 82% (R) correct case classification
the results are not deviating from the results obtained
in the exploratory study to an unexpected extent, but
still, a better yield appeared possible.

Nonrecurrent

Recurrent

0 2 2.7

Discriminant Function Scores

Fig. 2. First order discriminant function score distributions (DF I,1).
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Hierarchical classification of R vs. NR cases: Rule 1
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Fig. 3. Illustration of rule 1 in the full data set, whereby cases with the proportion of nuclei having more than 50% of nuclei with DF I,1 > 0.4

are classified as NR.
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Fig. 4. Proportion of nuclei per case above a fixed threshold vs. dis-
criminant function scores from DF 1,2, with a non-linear classifica-
tion boundary.

3.3. Classification based on phenotypical
composition

In order to improve classification of cases, an alter-
native strategy was adopted based on differences in the
phenotypical composition of the data sets, if such in-
homogeneity could be found. There were 85 cases to
start with, and after application of rule 1, 70 cases were

left, 39 from the recurrent group, and 31 from the non-
recurrent group. The features from the new discrimi-
nant function DF 1,2 were used, in a first attempt, to ex-
plore the phenotypical heterogeneity of the nuclei from
these lesions.

Two separate P-index runs were performed, for the
NR and the R data sets. In each data set the nuclei
were found distributed into four statistically signifi-
cantly different phenotypes (Fig. 6). These phenotypes
closely correspond to each other in the NR and the
R data sets. For the two corresponding phenotypes at
the one extreme, with, in this instance, negative dis-
criminant function scores indicating the highest de-
viations from normal, the confidence ellipses overlap
completely, they are not statistically different between
the NR and the R data sets. For the two corresponding
phenotypes appearing at the other extreme range of the
feature values, there is an increasing separation of the
distributions for the NR and the R data sets (indicated
as NR1 and R1). Thus, a classification of cases, based
on assignment of nuclei to these two phenotypes ap-
peared possible. Several combinations of features were
used to confirm this data structure. Figure 7 shows a
plot of a run length feature vs. total optical density,
showing the degree of separation between recurrent
and non-recurrent cases for one of the four phenotypes
depicted in Fig. 6.

Examining only the two corresponding clusters at
the high range of the discriminant function score range,
28/39 cases of the R group could be correctly classi-
fied, with two errors. Of the NR group, 23/31 cases
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Fig. 5. Distributions of DF 1,2 for recurrent and non-recurrent cases. Bins in which the two distributions differ markedly are candidates for the
development of a second-order discriminant function.
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Fig. 6. Distribution of a chromatin texture feature vs. discriminant function score DF 1,2, showing four phenotypes each for recurrent and
non-recurrent cases.
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Fig. 7. Plot of a run length feature vs. total optical density, showing
the degree of separation between recurrent and non-recurrent cases
for one of the four phenotypes depicted in Fig. 6.

were correctly classified, with one error. This step
in the hierarchic classification sequence is referred to
as rule 2. After eliminating these correctly classified
cases, and examining the next corresponding cluster
pair (i.e., NR2 and R2), nine more cases of the R group
and 4 of the NR group could be correctly assigned, by
rule 3. The final accounting for the hierarchic decision
sequence of rule 1 and then rules 2 and 3 then came to:

— of 40 R cases, 37 correct, 3 wrong and,
— of 45 NR cases, 41 correct, 1 wrong, 3 not as-
signed.

Thus, for the total of 85 cases, 91.7% (78/85)
were correctly classified into their respective diagnos-
tic groups, with 91.1% (41/45) of the NR cases being
correctly classified and 92.5% (37/40) of the R cases
correctly classified. These were the results when the
entire data set was employed as a test set.

The separation of NR and R cases into two sets of
corresponding clusters can be shown for several differ-
ent sets of features. Figure 7 shows the separation for a
feature set consisting of the two features: total optical
density and a run length feature. Serving as rule 2 it
would provide a correct classification of 29/30 of the
submitted R cases, and 22/22 cases of the NR data set,
with only a single recurrent case misclassified.

3.4. General validity of the classification success

As a next step in the validation processing, the gen-
eral validity of the classification success rather than
of a given sequence of classification rules, was tested.
This was done by randomly dividing the entire data
set into three subsets, each formed from 2/3 of cases
as a training set, and 1/3 of cases as test set, and ro-
tated three times. Random selection was stratified by
recurrence status to maintain proportional balance be-
tween R and NR cases. This process would test the per-
formance of independently derived classification rules,
and the general validity of each set in the three training
set/test set processing sequences.

The following processing sequence was applied.
The training set data were used to derive a DF 1,1 func-
tion. This function was thresholded, and cases with a
certain percentage of nuclei with high function scores
were identified and removed from further considera-
tion. On the remaining cases a KW test was done and
a discriminant function DF 1,2 was derived. The fea-
tures selected by this function were used to run the
non-supervised learning algorithm P-index, which was
set to form up to four groups. For each of the pheno-
type subgroups thus formed, the feature mean values of
the assigned nuclei were computed, and projected into
a display formed by two axes, such as the score values
of the discriminant function DF 1,2, and one, or two of
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Fig. 8. Plot of chromatin condensation vs. number of very dark pixel
per nucleus for recurrent and non-recurrent cases for one of the four
phenotypes depicted in Fig. 7.
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Table 3

General validity of the classification success

R correct NR correct Overall correct
Training set 1~ 23/27 85.2%  28/29 96.6% 91.1%
Test set 1 9/13 69.2% 16/16 100% 86.2%
Training set2  23/27 85.2%  29/30 96.7% 91.2%
Test set 2 7/13 53.8% 15/15 100% 78.6%
Training set 3~ 24/2596.0%  29/30 96.7% 96.3%
Test set 3 13/13 100% 12/15 80.0% 89.2%

the chromatin texture features. For the best separated
phenotype subgroups of the R and NR data sets, a lin-
ear classification boundary was established. Figure 8
shows an example for one of the three validation sets;
here, two chromatin texture features had been chosen.
The exact same processing sequence was then applied
to the test set. This validation processing was repeated
for the three training sets and their test sets. However,
in each of these three processes an independent feature
selection for the DF 1,1 and DF 1,2 function was carried
out, and a different rule 2 was employed. The results
for the three validation sets are reported in Table 3. The
average correct classification was 92.8% (training set)
and 84.6% (test set).

4. Discussion

PUNLMP is a non-invasive papillary urothelial le-
sion with an orderly arrangement of cells within papil-
lae with minimal architectural abnormalities and min-
imal nuclear atypia irrespective of cell thickness [31].
In general, the major distinction from papilloma is that
in PUNLMP the urothelium is much thicker and/or
nuclei are significantly enlarged. The urothelial pa-
pilloma, in contrast, has no architectural or cytologic
atypia. Mitotic figures are infrequent in PUNLMP, and
usually limited to the basal layer. Low-grade papil-
lary urothelial carcinoma is characterized by an overall
orderly appearance but with easily recognizable vari-
ation of architectural and or cytologic features, even
at scanning magnification [21]. Variation in polarity
and nuclear size, shape and chromatin texture comprise
the minimal but definitive cytological atypia. Mitotic
figures are infrequent and usually seen in the lower
half [20].

PUNLMP is a clinically important lesion because
the patients are at increased risk of developing recur-
rence. This was documented in 35% and 47% of pa-
tients by Holmiing et al. [16] and by Pich et al. [28],
respectively. Nevertheless, the prognosis for patients

with PUNLMP is excellent. Rarely, these patients may
present with tumor progression, i.e., a tumor recur-
rence with invasion of either the lamina propria or the
muscularis propria or with carcinoma in situ. In a series
of 112 patients described by Cheng et al. [8], only 4 de-
veloped invasive urothelial carcinoma, whereas Sama-
ratunga et al. observed a progression rate of 8%, com-
pared to 0% and 13% for papilloma and low-grade pap-
illary carcinoma, respectively [30].

It is not possible to identify those PUNLMP cases
that will recur based on conventional histopathologic
assessment [28]. A variety of immunohistochemical
and molecular markers have been applied to predict
disease recurrence [11,15,27,29]. However, conflicting
results have been reported. Recent studies have shown
that the evaluation of the nuclear chromatin organiza-
tion state by karyometry is useful in the identification
of patients at risk for recurrence of superficial urothe-
lial carcinoma [22,34].

Gschwendtner et al. [13] showed that nuclear texture
feature analysis is capable of distinguishing between
normal and neoplastic urothelial nuclei, the perfor-
mance of this approach being superior to DNA ploidy
analysis. In a study made by our group [22] we ap-
plied a similar technique and we found that karyom-
etry detected an abnormal chromatin pattern and dis-
tribution in the normal-looking urothelium adjacent to
papillary carcinoma. Such alterations correspond to the
so-called malignancy-associated change. Both studies
applied such an analysis to cases still classified on the
basis of the 1973 WHO scheme and did not investigate
the relationship of texture features changes with dis-
ease recurrence, even though the existence of some re-
lationship between the chromatin pattern and progno-
sis was suggested.

Van Velthoven et al. [34] made an investigation on
the role of quantitative chromatin pattern analysis in
the identification of patients at risk for recurrence.
They based their study on the 1973 WHO classifica-
tion. Patients with either non-invasive (pTa) and lam-
ina propria invasive (pT1) disease (superficial bladder
cancer) were considered. They found that discriminant
analysis based on chromatin texture features, i.e., re-
lated to the level of chromatin distribution and conden-
sation, was more efficient in determining the risk of
recurrence than the conventional grading and staging
systems.

Our exploratory karyometric study was based on
the current grading system (2004 WHO classifica-
tion), non-invasive PUNLMP lesions only being inves-
tigated [13,22,23,34]. Its sample size of 20 provided
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80% statistical power to identify classification algo-
rithms as performing statistically significantly better
than chance if their true accuracy rates were 80% or
higher, a reasonable demand if utility is to be demon-
strated. The results from this study went against orig-
inal expectations: it had been considered unlikely that
nuclei collected from biopsies of PUNLMP lesions
would provide prognostic information as to which
cases might have a recurrence. Similarly to the previ-
ous studies [22,34] it has been shown that nuclear chro-
matin texture features are superior to those concerning
the nuclear area and DNA content when those patients
who experienced disease recurrence have to be identi-
fied.

In the current validation study, karyometry and mul-
tivariate analyses detected subvisual differences in
chromatin organization state between non-recurrent
and recurrent urothelial papillary neoplasm of low ma-
lignant potential (the chromatin granules in the latter
group are not only darker, but larger), thus providing
a valuable biomarker for the prediction of recurrence
of papillary urothelial neoplasms of low malignant po-
tential. From the practical point of view, our findings
show that a karyometry-based approach could lead to
a reduced number of cystoscopies and histological ex-
aminations in those patients with a low probability of
recurrences. Such patients could be followed up with
the evaluation of the urine cytology only.

Little is known about the underlying biological
mechanisms responsible for the subvisual differences
in chromatin organization state between non-recurrent
and recurrent cases. Epigenetic mechanisms such as
histone acetylation and DNA methylation, are becom-
ing increasingly recognized as an underlying mech-
anism in tumour development and are likely to play
a major role in determining chromatin pattern. His-
tone hyperacetylation is associated with a relaxation
of chromatin and promotes gene expression whereas
DNA hypermethylation, at the level of the gene, re-
sults in chromatin condensation and gene silencing.
Little work has however examined the association be-
tween epigenetic factors and markers such a nuclear
karyometry. However, there has recently been a revival
in interest regarding the relationship between nuclear
architecture, higher order chromatin organization, and
the topology of chromosomal territories and their role
in regulating gene expression in normal and cancer
cells [1,10,17,25,26]. Of particular interest is the iden-
tification of chromosomal territories which even in in-
terphase cells occupy specific regions of the nucleus
and whose architecture and position seem to be un-

der very close control. This might provide the underly-
ing basis for the global chromatin karyometric changes
shown to be of value in the current study.

In conclusion, one has to realize that the differences
in chromatin texture which suggest prognostic infor-
mation have been found to be very subtle indeed. In
fact, they are in magnitude and certainty even less pro-
nounced than the changes that have been observed in
pre-neoplastic lesions [4,22]. It should be no surprise,
therefore, that the procedures to document and validate
those changes involve intricate processing steps. As a
practical conclusion, this means that in the future stud-
ies, one may want to increase the sample size of nuclei
beyond 100/case so that a truly representative group-
ing into phenotypes can be documented. However,
this study has demonstrated that chromatin karyome-
try could be a useful biomarker to predict recurrence
in PUNLMP. As with any quantitative approach to tis-
sue analysis, particular using densitometric measure-
ments, standardized sample preparation is extremely
important. This would be a prerequisite for the routine
use of this technique for predicting recurrence and may
make application problematic. Nevertheless, what this
study highlights is that specific architectural changes
in chromatin organization do exist in lesions that sub-
sequently show recurrence. The underlying molecular
basis for this still needs to be understood although it is
likely to be associated with epigenetic modifications.
It will also be important to investigate other chromatin
associated markers that may be stronger and less sensi-
tive to preparation, e.g. measures of DNA methylation
and histone acetylation. We are currently investigating
in the same series of cases, selected molecular makers,
such as cytokeratin 20 and fibroblast growth factor re-
ceptor 3, in an attempt to make the statistical analysis
less complex and more easily applicable to the routine
examination of PUNLMP cases.
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Appendix

The first discriminant function (DF 1,1) used six fea-
tures, listed below in order of their relative contribu-
tions, with their standardized coefficients.

Feature code Standardized Description
coefficient

006 0.783 pixel O.D. variance

027 0.584 co-occurrence feature
0-0.3/0.3-0.6 O.D.

267 0.463 run length feature
0-0.3 O.D., 1-2 elements

307 —0.177 run average

303 —0.168 short run emphasis

304 —0.147 long run emphasis

The second discriminant function (DF 1,2) used five
features:

Feature code Standardized Description
coefficient
006 —0.918 pixel O.D. variance
306 0.626 run length non-uniformity
272 0.445 run length feature
0-0.3 0.D., 11-12 elements
312 0.252 0O.D. heterogeneity measure
001 —0.211 Total optical density

A threshold for DF 1,1 was set at DF I,1 = 0.4, and
the proportion of cases above that value was used as
metafeature. The decision threshold for case classifica-
tion on this axis was at 50%, as seen on the abscissa
in Fig. 3. The same metafeature was used as ordinate
in Fig. 4, where the DF 1,2 scores serve as abscissa.
Figure 4 presents the non-linear decision boundary for
case classification.
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