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Abstract: Locating underground microseismic events is important for monitoring subsurface activity
and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially
in applications involving planetarily-distributed sensor networks, networks should be designed
to perform the localization algorithm in-situ, so that only the source location information needs
to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-
reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect
and locate underground microseismic events with reduced usage of computational resources and
communication bandwidth of the network. After the in-situ distributed computation, the final
real-time location result is generated and delivered. We used a real-time simulation platform to test
the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI
localization algorithm using extensive experiments and tests.

Keywords: seismic source localization; Gaussian beam migration; time reverse imaging; distributed
sensor network; real-time seismic simulation

1. Introduction

Monitoring the underground seismic events of a planet is an important part of plane-
tary science, as it helps to explain the subsurface structure of the planet. Current planetary
exploration techniques have successfully gathered seismic data from Mars. In 2018, the
InSight Mission to Mars started to collect seismic data, by using a single seismic station to
clearly record marsquakes for the first time and begin constraining subsurface structure
from the crust to the core [1]; in 2024, NASA’s Europa Lander mission concept payload
included a seismic package for characterizing the local environment of Europa’s ice and
possibly the characteristics of its ocean and deeper interior [2]. The planned Dragonfly
mission concept to explore Saturn’s moon Titan also includes a seismic package. While each
of these missions has a single-station approach, future missions to may include multiple
seismic nodes. The Lunar Geophysical Network is a prominent example of a possible
near-future planetary network. The detection and localization of seismic events is the foun-
dation of the deeper exploration of the planet. Although passive seismic source monitoring
is a mature technology on Earth, it is difficult to implement on other planets or moons. The
challenges include, but are not limited to:

• The installation of the sensors being difficult, and the hardware system is perishable
and may not be retrieved.

• The surface of the target planet or moon has topographic relief; usually we need to
account for topographic variation.

• The communication bandwidth between the planet, satellite and Earth is limited.

The localization algorithm we use is Gaussian beam time-reverse imaging (GB-TRI).
Time-reverse imaging (TRI) is a passive source imaging method [3] that uses time series
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data gathered by a surface sensor network to generate a source energy map [4]. The
possibility of implementing TRI in distributed format was first discussed in 2015 [5], and
first realized in 2018 [6]. GB-TRI uses a Gaussian beam to approximate the time domain
TRI; it was first used in real-time underground activity localization in 2019 [7]. Compared
with the time domain TRI, GB-TRI is easier to calculate in a distributed and decentralized
structure [8]. In this work, we optimize GB-TRI for the influences of topographic variation,
high packet loss rate and resource limitations. Our experimental result shows that the
optimized GB-TRI works well on the proposed system.

To evaluate our system and algorithm, we conducted both one-time experiments
and real-time experiments. In particular, we designed an AWS (Amazon Web Services)-
based real-time seismic simulation platform. The platform includes InfluxDB, a database
designed for time series data analysis [9]. With this platform, we can generate the events in
real-time, and show the seismic data and the localization result as an animation. Since the
field deployment of our system is expensive, this tool can help us test the algorithm in an
affordable way. We evaluated our system and algorithm with simulation experiments. The
results show that our system and algorithm work well to localize the underground seismic
events while maintaining good performance.

The contributions of our work mainly include three achievements:

• This is the first time an end-to-end distributed system framework for passive seismic
source localization has been designed.

• An optimized Gaussian beam TRI algorithm is proposed to solve the passive source
locating problem in a distributed way using a clustering structure. Compared to the
former algorithm, it is a robust and lightweight algorithm to implemented on smart
sensors with limited computational resources.

• We developed a simulation and experimental platform with networking emulation,
synthetic data generation and visualization capabilities. This is the first work to show
a real-time microseismic localization result.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 provides information of algorithms about the microseismic event localization end-
to-end process and the distributed system design. In Section 4, we report on experiments
with synthetic seismic data. Section 5 presents the discussion about this work. The
conclusion and future work are presented in Section 6.

2. Related Works

In the literature, there are several passive source localization algorithms: arrival time
difference [10,11], cross-correlation [12], range difference [13] and migration [14]. In recent
years, the time-reverse imaging method has become a popular method for passive source
localization for its accuracy and anti-noise performance. The imaging algorithm uses time
series data gathered by sensor networks to generate a source energy map and shows the
probable location of underground activity.

The traditional reverse-time migration (RTM) algorithm in radar systems uses an
active source signal and the received signal to detect the underground scattering to form
a structural image; it is widely used in structural health monitoring [15]. TRI generates
imaging results without cross-correlation [8]. To generate a source energy image, other
image conditions such as stacked, maximum or geometric mean are used [14]. In a sensor
network, TRI calculates the backward-propagated wavefields in each single-sensor node
individually, which is naturally distributed [5]. Conventional time domain TRI uses a
finite-difference time domain (FDTD) algorithm to solve the wave equation [16]. The
computational cost of FDTD depends on the number of iterations of the discrete wave
equation calculation and the size of spatial grid boundary condition [17]. If the grid size is
large, running the TRI method in each embedded sensor node is energetically expensive.
Moreover, when the TRI algorithm is implemented in a distributed sensor network, the
communication cost increases with the number of sensors [18].
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Gaussian beam migration (GBM) is a high frequency approximation of FDTD migra-
tion [19], popular for its flexibility and efficiency [20]. GBM is especially suited for sparse
data sets [21]. Both the acoustic and elastic wave equations can be solved with the GBM
method [22–24]. Since TRI is also based on the wave equation solution, there have been
prior efforts using GBM to solve the TRI problem. Popov has combined reverse-time migra-
tion with Gaussian beams to solve the problem and also introduce an improved imaging
condition suitable for computation of velocity contrasts at reflectors in the framework of the
true-amplitude concept [24,25]. A green function-based approach to combine the RTM and
GBM was proposed in 2014 [23]. In 2017, the reverse-time migration with elastodynamic
Gaussian beams method was proposed [26].

Recent work has implemented the traditional geophysical algorithm on a distributed
network system. In 2015, Sun tried to implement the TRI algorithm in a distribute system [5].
A ambient noise seismic imaging algorithm was implemented in a real-time distributed
system by Valero and optimized by Wang [27,28]. Song tried to run the geophysical
algorithm on a distributed sensor network to make a subsurface camera [29]. As a whole,
distributed subsurface imaging algorithm is an active research topic in this decade.

As far as we know, our work is the first which achieved a second-order, real-time
microseismic localization result. A comparison of different microseismic localization
methods is listed in Table 1.

Table 1. A comparison of different microseismic localization methods.

Method Computation Device Data Transmission Time Consuming

Traditional TRI computer cluster hardware
transportation several months

Distributed TRI smart sensor internet several minutes
GB-TRI smart sensor internet several seconds

3. Algorithm and System Design
3.1. Background and System Design

Usually, seismic data are collected by three-component seismometers deployed on
the surface. Figure 1 illustrates a typical seismic source monitoring system with geophone
arrays [7]. The localization problem can be calculated in both 2D and 3D. Typically, the
sensors are deployed along the measuring line for 2D models or arranged as a 2D array for
3D models. To simplify the calculation, usually, the localization algorithm is calculated in
2D first and then extended to 3D with interpolation methods.

Figure 1. An illustration of the seismic sensor network for microseismic source event localization.

Figure 1 shows the propagation of the seismic wave and how the surface sensor
network detects this wave. The wave will propagate following the wave equation. For
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the different nodes, the arrival of the same wavelet should differ in time. We use this
time difference between nodes to calculate the source location using the backward wave
propagation algorithm.

In planetary exploration projects, the deployment of the sensors is expensive and
difficult. For that reason, we only consider the 2D model that only requires sensors
deployed on one measuring line. The system comprises several sensor clusters. The
clusters are connected to each other by cable. Figure 2a shows the schematic diagram
of the sensor system: each blue triangle represents one cluster, which includes several
independent sensor nodes; the clusters are connected physically by a strong cable, and can
be dropped from a low-altitude spacecraft. After the sensor clusters land on the surface,
they will naturally form a measuring line. However, the landing location of the clusters is
not a perfect straight line and the final position of the sensor is affected by topographic
variation, as Figure 2b shows.

(a) (b)

Figure 2. (a) Dropping the cabled sensor clusters from a low-altitude aircraft. (b) The 2D model for
seismic event localization with topographic variation.

The collected data are visualized using InfluxDB and Grafana. InfluxDB is a database
designed for time series data analysis [30]. We store the time series data in the InfluxDB
databases, and the Grafana visualization tools can directly use the InfluxDB databases to
show the waveform in real-time [31].

The structure of the system is designed for the distributed GB-TRI algorithm, which
distributes the calculation evenly to the individual nodes. With the distributed GB-TRI
algorithm, the work load is balanced in the whole system, allowing other nodes to compen-
sate the loss of any single node. The distributed calculation makes the system more stable
in the challenging working environment. The clustering structure is also beneficial to the
communication load. We need two inputs to solve the Gaussian beam approximation in the
backward wavefield: the recorded seismic data and the initial angle of the Gaussian beam.
When the signal–noise ratio (SNR) is low, we use data from neighboring nodes to solve for
the initial angle. With this clustering structure, we avoid the long distance transmission
of the raw data, and hence reduce the communication cost. The detail of the algorithm is
discussed in the next section.

3.2. Distributed Gaussian Beam Time-Reverse Imaging Algorithm

Passive source imaging is a good approach with which to realize micro seismic source
location. The imaging algorithm uses time series data gathered by the surface sensor
network to generate a source energy map showing the probable location of underground
activity. To get the location of the source, we construct the backward wavefield with
the observed data gathered by the surface sensors. The final result is an energy map
representing the energy distribution of stacked backward wavefield.

TRI is a passive source imaging method [3], which uses time series data gathered
by surface sensor network to generate a source energy map [4]. To detect each of these
activities separately and continuously, we separate the continuum data into segments with
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short time windows. The window size is chosen carefully to make sure that only a few
major activities have occurred in each segment. After generating a source energy map,
we refresh the image with the data from next time window. TRI generates source images
by solving the backward wave equation. FDTD and a perfect matched layer absorbing
boundary conditions are used in the traditional TRI algorithm. The output image is an
energy map representing the concentrated source energy in both time and space. On this
map, we can see bright spots occurring on the location of underground activities.

Equation (1) is a typical TRI wave equation, involving spatial coordinates (z, x) and
replacing time coordinate t with −t.

1
v2(z, x)

∂2uBt(z, x, t)
∂(−t)2 = −52 uBt(z, x, t) (1)

uBt is the backward wavefield; v(z, x) is the velocity corresponding to the point (z, x) on
the velocity model. To solve this equation, we need an initial value acting as a boundary
condition. Instead of using the free surface boundary condition, the TRI method defines
the surface boundary condition with the value of the wavefield on the surface [32]:

uBt(z = 0, x, t) = uFt(z = 0, x, T − t), (2)

where uBt is the backward wavefield at time t and uFt is the forward wavefield at time T− t,
which is the data recorded at T − t by receivers. When we use the gathered seismic data at
z = 0 as the boundary condition and process from time t = T to time t = 0, we can get a
time-reversed backward propagated wavefield; T is the length of the time window. [33]
This process is equivalent to stacking individual backward wavefields generated by one
single trace of seismic data.

The time domain TRI imaging condition is shown in Equation (3). The stacked wave-
field of all of the receivers represents the energy distribution of the backward wavefield
toward time. The TRI source energy map is coordinated with the stacked value of the
wavefield on the time scale.

I(z, x) =
∫ t

t0

(
N

∑
i=1

Ui(z, x, t)) (3)

where Ui indicates the backward wavefield of the ith single receiver. This imaging condition
is not robust due to the energy decrements. A hybrid image condition is proposed to get
high resolution image when the signal–noise ratio (SNR) is low [5], a mix condition of
stacked imaging and cross-correlation imaging. Considering thaht the Gaussian beam
wavefield solution is solved in the frequency domain with ray direction coordinates and
has less energy decrements, we use the maximum wavefield value to replace the stacked
wavefield value, shown as Equation (4). The physical meaning is that the maximum energy
occurs at the specific time period and the target point (s, n).

I(s, n) = max(i f f t(
N

∑
i=1

Ui(s, n, w))). (4)

If the input data contain the signal of a microseismic source, the backward wavefield
at (z0, x0) has its maximum value when the energy of all of the individual wavefields is
concentrated. We define this value as the imaging value on the energy map. It is easy
to see that the maximum value on this map occurs at the location of the source. The
limitation of traditional FDTD-based TRI is that a sudden change of velocity and the
artificial absorption boundary condition may cause dispersion, which aliases the result.
Traditional FDTD is hard to implement on a parallel or distributed computing system
because it is an iterative method in the time domain. To solve this problem, we combine
the Gaussian beam algorithm with the traditional TRI algorithm.
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Gaussian beam migration is a ray path method to solve the wave equation. In a
two-dimensional TRI problem, Equation (1) is transformed into a frequency domain scalar
wave equation:

w2

v2(z, x)
UB(z, x, w) = −52 UB(z, x, w) (5)

where w is the frequency, UB is the backward wavefield in the frequency domain and
v2(z, x) is the velocity corresponding to the spatial location. To solve this wave equation,
there are three steps: (i) ray tracing; (ii) solving the wavefront curvature functions; (iii)
construction of the wavefield [19].

The beam center of the Gaussian beam is generated by ray path equations:

dx
dt

= vsinδ,
dz
dt

= vcosδ,
dδ

dt
= − dv

dx
cosδ +

dv
dz

sinδ (6)

The beginning conditions are t = t0, δ = δ0, x = x0 and z = z0. t0 is the start time; δ0
is the included angle between the ray path and z axis; (z0, x0) is the location of the receiver.
The ray-centered coordinates s and n are generated by Equation (6) and ds = vdt.

The width and front of the Gaussian beams depend on the wavefront curvature
functions P(s) and Q(s). Both of them are complex functions. Using a velocity model,
V(s, n), P(s) and Q(s) can be solved by Equations (7) and (8):

dQ(s)
ds

= v(s)P(s) (7)

dP(s)
ds

= − 1
v2(s)

∂2V(s, n)
∂n2 Q(s) (8)

The initial values P0 and Q0 determines the initial width and wavefront curvature of
the Gaussian beams. With these two functions, the frequency domain wavefield under
Gaussian beam ray-centered coordinates can be calculated as an asymptotic solution of
Equation (5), defined as Equation (9).

U(s, n, w) = U0

[
v(s)
Q(s)

]1/2

exp
[

iwt(s) +
iw
2

P(s)
Q(s)

n2
]

(9)

where w is the frequency, U0 is the frequency domain wavefield value on (s = 0, n = 0),
U(s, n, w) is the backward wavefield corresponding to (s, n, w) and v(s) is the velocity at
the beam center corresponding to s [34].

The backward wavefield can be represented by a collection of Gaussian beams with
specified parameters. The initials values P0 = P(s0) and Q0 = Q(s0) are under the
constraint that P0/Q0 is always an imaginary. Usually, we use P0 = i/V0 and Q0 =
wrw2

0/V0 as initial values. V0 is the velocity at the point (s = 0, n = 0); wr is a reference
frequency based on the frequency range of the seismic wavelet; and w0 depends on wr.
A good choice of w0 is 2πVa/wr, where Va is the average velocity. The advantage of the
Gaussian beam wavefield solution is that the wavefield can be solved independently with
coordinates and beam parameters, which makes the algorithm suitable to be distributed.
It is also an algorithm that can reduce the effect of the fracture and break in the velocity
model. In the application of the TRI source location, considering that the exact velocity
model is difficult to generate in real-time field tests, the ray-center coordinates generated
by ray tracing might be misleading. To reduce this effect, the Gaussian beam with ray
tracing can be simplified to a Gaussian beam with a straight ray direction coordinate shown
in Figure 3. In this way, the ray path coordinates s and n can be solved directly without
Equation (6); the complex functions P(s) and Q(s) can be solved using:

Q(s) =
∫ s

s0

v(s)P(s)ds (10)
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P(s) =
∫ s

s0

− 1
v2(s)

∂2v(s, n)
∂n2 Q(s)ds (11)

Figure 3. Ray-center coordinates and ray-direction coordinates.

If a seismic event is detected in the former step, we start to calculate the backward
wavefield and generate the energy map. As an asymptotic wavefield solution, we can
construct a Gaussian beam backward wavefield similarly to the TRI backward wavefield.
However, only the active area where the seismic event occurred is desired. In this case,
only the wavefield in the area of one Gaussian beam is calculated to generate a source
map. With the ray direction coordinates and Gaussian beam wavefield solution, we can
calculate the wavefield parallel. Additionally, we avoid the absorbing boundary condition
and the scattering effect of the velocity model. The Gaussian beam requires a smooth
velocity model, which means it is not necessary to use an accurate velocity model as input.
This attribute makes GB-TRI especially suitable for passive source localization when the
velocity model is unknown.

3.3. Calculate the Initial Angle with the First Arrival Peak

To construct the Gaussian beam backward wave field, in addition to the observed
wave field data, we also need the initial wave propagation angle. The three-component
seismometer can obtain wave propagation angles with one node independently. Figure 4a
shows the case of 2D elastic wave recording; the received data has two orthogonal ground-
motion records corresponding to the horizontal and vertical components (respectively
noted X and Z). Configuration of a 2× 2 covariance matrix over the two components is:

C =

[
cov(X, X) cov(X, Z)
cov(Z, X) cov(Z, Z)

]
(12)

where cov(•) denotes the covariance. Eigenvectors of Equation (12) form an orthogonal
base, from which the wave orientation can be estimated. We organize eigenvalues so that
λ1 is bigger than λ2 with Ui, i = 1, 2 as the eigenvectors. Then, the desired angle θ is the
direction of U1. Practically, these eigenvalues and eigenvectors can be solved by singular
value decomposition (SVD) as the red line in Figure 4b.

The seismic waveform contains both P and S waves. Usually the P wave velocity is
larger than the S wave velocity, so the first arrival peak of the wave should always be the
P wave. P waves are also known as compressional waves. When subjected to a P wave,
particles move in the same direction that the the wave is moving in, which is the direction
that the energy is traveling in. For that reason, by solving the movement direction of first
arrival, we get the direction of wave propagation.

Considering that our installation of the sensor is not perfect, there may be significant
noise in the seismic observation. When the SNR is low, we need to use an alternative
method to calculate the initial angle. One solution is applying the traditional TRI method
with the raw data collected by the neighboring nodes inside the cluster. As the nodes in the
same cluster are close to each other, the communication cost is not significant. However,
the short distance between nodes also limited the effective area of the TRI method in
the superficial layer of the ground. In this case, we refer to this algorithm as superficial
layer TRI.
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Superficial layer TRI solves for the backward wavefield with the TRI algorithm in
a small area. The algorithm is the same as a typical TRI algorithm, but the calculation
is limited in the spatial domain. First, every node reads the raw data from its sensors
and pre-processes the raw data. The pre-processing includes cutting the continuum data
into segments, selecting the first part in each segments with a shorter time window and
implementing time-reversal. The window length is not necessarily long enough to cover
the whole wave propagating time from source to receiver. A short window that contains
the signal of the seismic event is sufficient. Instead of solving the whole wavefield, the
algorithm only solves the superficial layer and short offset area. As shown in Figure 5, the
output image is a beam toward the source location, and we define the direction from the
sensor to the maximum point on TRI beam image as the initial direction of Gaussian beam
from this sensor.

Figure 4. (a) Seismic source recorded on two different channels. (b) Wave propagation direction
detected by SVD.

Figure 5. Calculating the direction of Gaussian beam with the superficial layer TRI image.

3.4. Workflow of GB-TRI

A typical GB-TRI imaging workflow for a single node in the distributed sensor network
is shown in Figure 6. Most of the signal processing and wavefield calculation steps are
completed independently. The data exchange between nodes only occurs before the final
imaging process. All nodes have the same work flow, so this is a decentralized algorithm
which is robust even if the packet loss rate is high or several nodes have stopped functioning.
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Figure 6. Workflow for source localization on a node in a distributed sensor network system.

The innovation of our algorithm is that the Gaussian beam wavefield extrapolation
process can be calculated independently on a spatial axis. In this case, we only calculate
the wavefield in the range of the Gaussian beam; this process increases the efficiency
of calculation.

Define the time length of raw data as t, the grid size of velocity model as z× x, the
total number of nodes as l, the average number of neighbor nodes as n and the average
transmission length as m. Table 2 shows the communication and computational cost of
centralized TRI, distributed TRI and GB-TRI. The centralized algorithm has the lowest
computation cost, and the distributed TRI algorithm has the highest computation cost. The
communication cost depends on the parameters. In the case that the time is long or the
sampling rate is high, GB-TRI has the lowest communication cost.

Table 2. Communication and computational cost analysis.

Algorithm Communication Computation Computation
Cost Cost Cost Per Node

Centralized TRI t× l ×m o((z× x)2) o((z× x)2)
Distributed TRI z× x× t× l ×m o(l × (z× x)2) o((z× x)2)

GB-TRI z× x×m o(l × z× x) o(z× x)

4. Experiments and Evaluations
4.1. Real-Time Simulation of the System

To simulate the real-time performance of the proposed system, we designed an end-to-
end software system to demonstrate the distributed source localization algorithm, whose
flow chart is shown in Figure 7. The system provides real-time seismic signal generation
and real-time seismic source localization. The software-based architecture makes it easy to
demonstrate and validate the algorithm. Additionally, the cloud-based data structure will
make this system easy to connect with hardware-based architectures in future.

Figure 7. The framework of the real-time microseismic generation and inversion platform.

The seismic data were generated with a GUI written in Python. We generated the
forward wavefield data using the FDTD method modeled based on an input velocity model.
When we clicked on the graphical interfaces, an event was set up with a Ricker wavelet,
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and the location of this event was shown on the screen as a green square. The noise was
also considered in the data generation. Figure 8 shows the GUI. In this test when we clicked
persistently from left to right. The system generated the seismic vibration data in real-time
and sent data to the cloud influx database and displayed it with Grafana. Figure 9 shows
the real-time visualization of the seismic data, which was refreshed every 5 s.

Figure 8. Clickable GUI for generating real-time seismic vibration data.

Figure 9. Real-time visualization of seismic data recorded on different nodes.

The imaging script is another independent Python script. It queries data from the cloud
database and calculates the inversion in real-time. In this test, we set the length of the sliding
window as 5 s and refreshed the result every 5 s. The output energy map is printed on the
screen and refreshed automatically. In this case, the output was a continual animation.

The real-time simulation experiment was conducted on a desktop with 8 GB of mem-
ory and a 4-core CPU. Both the forwarding part and the inversion part were running on
the same desktop. In this experiment, we generated a sequence of events in 20 min; the lo-
cations are shown in Figure 8 as the green squares. We took screenshots every five minutes.
Figure 10 shows four screenshots which show the locations of the events we generated
with this GUI. The result shows that the seismic events occurred in different locations. With
this GUI, we saw the the real-time performance of the system; the localization result is clear
and the output can refresh every 5 s with limited use of computational resources.
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Figure 10. The screenshots of the output energy map.

4.2. Algorithm Evaluation with an Offline Experiment

The GB-TRI imaging algorithm has good performance under ideal conditions. How-
ever, in the real sensor network, noise, packet loss and asynchronization occur. To evaluate
the performance of our algorithm in different environments, we also conducted a series of
offline one-time experiments.

4.2.1. Noise Test

An noise experiment was performed on the Marmousi velocity model [35], the geome-
try of which was based on a profile through the North Quenguela trough in the Cuanza
basin, which is a common velocity model used to test algorithms in exploration seismology
literature. We selected a square area in the Marmousi model containing multiple layers,
as shown in Figure 11. The velocity range was from 1500 m/s to 3500 m/s. The size of
velocity model was 300× 300; both the depth interval dz and the width interval dx were
4 m. The deployed surface sensor array included 45 sensors from x = 160 m to x = 1040 m;
the interval between sensors was 60 m. We set up a single seismic event at (z = 520 m,
x = 880 m) and generated seismic data with the FDTD method; the time length of data was
0.5 s; the time interval was 0.5 ms.

Figure 12 shows the FDTD-TRI and the GB-TRI imaging results with different noise
levels. To generate a GB-TRI energy map, we needed to implement Gaussian blur first on
the velocity model to meet the smooth velocity model requirement of GB-TRI algorithm.
On the imaging result, we can see the center of the energy map is almost at the true location
of seismic source. GB-TRI can get a similar localization result to the FDTD-TRI result shown
in the first row. The result shows that our algorithm performs well, even in a complex
velocity environment. We discuss the accuracy of the locating result later.

We added white noise at the difference level of the measured SNR. Figure 12b–d
shows the dataset with noise and the final energy map at SNR = 10 dB, SNR = 0 dB and
SNR = −10 dB, respectively. On the image of the observed seismic dataset, we plotted
the waveform of the observed data at x = 1000 m. From this waveform, the difference of
the noise level is obvious. The result shows that when SNR = 10 dB, the imaging result
is almost same as the noise-free result; when SNR = 0 dB, the area near source location
does not change too much, but there are some unexpected structures shown in the near
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surface area; when SNR = −10 db, it is obvious that several Gaussian beams spuriously
located energy on the right edge of the energy map, and the spot near the source location
has some distortion compared with other energy maps. In general the energy distribution
on the energy map is more disperse with a lower SNR. The noise affects the final imaging
stage: with the stacked image condition, the SNR of the final energy map result depends
on the number of folds. The similarity between energy maps with different SNRs shows
that the algorithm is robust in noisy environments. Although a low SNR may cause some
unexpected structure, the source energy concentration is still significant around the source
location area.

Figure 11. Marmousi velocity model.

Figure 12. The FDTD-TRI image (first row), the GB-TRI image (second row) and the observed data
(third row) with different SNRs. (a) Noise free; (b) SNR = 10 dB; (c) SNR = 0 dB;(d) SNR = −10 dB.

4.2.2. Packet Loss Test

In a sensor network, packet loss is a common phenomenon, which sometimes makes
the algorithm fail to generate a good result. To deal with this problem, the algorithm should
have a tolerance for packet loss. In the TRI algorithm, the stacked or cross-correlation
imaging condition, which relies on folds, has natural resistance to packet loss. Figure 13
shows the output energy map generated by FDTD-TRI and GB-TRI after adding different
rates of packet loss. Figure 13a is the energy map without packet loss; Figure 13b,c are
energy maps under 40% packet loss and 70% packet loss, respectively. Since the packet loss
occurs randomly, the output energy map could vary from one test to another. For example,
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as we can see in the Figure 13b, some packets from middle sensors were missed. The result
was that there were two obvious beams on the energy map, but the energy around the
source location was more concentrated than in Figure 13a. Figure 13c shows the opposite
condition: the wave field data packet remaining on the energy map is concentrated. In this
case, the source location is clear in horizontal and s directions, but not well-localized in
vertical and z directions. Interestingly, the FDTD-TRI result shows some obvious structures
in the near surface area under high packet loss rate, but GB-TRI result does not show that
structure. The reason could be that the Gaussian beam construction process introduces a
smoothing effect on the wave field, which may compensate for packet loss. This test shows
that our algorithm performs well even when the percentage of packet loss is high. Even
if the packet loss rate is as much as 70%, we can still find localized source energy on the
output energy map.

Figure 13. FDTD-TRI (first row) and GB-TRI (second row) energy maps under different packet loss
rates: (a) 0% packet loss; (b) 40% packet loss; (c) 70% packet loss.

To measure the accuracy of GB-TRI locating result, we used the deviation between
the location result and the true location to represent the quality of result. We define the
maximum point on the energy map as the location result, and the distance between the
location result and the true location is the deviation. Figure 14 shows the comparison of
location results and true location under different noise and packet loss conditions. The red
circle is the true location of the seismic source, and the blue star is the location result given
by the GB-TRI algorithm. As we can see in Figure 14, the deviation is not affected too much
by noise or packet loss. This result also shows that our algorithm is robust with respect to
both high noise levels and packet loss. To measure the location result in a objective way,
we random selected the location of seismic source and ran the experiment independently
20 times under each condition. We used the average of 10 output deviations to validate the
accuracy of the locating result. Table 3 shows the average deviations under different SNRs
and packet loss rates. The differences between the deviations under different conditions are
not significant, which means that the primary cause of error in our algorithm is not noise or
packet loss. We also estimated the average localization error of the FDTD-TRI method. The
result shows that the FDTD-TRI localization result is very robust; however, the absolute
error in the noise-free and no-packet-loss conditions is larger than for the GB-TRI result.
The average error of FDTD-TRI is 32.3333 m. Theoretically, the error in GB-TRI is caused by
the inaccurate velocity model and the approximate wavefield calculated by the GB wave
equation. In the field test, it is hard to get an accurate velocity model. In GB wave field
extension, a Gaussian mean filter is applied to the velocity model, which can reduce the
effect of local uncertainty. If there is a global offset on the velocity model, the result will
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also show an offset. However, if the velocity model is relatively stable, we can also find
the approximate route of the object. We should notice that even if there are deviations
between the true location and the calculated location, the deviation is around 20 m under
sustainable noise and packet loss. The location result is precise enough to satisfy the basic
resolution requirement in a 1200 × 1200 m velocity model. Considering the efficiency of
the algorithm, it is suitable to be implemented in a real-time distributed system.

Figure 14. The comparison between the location result calculated by the GB-TRI method and the true
location of the seismic source under different noise and packet loss conditions.

Table 3. Deviation under different SNR and packet loss rate.

Deviation (m) SNR = 10 dB SNR = 0 dB SNR = −10 dB

0% packet loss 17.9815 20.6491 27.2628
40% packet loss 17.4121 24.3091 27.2861
70% packet loss 31.7856 103.5200 153.9617

4.2.3. Time Synchronization Test

Due to the asynchrony of the independent devices, data gathered from different nodes
may not be exactly synchronized in time. To test the robustness of the algorithm, we
added random delay to our synthetic data. The velocity model we used in this experiment
was still the Marmousi model, and the center frequency of the wavelet was 50 Hz. First,
we added random delay in the range of 5 ms. The seismic section shown in Figure 15a.
Figure 15b,c shows the FDTD-TRI result and GB-TRI result. The results show that the
energy of the source still concentrates on the location of the source. This result shows
that both FDTD-TRI and GB-TRI algorithms have basic robustness towards asynchronous
data. If we add random delay in the range of 25 ms, the seismic section is shown in
Figure 15d. Figure 15e,f shows the FDTD-TRI result and GB-TRI result. We found an
interesting phenomenon: the GB-TRI result demonstrated better localization than the
FDTD-TRI result. Considering that GB-TRI is calculating the wavefield in the frequency
domain, it may deal with poorly-synchronized data more naturally.
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Figure 15. (a) Seismic data with random delays near 5 ms; (b) FDTD-TRI result; (c) GB-TRI result;
(d) seismic data with five times larger random delays; (e) FDTD-TRI result; (f) GB-TRI result.

4.2.4. Undulating Surface Test

The final test was an undulating surface test. To simulate topographic variation, we
created a layered velocity model with an undulating surface layer, which is shown in
Figure 16. Both the depth interval dz and width interval dx were 5 m. The sensors were
deployed along the surface and the source event was located at point (150,150). Since the
sensor’s deployment was not horizontal, we needed to use the two-dimensional positions
of the sensors in the TRI algorithm. Although the input was changed, the complexity of
the algorithm did not change.

Similarly to the previous experiments, we generated the synthetic data with the FDTD
method, and the seismic record is plotted in Figure 17a. The results show that the record
was distorted because the observing surface was not horizontal. Figure 17b shows the
localization result of this experiment. As we can see, the energy was well-concentrated
to the location of the source event. From this result, we can conclude that the GB-TRI
algorithm can be easily adapted to a setting with topographic variation. Although the
algorithm itself is adjustable to topographic variation, it requires the exact 2D position of
the sensors, and so obtaining very good estimations of sensor placement and the variation
of surface topography are critical to the method.

Figure 16. Velocity model with topographic variation. The green triangles are sensors, and the red
star is the seismic source.
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(a) (b)

Figure 17. (a) The record of the observed seismic data; (b) the localization result.

5. Discussion

In the Section 4, a real-time experiment was shown. The experimental result shows
that the presented distributed microseismic event localization framework can generate the
real-time localization result successfully. Our algorithm can support an output refreshing
every 5 s with a normal desktop. Based on a literature research, this was the first time a
real-time microseismic localization result was acquired. Although the refresh rate is not as
high as in other lightweight IoT applications, it is a great improvement over geophysical
exploration approach.

The offline experiments showed the robustness of our algorithm. When signal is noisy
and packet loss is occurring in the network, the proposed algorithm still works, and the
error does not increase too much. The time synchronization experiment result showed that
the algorithm can work under small time shifts (less than 5 ms) between different nodes.
The undulating surface test showed that the algorithm works well even if the sensor line is
not horizontal. To sum up, the proposed algorithm is robust when it is implemented in the
distributed sensor network, and it is ready for launch on a real hardware-based application.

6. Conclusions and Future Work

We designed a distributed sensor network system for underground seismic source
localization. We have a simulation platform to test our algorithm; the connected ports
for real-time data from real devices and the visualization system are also ready for future
experiments. We used an optimized GB-TRI algorithm to rapidly calculate passive source
localization in a distributed and decentralized way. The GB-TRI algorithm has good
performance when the algorithm is implemented in a large-scale distributed network. The
real-time and one-time experimental results showed that our proposed system can provide
a real-time localization result with a 5 s refresh period; and the optimized GB-TRI algorithm
is robust to noisy signals, packet loss, poor time synchronization and topographic variation.

The current GB-TRI method still has some shortcomings. Although a Gaussian beam
simplifies the wavefield solution, we still need to set up the whole velocity model as
the input to every node. The algorithm still requires the wavefield data to be exchanged
between nodes. If a spatially distributed wavefield solution is available, the communication
cost will be further reduced.

Our future plan is to improve the imaging algorithm to make it more efficient, and
also test the real-time performance in a distributed network. We are going to embed our
algorithm in a real device to test whether the algorithm works well in a small embedded
system. We also plan to modify the structure of the algorithm to adjust to real-device
deployment. In general, altering the algorithm will be the very first stage of this work;
there is still a lot of work to do regarding the engineering. To perform real-time experiments
with real devices, we still need to deal with detailed problems.
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