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Distribution of genetic alterations 
in high‑risk early‑stage cervical 
cancer patients treated 
with postoperative radiation 
therapy
Naoya Murakami1*, Yuka Asami2,3, Hiroshi Yoshida4, Daisuke Takayanagi2, Sou Hirose5, 
Ikumi Kuno6, Kazuaki Takahashi5, Maiko Matsuda2, Yoko Shimada2, Shotaro Yamano7, 
Kuniko Sunami4, Takayuki Honda8, Tomomi Nakahara9, Tomoko Watanabe2, Kae Okuma1, 
Takafumi Kuroda5, Takashi Kohno2, Tomoyasu Kato10, Kouya Shiraishi2* & Jun Itami1

Somatic genetic alteration analysis was performed for post-hysterectomy high-risk early-stage uterine 
cervical cancer patients who underwent post-operative radiation therapy. Post-operative radiation 
therapy was performed for patients with pathological features of pelvic lymph node metastasis, 
parametrium invasion, or positive vaginal margin, which corresponded to the post-operative high-
risk category. DNA was extracted from paraffin-embedded surgical specimens, and 50 somatic 
hotspot genetic alternations were detected using Ion AmpliSeq Cancer Hotspot Panel. The existence 
of actionable mutation was assessed based on OncoKB evidence level > 3A. Between January 2008 
and November 2019, 89 patients who underwent abdominal radical hysterectomy followed by post-
operative radiation therapy were identified. The follow-up period for living patients was 82.3 months 
(range 9.3–153.9), and the 5-year relapse-free survival and overall survival rates were 72.6% and 
85.9%, respectively. The most frequently detected somatic mutation was PIK3CA (26 [29.2%] 
patients); however, no prognostic somatic genetic alterations were identified. Actionable mutations 
were detected in 30 (33.7%) patients. Actionable mutations were detected in approximately one-third 
of patients, suggesting that precision medicine can be offered to patients with post-operative high-
risk uterine cervical cancer in the near future.

Since the development of an effective screening system and prophylactic vaccines against oncogenic human papil-
lomaviruses (HPVs), which are the primary cause of uterine cervical cancer1,2, the incidence of uterine cervical 
cancer has drastically decreased in most developed western countries3. However, uterine cervical cancer is a big 
public health problem in Japan and in many developing countries4; annually, 20,000 new cases and approximately 
2600–2900 deaths are reported5,6, and the rate of screening and vaccination for HPV is low in Japan.

Among early-stage post-hysterectomy uterine cervical cancer patients, post-operative pelvic radiation therapy 
improves pelvic control in patients with intermediate-risk prognostic factors, while concurrent chemoradiation 
therapy (CCRT) improves overall survival in patients with high-risk prognostic factors7,8.
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A comprehensive genomic investigation of uterine cervical cancer has revealed several novel somatic genetic 
alterations that are potential therapeutic targets for cervical cancer patients9. However, thus far, only few stud-
ies have performed somatic genetic alteration analysis in high-risk early-stage cervical cancer Asian females. 
The purpose of this study was to investigate the distribution of somatic genetic alterations and the frequency of 
actionable mutations in Japanese patients with post-hysterectomy high-risk early-stage uterine cervical cancer 
who underwent post-operative radiation therapy.

Methods
Pre-operative staging work-up for uterine cervical cancer included physical examination; chest, upper abdominal, 
and pelvic computed tomography (CT) with contrast enhancement, and pelvic magnetic resonance imaging 
(MRI). All patients were re-staged according to the International Federation of Gynecology and Obstetrics 
(FIGO) 2018 staging system for this analysis. According to the Japan Society of Gynecologic Oncology guide-
lines 2017 for the treatment of uterine cervical cancer10, patients aged < 65 with FIGO stage IB2–IIB disease are 
candidates for abdominal radical hysterectomy. The treatment strategy for each patient was discussed in our 
Gynecological Tumor Board, comprising gynecologic oncologists, radiation oncologists, radiologists, pathol-
ogists, and medical oncologists. Abdominal radical hysterectomy was performed according to a previously 
reported method11. In brief, the anterior, medial, and posterior retinaculum uteri were isolated and divided. 
After dividing all three retinacula uteri, paravaginal tissue and the vaginal wall were incised, and the uterus and 
adnexa were removed en masse. Dissection of regional lymph nodes (LNs; common iliac LNs, external iliac LNs, 
internal iliac LNs, obturator LNs, sacral LNs, and cardinal ligament LNs) was also performed.

The indication criterion for post-operative pelvic radiation therapy in our institution is the presence of a 
high-risk feature, such as positive margin, pelvic lymph node metastasis, or parametrium invasion12. Before 
2010, pelvic radiation therapy was delivered via three-dimensional conformal radiation therapy (3D-CRT) with 
a 4-field box technique. Because the incidence of ileus was as high as 27% in our institution after abdominal 
radical hysterectomy and adjuvant pelvic radiation therapy alone with 3D-CRT, concurrent chemotherapy was 
not administered because it could potentially increase the occurrence of ileus even higher despite a phase 3 clini-
cal trial showing overall survival benefits adding concurrent chemotherapy8. Since 2010, intensity-modulated 
radiation therapy (IMRT) was used to reduce bowel toxicity; after the introduction of IMRT, the bowel obstruc-
tion rate was decreased to 7.5%12. Then, it was considered that it would be safe to add concurrent chemotherapy 
with IMRT, and since 2015, concurrent weekly cisplatin (CDDP) (40 mg/m2) has been used for the treatment of 
post-operative high-risk early-stage uterine cervical cancer patients.

The pelvic radiation dose was 50 Gy in 25 fractions. The typical radiation field included the external, common, 
and internal iliac LNs, presacral LN, obturator LN, vaginal cuff, and paracolpium. If a pathologically positive 
para-aortic LN was present, extended-field portals up to the Th12/L1 interspace was applied. Patients with only 
positive vaginal margin received vaginal intracavitary brachytherapy alone without pelvic external beam radia-
tion therapy. For patients with both LN metastasis/parametrium invasion and positive vaginal margin, vaginal 
intracavitary brachytherapy was delivered after whole pelvic radiation therapy.

According to previous reports, PIK3CA mutations are detected in 30% cervical cancer patients. Assuming a 
recurrence in 30% of 100 cervical cancer cases, the power of an odds ratio of 3 was ≥ 0.80. Therefore, 107 patients 
were enrolled in this study. Surgically removed paraffin-embedded specimens were used for somatic genetic 
alteration analysis. Genomic DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumor tissues 
using the QIAamp DNA FFPE tissue kit (Qiagen, Hilden, Germany), according to the manufacturer’s instruc-
tions. Purified genomic DNA obtained from tumor tissues (50 ng) was used for library construction using the Ion 
AmpliSeq Cancer Hotspot Panel v2 (Thermo Fisher Scientific, Waltham, MA, USA) that targets approximately 
2800 COSMIC mutational hotspot regions of 50 cancer-related genes. Sequencing was performed on the Ion 
Proton platform (Thermo Fisher Scientific). Samples with a mean read depth of coverage of > 1000 and a base 
quality score of 20 (i.e., with a ≤ 1% probability of being incorrect), which accounted for 90% of the total reads, 
were selected for sample quality control. Data analysis was performed using the Torrent Suite Software v5.0.4 
(Thermo Fisher Scientific). First, somatic mutations were selected using the following criteria: (1) the variant 
allele frequency of somatic mutations was > 4% in tumor tissues; (2) single nucleotide polymorphisms were 
removed if they showed a threshold allele frequency value of ≥ 0.01 in either the NHLBI GO Exome Sequencing 
Project (ESP6500; http://​evs.​gs.​washi​ngton.​edu/​EVS/) or the Integrative Japanese Genome Variation Database 
(iJGVD, 20151218; https://​ijgvd.​megab​ank.​tohoku.​ac.​jp/)13; (3) mutations were registered as “pathogenic/likely 
pathogenic variants” in ClinVar14 or “oncogenic/likely oncogenic variants” in the TCGA dataset9,15 (retrieved 
data from cBioPortal; http://​www.​cbiop​ortal.​org/). Then, all selected variants were judged by manual inspection 
using the Integrative Genomics Viewer (http://​www.​broad​insti​tute.​org/​igv/)16.

Copy number alterations were detected with real-time genomic polymerase chain reaction (PCR) using 
the TaqMan copy number assay and the ABI 7900HT real-time PCR system (Applied Biosystems). Among 50 
targeted genes, four genes, i.e., PIK3CA, ERBB2, PTEN, and STK11, were selected in the Ion AmpliSeq Cancer 
Hotspot Panel v2; the frequency of copy number alterations in these four genes was > 5% in the TCGA dataset of 
cervical cancer patients within cBioPortal. All TaqMan probes, including PIK3CA (ID Hs02202946_cn), ERBB2 
(ID Hs02803918_cn), PTEN (ID Hs05128032_cn), STK11 (ID Hs04013006_cn), and RNaseP (cat. no. 4403328; 
reference), were purchased from Thermo Fisher Scientific. Genome data were analyzed using the ABI PRISM 
7900HT Sequence Detection Software CopyCaller v2.1 (Thermo Fisher Scientific) for copy number analysis. 
Copy number amplification was defined as the process resulting in the presence of > 8 copies, while copy number 
loss was defined as the process resulting in the presence of < 1.2 copies, as previously reported17.

HPV genotyping was performed using Sanger sequencing. Genomic DNA (10 ng) was amplified via PCR 
using Taq DNA polymerase (Takara Bio Inc., Shiga, Japan); two pairs of consensus primers (HPVpU-1M: TGT​

http://evs.gs.washington.edu/EVS/
https://ijgvd.megabank.tohoku.ac.jp/
http://www.cbioportal.org/
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CAA​AAA​CCG​TTG​TGT​CC and HPVpU-2R: GAG​CTG​TCG​CTT​AAT​TGC​TC); PCR Human Papillomavirus 
Typing Set (Takara Bio Inc.)18, i.e., at the E6 and E7 homologous regions of HPV (228–268 bp); and other general 
primers (HPV-GP5: TTT​GTT​ACT​GTG​GTA​GAT​AC and HPV-GP6: GAA​AAA​TAA​ACT​GTA​AAT​CA)19. PCR 
products were purified using NucleoSpin Gel (Takara Bio Inc.) or the PCR Clean-up (Takara Bio Inc.) kit. Sanger 
sequencing was performed using the ABI 3130xl DNA Sequencer (Applied Biosystems), in accordance with the 
manufacturer’s instructions. The similarity between the obtained sequences and various HPV genotypes in the 
GenBank database was determined using BLAST (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi) analysis.

To clarify the frequency of HPV-positive results in the samples, we performed in situ hybridization assay for 
HPV detection using HPV-III High-Risk probes (Roche Diagnostics, Mannheim, Germany) in accordance with 
the manufacturer’s instructions. This assay can detect high-risk HPV genotypes, including HPV-16, HPV-18, 
HPV-31, HPV-33, HPV-35, HPV-45, HPV-52, HPV-56, HPV-58, and HPV-66, in cervical cancer specimens.

OncoKB20 (https://​oncokb.​org/#/; oncokb-annotator; commit 8910b65 on June 29, 2019) is a precision 
oncology knowledge database that contains information about the effects and treatment implications of specific 
genomic alterations in cancer patients. Somatic mutations and copy number alterations were categorized into 
four evidence levels. In the present study, genetic aberrations with evidence levels 1A–3A were judged as action-
able mutations for molecular-targeted drugs21.

p-values ≤ 0.05 was considered statistically significant. All statistical analyses were performed using IBM SPSS 
Statistics (version 18.0; SPSS, Inc., Chicago, IL, USA).

Ethics declarations.  This retrospective study was approved by the Institutional Review Board of National 
Cancer Center Hospital (approval number 2017-136) and follows the ethical standards laid down in the Declara-
tion of Helsinki. Informed consent was obtained from all patients.

Results
The patient flow diagram of this study is shown in Fig. 1. From January 2008 to November 2019, 176 patients 
underwent abdominal radical hysterectomy for early-stage uterine cervical cancer, among which 92 patients 
underwent postoperative radiation therapy due to the presence of pathologically high-risk features. Informed 
consent could not be obtained from 3 patients; therefore, 89 patients were included in this analysis. Patient 
and tumor characteristics are summarized in Table 1, and an overview of the FIGO stage, pT classification, pN 
grade, pathology, and four most frequently mutated genes (PIK3CA, STK11, PTEN, and TP53) for each patient 
is summarized in Fig. 2. More than half of the patients had positive pelvic LN metastasis (64%) and parametrial 
involvement (66.3%). HPV infection was detected in 91.0% patients, of which 72.8% patients were infected with 
HPV-16 or HPV-18. Only 24.7% patients received CCRT as it was approved for use in 2015.

The median follow-up period for living patients was 82.3 months (range 9.3–153.9). The 5-year relapse-free 
survival (RFS) and overall survival (OS) rates were 72.6% and 85.9%, respectively. Twenty-six patients developed 
tumor recurrence after primary abdominal radical hysterectomy followed by pelvic radiation therapy. Patterns 
of relapse are summarized in Table 2. In- and extra-field recurrence was observed in eight patients and 20 
patients, respectively. Clinicopathological factors that had an influence on tumor recurrence or patient survival 
were analyzed using univariate and multivariate analyses (Table 3). In multivariate analysis, the presence of 
pelvic LN metastasis was identified as the independent prognostic factor for RFS (p = 0.005). Concurrent use 
of systemic chemotherapy showed trends toward better RFS in univariate analysis (p = 0.056). The presence of 
pelvic LN metastasis was associated with trends toward worse OS in univariate analysis (p = 0.08). The most 
frequent genetic alterations occurred in PIK3CA (29 [32.6%] patients) followed by STK11 (9 [10.1%] patients) 
and PTEN (11 [12.4%] patients) (Table 4). We examined whether pelvic LN metastasis was associated with 
somatic genetic alterations or HPV infection status; however, there was no significant association between the 
presence of pelvic LN metastasis and genetic alterations or HPV infection (Table 4). We also examined whether 

Figure 1.   Patient flow diagram of this study.
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Table 1.   Characteristics of 89 patients with cervical cancer. RT radiation therapy, CCRT​ concurrent 
chemoradiation therapy, 3D-CRT​ three-dimensional radiation therapy, IMRT intensity modulated radiation 
therapy, ICBT intracavitary brachytherapy, HPV human papillomavirus.

Variable n (%)

Age (year) Median (range) 45 (26–70)

Histology

Squamous cell carcinoma 60 (67.4)

Adenocarcinoma 20 (22.5)

Adenosquamous carcinoma 9 (10.1)

FIGO stage

IA 0 (0%)

IB 24 (27.0%)

IIA 4 (4.5%)

IIB 3 (1.1%)

IIIA 0 (0%)

IIIB 0 (0%)

IIIC 57 (64.0%)

Unknown 1 (1.1%)

Pathological T stage

Ia 0 (0%)

Ib 15 (16.9%)

2a 14 (15.7%)

2b 60 (67.4%)

Lymph node metastasis
Positive 57 (64.0%)

Negative 32 (36.0%)

Parametrial involvement
Positive 59 (66.3%)

Negative 30 (33.7%)

Maximum tumor diameter (cm) Median (range) 4.5 (1.7–8.7)

HPV
Positive 81 (91.0%)

Negative 8 (9.0%)

HPV subtype
16 or 18 59 (72.8%)

Others 22 (27.2%)

Treatment
RT alone 67 (75.3%)

CCRT​ 22 (24.7%)

RT technique

3DCRT​ 26 (29.2%)

IMRT 58 (65.2%)

ICBT alone 5 (5.6%)

Figure 2.   An overview of clinicopathological status and clinical outcomes of all patients included in this study. 
Rec recurrence.
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Table 2.   Distribution of recurrence with regard to the radiation field. PALN para-aortic lymph node.

Variable n (%)

Any recurrence 26

(1) In-field or extra-field

Both in-field and extra-field recurrence 2 (7.7)

In-field recurrence 6 (23.1)

Extra-field recurrence 18 (69.2)

(2) Extra-field recurrence 20

PALN 7 (35.0)

Lung 6 (30.0)

Others 7 (35.0)

Table 3.   Hazard ratios for relapse-free survival and overall survival in cervical cancer. Scc squamous cell 
carcinoma, CCRT​ concurrent chemoradiation therapy, RT radiation therapy, HPV human papillomavirus. 
*Cox proportional hazard model. **Adjusted for histology, pamametrium involvement, concurrent use of 
systemic agent, and pelvic lymph metasitasis.

Variable

Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Relapse-free survival

Age (≥ 45/ < 45) 0.94 (0.44–2.03) 0.88

Histology (non-Scc/Scc) 1.86 (0.86–4.02) 0.12 1.84 (0.84–4.01) 0.13**

Size (≥ 4 cm/ < 4 cm) 1.38 (0.55–3.43) 0.49

Parametrium involvement (positive/negative) 2.00 (0.76–5.32) 0.16 2.45 (0.92–6.56) 0.07**

Pelvic lymph node metastasis (positive/negative) 5.25 (1.57–17.5) 0.007* 5.64 (1.68–18.9) 0.005**

Concurrent use of systemic agent (CCRT/RT) 0.14 (0.02–1.05) 0.05 0.17 (0.02–1.25) 0.08**

PIK3CA alterations (positive/negative) 1.08 (0.47–2.52) 0.85

STK11 alterations (positive/negative) 1.77e−9 (–) 0.99

PTEN alterations (positive/negative) 1.09 (0.37–3.21) 0.88

HPV infection (positive/negative) 0.83 (0.25–2.77) 0.76

HPV 16 or 18 (HPV 16/18/non-HPV 16/18) 1.58 (0.58–4.34) 0.37

Overall survival

Age (≥ 45/ < 45) 1.63 (0.48–5.59) 0.43

Histology (non-Scc/Scc) 1.08 (0.32–3.69) 0.90

Size (≥ 4 cm/ < 4 cm) 1.82 (0.39–8.44) 0.44

Parametrium involvement (positive/negative) 1.22 (0.32–4.61) 0.77

Pelvic lymph node metastasis (positive/negative) 6.51 (0.82–50.1) 0.08

Concurrent use of systemic agent (CCRT/RT) 1.40e−9 (–) 0.99

PIK3CA alterations (positive/negative) 1.35 (0.39–4.63) 0.63

STK11 alterations (positive/negative) 4.98e−9 (–) 0.99

PTEN alterations (positive/negative) 0.73 (0.09–5.67) 0.76

HPV infection (positive/negative) 1.24 (0.16–9.70) 0.84

HPV 16 or 18 (HPV 16/18/non-HPV 16/18) 3.66 (0.46–28.9) 0.22

Table 4.   Association between lymph node metastasis status and frequency of genetic alterations or HPV 
status. HPV human papillomavirus. *Fisher’s exact t-test.

Genetic alterations/HPV status

Lymph node metastasis

p-value*Positive [n = 57, (%)] Negative [n = 32, (%)]

PIK3CA alteration (n = 29) 20 (35.1) 9 (28.1) 0.64

PTEN alteration (n = 11) 8 (14.0) 3 (9.4) 0.74

STK11 alteration (n = 9) 5 (8.8) 4 (12.5) 0.72

HPV infection (n = 81) 52 (91.2) 29 (90.6) 1.00

HPV-16 or HPV-18 (n = 59) 36 (63.2) 23 (71.9) 0.44
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the disease recurrence was associated with somatic genetic alterations or HPV infection status (Table 5). There 
was no significant association between disease recurrence and somatic genetic alterations or HPV infection status.

The presence of actionable mutation was assessed based on the OncoKB evidence level; an evidence level 
of > 3A was regarded as having a potential target drug against the mutation. A total of 33 actionable mutations 
were detected in 30 (33.7%) patients. Among 29 patients with PIK3CA mutation, three patients had gene ampli-
fications that were not regarded as actionable mutation according to the OncoKB evidence level; therefore, 26 
patients with PKC3CA had actionable mutations in the current study. PIK3CA mutations accounted for most 
frequent actionable mutations (78.8%, Fig. 3).

Discussion
In this retrospective study, the most frequent genetic alterations occurred in PIK3CA (32.6%) among patients 
with high-risk postoperative uterine cancer. The Phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target 
of rapamycin (mTOR) pathway is a critical signaling cascade that plays several central regulatory roles such as 
cell growth, survival, and metabolism. PI3Ks are a family of lipid kinases comprising three classes that regulate 
signaling pathways involved in cell proliferation, cell differentiation, protein synthesis, glucose metabolism, 
transformation, cell migration, cell survival, apoptosis, and metastasis22,23. Molecular mutations in the PI3K 
pathway drive tumorigenesis in humans24. In this study, PIK3CA mutation was not associated with poor prog-
nosis; however, it was a frequently altered pathway that can lead to cancer activation in > 70% cases of malignant 
tumors25,26. Moreover, activation of PI3K/AKT/mTOR signaling makes a tumor more aggressive in terms of 
proliferation, angiogenesis, metastasis, and drug resistance. PIK3CA mutations have also been reported in several 
malignancies such as breast cancer, head and neck cancer, glioblastoma, gastric cancer, lung cancer, prostate 
cancer, anal canal cancer, hepatocellular cancer, colorectal cancer, endometrial cancer, and cervical cancer24,27. 
The prognosis of breast cancer patients with PIK3CA mutations has been reported to be better than that of 
patients without PIK3CA mutations. In a recent phase III clinical trial, an oral PI3K inhibitor, alpelisib, in com-
bination with fulvestrant prolonged the progression-free survival of patients with PIK3CA-mutated, hormone 
receptor-positive, human epidermal growth factor receptor 2-negative breast cancer28, suggesting PIK3CA as 
a candidate target for cervical cancer treatment. The mechanism of this particular treatment target needs to be 
elucidated in future studies.

In the RTOG9112/SWOG8797 trial, the 4-year OS rate of post-operative high-risk uterine cervical cancer 
patients in the CCRT arm was 81%8, while the 5-year OS rate in our study was 85.9%, which was comparable to 

Table 5.   Association between recurrence and frequency of genetic alterations or HPV status. HPV human 
papillomavirus. *Fisher’s exact t-test.

Genetic alterations/HPV status Recurrence [n = 26, (%)] No recurrence [n = 63, (%)] p-value*

PIK3CA alteration (n = 29) 8 (30.8) 21 (33.3) 1.00

PTEN alteration (n = 11) 4 (15.4) 7 (11.1) 0.72

STK11 alteration (n = 9) 0 (0) 9 (14.3) 0.053

TP53 mutation (n = 9) 2 (7.7) 7 (11.1) 1.00

HPV infection (n = 81) 23 (88.5) 58 (92.1) 0.69

HPV-16 or HPV-18 (n = 59) 18 (69.2) 41 (65.1) 0.59

Figure 3.   An overview of actionable genetic mutations in cervical cancers. CA-xx represents identification 
numbers for pathologic specimens of each patient.
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the results of the RTOG9112/SWOG8797 trial despite the fact that only 24.7% patients received CCRT in our 
study. In our study, high-risk postoperative uterine cancer patients who received post-hysterectomy pelvic radia-
tion therapy with concurrent weekly CDDP showed trends toward better RFS (hazard ratio, 0.14; 95% confidence 
interval, 0.02–1.05, p = 0.056), which was in line with the results of the RTOG9112/SWOG8797 trial, showing 
the superiority of RT with CCRT over RT alone.

As reported in previous studies29–31, the presence of pelvic LN metastasis was an independent adverse prog-
nostic factor for RFS and no somatic mutation assessed by the cancer panel was associated with clinical outcomes 
in patients who received post-operative pelvic radiation therapy for uterine cervical cancer in the current study. 
In contrast, Yoshimoto et al. reported that FGFR mutation was associated with worse progression-free survival 
in cervical cancer patients treated with definitive radiation therapy32. The possible reason why FGFR mutation 
was not found to be a worse prognostic factor in the current study could be that the treatment modality was not 
the same between the two studies. In addition, the frequency of FGFR mutation was low, (< 5%) in this study. 
Although the prognosis of HPV-negative cervical cancer is worse than that of HPV-positive cancer33, HPV 
infection status did not affect prognosis in the current study (Table 3), possibly because the number of patients 
with HPV-negative cancer was not enough to detect differences.

In the current study, actionable mutations were observed in 33.7% patients. Currently, only bevacizumab, 
a molecular-targeted agent against vascular endothelial growth factor, is approved for recurrent or metastatic 
cervical cancer treatment34. Development of a targeted drug against KRAS mutation, considered a non-treatable 
mutation was believed to be difficult previously; however, an effective drug was finally developed35. Therefore, 
it is suggested that targeted drugs that are selected based on individual somatic mutations could be used in the 
treatment of uterine cervical cancer patients in the near future. Recently, the public insurance in Japan was 
updated, covering comprehensive somatic genetic alteration analysis for solid tumors. This means that the cur-
rently performed one-fits-all approach based on a specific organ will be replaced with personalized treatment 
strategies based on somatic genetic alterations for many types of solid cancers in the future. In this context, the 
current study provides important information for Asian uterine cervical cancer patients.

There are several limitations in this study. This study was a single-institution retrospective study with a limited 
number of patients. Further, due to the reduction of late gastrointestinal toxicities as result of improvement of 
radiation therapy delivery methods such as 3D-CRT to IMRT, the use of concurrent administration of weekly 
CDDP was approved in 2015. Therefore, the treatment performed in this study was inconsistent throughout the 
study period.

In conclusion, actionable mutations were detected in more than half of the patients, suggesting that precision 
medicine can be offered to post-operative high-risk uterine cervical cancer patients in the future.

Data availability
Although the authors performed next-generation sequencing, they are unable to upload these data, because 
they did not receive an agreement from all patients to register their sequence data in a database. However, the 
authors have described summary data of the somatic mutations in the paper. Interested researchers may send 
data requests to: Dr. Kouya Shiraishi (kshirais@ncc.go.jp).
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