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OBJECTIVE—Previous studies showed that genetic deletion or
pharmacological blockade of the receptor for advanced glycation
end products (RAGE) prevents the early structural changes in
the glomerulus associated with diabetic nephropathy. To over-
come limitations of mouse models that lack the progressive
glomerulosclerosis observed in humans, we studied the contri-
bution of RAGE to diabetic nephropathy in the OVE26 type 1
mouse, a model of progressive glomerulosclerosis and decline of
renal function.

RESEARCH DESIGN AND METHODS—We bred OVE26 mice
with homozygous RAGE knockout (RKO) mice and examined
structural changes associated with diabetic nephropathy and
used inulin clearance studies and albumin:creatinine measure-
ments to assess renal function. Transcriptional changes in the
Tgf-�1 and plasminogen activator inhibitor 1 gene products were
measured to investigate mechanisms underlying accumulation of
mesangial matrix in OVE26 mice.

RESULTS—Deletion of RAGE in OVE26 mice reduced nephro-
megaly, mesangial sclerosis, cast formation, glomerular basement
membrane thickening, podocyte effacement, and albuminuria. The
significant 29% reduction in glomerular filtration rate observed in
OVE26 mice was completely prevented by deletion of RAGE.
Increased transcription of the genes for plasminogen activator
inhibitor 1, Tgf-�1, Tgf-�–induced, and �1-(IV) collagen observed in
OVE26 renal cortex was significantly reduced in OVE26 RKO kidney
cortex. ROCK1 activity was significantly lower in OVE26 RKO
compared with OVE26 kidney cortex.

CONCLUSIONS—These data provide compelling evidence for
critical roles for RAGE in the pathogenesis of diabetic nephrop-
athy and suggest that strategies targeting RAGE in long-term
diabetes may prevent loss of renal function. Diabetes 59:
2043–2054, 2010

T
he receptor for advanced glycation end products
(RAGE), a member of the immunoglobulin su-
perfamily, is upregulated in tissues subjected to
the long-term impact of diabetes (1,2). The li-

gands of RAGE, including advanced glycation end prod-
ucts (AGEs), S100/calgranulins, and high mobility group
box-1 (HMGB1) display elevated expression in diabetic
tissues (1,2). In diabetic nephropathy, RAGE is upregu-
lated in cells such as glomerular podocytes and endothe-
lial cells in both humans and mice (2,3).

Previous studies provided evidence for roles for RAGE
and its ligands in mouse models of early diabetic nephrop-
athy. Overexpression of RAGE in vascular endothelial
cells of hypo-insulinemic mice led to increased mesangial
matrix expansion and glomerulosclerosis (4). Pharmaco-
logical blockade of RAGE, using the soluble extracellular
ligand binding domain of RAGE (sRAGE), in type 2
insulin-resistant db/db diabetic mice, protected against
glomerulosclerosis and other classical lesions of early
diabetic nephropathy (3). In addition, the kidneys of
streptozotocin-injected RAGE knockout (RKO) mice were
protected from early mesangial matrix expansion and
thickening of the glomerular basement membrane (GBM)
seen in wild-type diabetic mice (3). Myint et al. (5)
demonstrated protection from diabetic nephropathy in
RKO mice crossed with transgenic mice expressing iNOS
under the control of the insulin promoter. Others have
shown that blocking antibodies to RAGE suppressed dia-
betic nephropathy in mouse models of type 1 and type 2
diabetes (6,7).

Until recently, very few mouse models of diabetic
nephropathy progress beyond the early disease stages of
microalbuminuria and mild mesangial expansion. Trans-
genic overexpression of calmodulin specifically in pancre-
atic �-cells, the OVE26 model of type 1 diabetes (8),
resulted in nephromegaly, albuminuria, glomerulosclero-
sis, tubulointerstitial fibrosis, occasional occurrence of
arteriolar hyalinosis, and the suggestion of decreased
glomerular filtration rate (GFR) (9–11). Hence, the OVE26
mouse is considered one of the most human-relevant
models of diabetic nephropathy studied to date.

We tested the hypothesis that RAGE contributes to
advanced glomerulosclerosis and loss of renal function in
long-term diabetes by crossing OVE26 mice with homozy-
gous RAGE null mice to investigate the role of RAGE in
this robust model of diabetic nephropathy.
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RESEARCH DESIGN AND METHODS

Additional information is available in an online appendix at http://
diabetes.diabetesjournals.org/cgi/content/full/db09-1766/DC1.
Mice. OVE26 mice [strain FVB(Cg)-Tg(Ins2-CALM1)26Ove Tg(Cryaa-TAg)1Ove/
PneJ] and FVB controls (strain FVB/NJ) were obtained from The Jackson
Laboratory (Bar Harbor, ME) and bred in house. FVB RKO mice, backcrossed
over 10 generations into FVB, were bred in house and crossed with OVE26,
resulting in OVE26 RKO mice. Changes associated with diabetic nephropathy
were studied in male mice at 7 months based on our identification of this time
point as one in which moderate to severe histologic renal changes are
observed in most male OVE26 mice. Mice were killed at 1 month to test RAGE
expression.
Polyclonal chicken anti-mouse RAGE IgY antibody production. Soluble
(s)RAGE was produced as previously described (1). Anti-RAGE Chicken IgY was
generated and purified from serum, and specificity for RAGE was confirmed.
Fluorescence microscopy. Frozen kidney sections were obtained from
1-month-old (for RAGE staining) and 7-month-old mice (for Glyoxalase1 [Glo1]
staining) and stained with polyclonal chicken anti-mouse RAGE IgY or rat
monoclonal (6F10) to Glo1 (Abcam, Cambridge, MA). Fluorescence microscopy
was performed using a Lasersharp 2000 BioRad scanning confocal microscope
(Bio-Rad, Hercules, CA).
Blood glucose and glycosylated hemoglobin measurements. Blood glu-
cose measurements were taken in nonfasted mice at 4-week intervals and prior to
killing at 7 months using a Freestyle blood glucose meter (Abbott, Alameda, CA).
Levels above 499 mg/dl (“HI” reading), the maximum reading for the glucometer,
were denoted as 500 mg/dl for calculation purposes. Blood hemoglobin A1C was
measured using Cholestech GDX A1C test cartridges for human hemoglobin
because the last 7 amino acids in the NH2-terminus are identical between humans
and mice (Cholestech, Harward, California).
Methylglyoxal measurement. Levels of methylglyoxal were determined in
frozen kidney cortex tissue obtained from six female 7-month-old mice, as
previously described (12).
Glyoxalase 1 Western. Kidney cortex lysate, 30 �g, was run on a 12% NuPAGE
gel using MES running buffer (Invitrogen, Carlsbad, CA) under reducing condi-
tions. After transfer to nitrocellulose membrane (Invitrogen), staining was per-
formed using rat monoclonal (6F10) to Glo1 (1:1,000) (Abcam, Cambridge, MA)
followed by chicken anti-rat antibodies (1:1,000) (Santa Cruz Biotechnology,
Santa Cruz, Ca). Blots were then stripped with Restore Western Blot Stripping
Buffer (Pierce, Rockford, IL) and probed with anti–�-actin antibody (1:2,500)
(Becton Dickinson, Franklin Lakes, NJ). Bands were quantified using Alpha
imaging software (Alpha Innotech, San Leandro, CA).
Morphometry. Kidneys were harvested and bisected longitudinally. One half
kidney was fixed in 10% formalin overnight then dehydrated, embedded in
paraffin, sectioned at 3 �m, mounted on 3-aminopropyltriethoxy silane–coated
glass slides (Sigma, St. Louis, MO), stained with periodic acid Schiff (Sigma), and
analyzed by light microscopy.
Pathology scoring. Pathology was scored in a semi-quantitative manner by a
renal pathologist (V.D.’A.) blinded to the genotypes of the animals, as described
in the online appendix.
GBM and podocyte effacement measurements. Glutaraldehyde fixed kid-
ney cortex tissue was analyzed by electron microscopy. The thickness of the
GBM of multiple capillaries was measured in 6–8 glomeruli per mouse (n � 5 per
group). A mean of 55 measurements was taken per mouse (from podocyte to
endothelial cell membranes) at random sites where the GBM was displayed in
best cross-section. The same glomeruli were scored for degree of podocyte
effacement, defined as the percentage of total glomerular capillary surface area
over which the podocyte foot processes were effaced.
Urine collection and measurement of albuminuria. Urine was collected
over 24 h from each mouse in individual mouse metabolic cages (Nalgene,
Rochester, NY) and frozen at �80°C for subsequent analyses. Urinary albumin
and creatinine levels were measured using the murine-specific Albuwell ELISA kit
and the Creatinine Companion kit (Exocell, Philadelphia, PA) according to the
manufacturer’s instructions.
Measurement of GFR and effective renal plasma flow. Standard renal
inulin clearance studies were performed during continuous hemodynamic mon-
itoring, as published (13,14), in male mice at 7 months of age. Details are provided
in the online appendix.
Glomerular isolation. Glomeruli were isolated by perfusing anesthetized mice
with Dynabeads (Invitrogen), digesting the kidney tissue, and performing a series
of sieving steps. Glomeruli were picked under the microscope using a pipette and
placed in RNAlater (Ambion, Austin, TX).
RNA isolation, reverse transcription, and real time. RNA was isolated
from �20–30 mg of kidney cortex tissue (real-time for all, with the exception of
Glo1) or �1,000 isolated glomeruli (real-time for Glo1 and microarray sample
preparation) per mouse using the RNaqueous kit (Ambion), and reverse tran-
scription was performed with the Superscript III kit (Invitrogen) according to the

manufacturers’ instructions. Real-time primers and probes for murine 18s, Glo1,
Tgfb1, Tgfbi, Serpine1, and �1-(IV) collagen were purchased from PE Applied
Biosystems (Foster City, CA). Real-time PCR was performed with an ABI Prism
7900HT Sequence Detection System with TaqMan PCR Master Mix (PE Applied
Biosystems).
ROCK1 activity assays. Activation of ROCK1 was evaluated on lysates of
kidneys isolated from OVE26 or OVE26 RKO mice, as previously described (15).
Details are provided in the online appendix.
Microarray experimental methods. RNA was isolated from �1,000 isolated
glomeruli per mouse using the RNaqueous kit (Ambion). Total RNA concentra-
tion was assessed using a ND-1000 NanoDrop Spectrophotometer (Thermo
Scientific, Wilmington, DE), and quality was assessed on a 2100 Bioanalyzer
system (Agilent Technologies, Santa Clara, CA) using the Agilent RNA 6000 Nano
kit. The RNA was then amplified, and the biotin was labeled and fragmented using
the Gene Chip 3’IVT Express Kit (Affymetrix, Santa Clara, CA). Fragmented RNA,
10 �g, was hybridized to Mouse Genome 430.2.0 GeneChips (Affymetrix). All
samples were prepared with the two-cycle protocol recommended by the
manufacturer. One array per mouse was used. Three arrays (mice) for each
genotype were used.
Microarray data analysis. Microarray data was analyzed as described in the
online appendix. All microarray data has been deposited in Gene Expression
Omnibus (accession number GSE20844).
Statistical analysis. For the statistical analysis of all the datasets comparing
the four groups, a one-way ANOVA model followed by paired comparisons was
performed. Bonferroni correction due to multiple comparisons was used to
control the overall type I error rate. Log transformation was used for the urine
albumin-to-creatinine analysis (see Fig. 5). (For Fig. 3D and E, the comparison
was done only between OVE26 and OVE26 RKO groups because the values for
other groups were 0.) The severity of mesangial sclerosis data was compared
using the Fisher exact test for contingency table (Fig 3E). All other data
comparing two groups were analyzed using an independent two-sample t-test.
Analyses were performed in SAS version 9.1 (SAS Institute, Cary, NC), with the
exception of the ANOVA and t-tests, which were performed using Stat View
(Adept Scientific, Acton, MA).

RESULTS

RAGE is expressed in glomeruli of OVE26 mice.
Previous studies reported that RAGE is expressed in human
and murine glomeruli (2), but expression had not been
studied in the OVE26 model. RAGE was detected in the
glomeruli of kidney cortex from male OVE26 mice at 1 month
of age, and a baseline level of RAGE in the FVB glomerulus
is provided for comparison (Fig. 1A). This time point was
chosen to determine whether RAGE expression was present
in the OVE26 mouse before observable structural changes in
the kidney, thus correlating changes in RAGE with the timing
of early stages of diabetic nephropathy development.
Precursor to RAGE ligands is reduced by RKO in
OVE26 mice despite persistent hyperglycemia. OVE26
mice displayed significant increases in blood glucose levels
compared with the nondiabetic FVB mice (498 � 6 vs. 138 �
36 mg/dl) (P � 0.001) (Fig. 1B). RKO did not alter the degree
of hyperglycemia in OVE26 mice (494 � 11 mg/dl) (P �
0.7438). Blood glucose levels measured at 4-week intervals
beginning at 8 weeks of age showed the same trends among
groups as the measurements at 7 months (data not shown).

A1C was significantly increased in OVE26 mice versus FVB
controls (8.87 � 0.33 vs. 5.35 � 0.25%) (P � 0.0001) (Fig. 1C),
confirming sustained hyperglycemia (Fig. 1B). A1C was
normal in FVB mice, with or without RAGE (5.35 � 0.25 vs.
6.03 � 0.57%) (Fig. 1C). Importantly, A1C was comparably
elevated among OVE26 mice with or without RAGE (8.87 �
0.33 vs. 8.95 � 0.41%) (Fig. 1C), confirming that RKO did not
affect glycemic control.

We studied the effect of RAGE deletion in the context of
hyperglycemia on the levels of methylglyoxal, a key precur-
sor of AGEs. Levels of methylglyoxal were 3.25-fold higher in
OVE26 kidney cortex compared with FVB (P � 0.05), but
were unaffected by RKO in FVB mice. However, levels of
methylglyoxal were 5.93-fold lower in OVE26 RKO cor-

RAGE DELETION PRESERVES FUNCTION IN NEPHROPATHY IN OVE26

2044 DIABETES, VOL. 59, AUGUST 2010 diabetes.diabetesjournals.org



tex compared to OVE26 cortex (P � 0.05), despite
equivalent degrees of hyperglycemia in both groups
(Fig. 1D).
Glyoxalase 1 levels are increased by RKO in OVE26
mice. To further probe the differences in methylglyoxal
levels among OVE26 and OVE26 RKO cortex, we assessed

the levels of mRNA and protein for glyoxalase 1, an
important regulator of methylglyoxal levels in vivo. Our
data revealed that both mRNA transcript levels (P � 0.05)
(Fig. 1E) and protein levels for glyoxalase 1 were higher in
OVE26 RKO compared with OVE26 (P � 0.05) (Fig. 1F).
Immunofluorescence staining localized glyoxalase 1, par-
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FIG. 1. A: RAGE is expressed in OVE26 glomeruli: age 1 month. Original
magnification: 1,000�. B: Blood glucose levels (###P < 0.0001) (n �
12–15/group, except OVE26 RKO, n � 6). C: A1C levels were measured
at age 7 months on randomly selected mice (n � 4, 3, 9, and 6) used in
the GFR studies in groups FVB, FVB RKO, OVE26, and OVE26 RKO,
respectively (##P < 0.0005, ###P < 0.0001). D: Levels of methylglyoxal
(MG) and in the kidney cortex of FVB, FVB RKO, OVE26, and OVE26
RKO mice at age 7 months (*P < 0.05). n � 6 per group. E: Real-time
PCR for glyoxalase 1 was performed, normalized to 18s transcript
levels, and expressed as fold-change compared with the OVE26 group
(*P < 0.05). n � 6 per group. F: Glyoxalase 1 protein levels measured
by Western blot, normalized to actin levels, and expressed as fold-
change compared with the OVE26 group (*P < 0.05) (n � 3 per group).
G: Glyoxalase 1 staining in OVE26 and OVE26 RKO glomeruli: age 7
months. Original magnification: 1,000�. (A high-quality digital repre-
sentation of this figure is available in the online issue.)
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ticularly to the glomeruli of OVE26 and OVE26 RKO mice
(Fig. 1G).
OVE26 RKO mice are partially protected from glo-
merulosclerosis. To establish the optimal time point for
testing the role of RAGE in diabetic nephropathy in the
OVE26 model in mice raised in our facility, we monitored the
pathological changes in the kidney at 5, 6, and 7 months of
age. At 5 months of age, mesangial sclerosis was mild in most
OVE26 mice. At 6 months of age, more OVE26 mice revealed
moderate pathology. At 7 months of age, we consistently
observed a range of moderate to severe mesangial sclerosis
including the formation of mesangial nodules causing capil-
lary luminal narrowing (Fig. 2A), focal tubular atrophy,
interstitial fibrosis and chronic inflammation (Fig. 2B), and
progression to segmental (Fig. 2C) and global glomeruloscle-
rosis (Fig. 2D). Glomeruli of OVE26 mice appeared enlarged

compared with FVB controls (Fig. 3A and B), owing to
diffuse and global mesangial sclerosis (Fig. 3B, right panel).
The cortical tubules contained focal proteinaceous casts
(Fig. 3B, left panel). Thus, to investigate the role of RAGE in
advanced diabetic nephropathy, we studied OVE26 mice
crossed with FVB RKO mice at age 7 months. OVE26 RKO
mice were partially protected from these pathological alter-
ations, including significantly fewer casts (Fig. 3C and D) and
reduced mesangial matrix expansion (Fig. 3C and E) (P �
0.05). Tubular atrophy that was present in OVE26 mice (Fig.
2B) was completely prevented in OVE26 RKO mice (data not
shown). The histology of FVB RKO mice did not differ
significantly from that of FVB mice (data not shown).

At the ultrastructural level, the mesangial areas in
OVE26 glomeruli were expanded by increased matrix
and hyalinosis (Fig. 2E), in some cases obliterating
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FIG. 2. Histology and ultrastructural pathology in diabetic OVE mice: age 7 months. By light microscopy, the glomeruli of 7-month-old male OVE26
mice display global mesangial sclerosis with nodularity (A), with progression in some glomeruli to segmental glomerulosclerosis (C) and global
glomerulosclerosis (D). There is focal tubular atrophy, interstitial fibrosis, and chronic inflammation (B). By electron microscopy, the mesangial
areas are expanded by increased matrix and electron dense hyaline material, consistent with insuded plasma proteins (E). There is thickening
of glomerular basement membranes with overlying effacement of foot processes (F). Some mesangial areas have marked mesangial sclerosis with
a nodular aspect (G). In areas of severe mesangial sclerosis, the glomerular capillary lumina are narrowed and focally occluded by the mesangial
encroachment (H, L � lumen) (arrow indicates focal lumenal occlusion). Original magnifications are marked above each image. (A high-quality
digital representation of this figure is available in the online issue.)
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capillary lumens (Fig. 2H). In OVE26 mice, the podocyte
foot processes appeared effaced (Figs. 2F–H and 4B),
and there was significant GBM thickening (Figs. 2F and
4E). In contrast, OVE26 RKO demonstrated less podo-
cyte effacement than OVE26 (Fig. 4C and D) and no
significant increase in GBM thickness compared with FVB
mice (Fig. 4C and E) (P � 0.05). The glomeruli of FVB RKO
mice were indistinguishable ultrastructurally from those of
FVB mice (Fig. 4D and E, image not shown).
Albuminuria in OVE26 mice is markedly amelio-
rated by RKO. Urinary albumin and creatinine were
measured at 7 months of age. OVE26 mice displayed
significantly increased albumin-to-creatinine ratios com-

pared to FVB mice (822 � 159 vs. 46 � 14 mg/mg) (P �
0.001) (Fig. 5). OVE26 RKO mice demonstrated signifi-
cantly lower albumin-to-creatinine ratios (359 � 152
mg/mg), reduced by �56%, compared with OVE26 mice
(Fig. 5) (P � 0.0085). FVB RKO albumin-to-creatinine
ratios were not significantly different from FVB ratios
(P � 0.9793).
Renal insufficiency is present in OVE26 mice but
prevented by RKO
Metabolic, hematocrit, hemodynamic, and urine
flow data in mice subjected to inulin clearance
studies. Hematocrit (Hct) was comparable among the
four groups, from the beginning to the end of the experi-
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FIG. 3. Deletion of RAGE in OVE26 mice imparts
partial protection from the structural abnormal-
ities of diabetic nephropathy at age 7 months. A:
No histologic abnormalities were detected in
FVB RKO mice (not shown). By contrast, OVE26
mice display well-developed features of diabetic
nephropathy including diffuse and global mesan-
gial sclerosis and focal hyaline casts (B). OVE26
RKO mice are markedly protected from the de-
velopment of mesangial sclerosis and tubular
cast formation (C). There were significant dif-
ferences between OVE26 mice and OVE26 RKO
mice with respect to percent cortical area occu-
pied by casts (D) and the severity of mesangial
sclerosis (E), where 0 � no mesangial sclerosis;
1 � mild; 2 � moderate; 3 � severe (*P < 0.05).
Original magnifications are marked above each
image. Semi-quantitative scoring (D and E) was
performed on n � 7 OVE26 RKO and n � 13
OVE26 mice. (A high-quality digital representa-
tion of this figure is available in the online
issue.)
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ment (Table 1), indicating negligible blood loss. In re-
sponse to body weight–based mild saline infusion (to
prevent volume depletion, especially in diabetic mice), all
groups experienced a small but similar decline in Hct

(Table 1). Throughout the 3-h experiment, Hct, averaged
from five serial readings per mouse, was also comparable
(Table 1), suggesting similar degrees of volume expansion
and stability of blood volume. Mean systolic blood pres-
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FIG. 4. Deletion of RAGE in OVE26 mice imparts partial protection from the ultrastructural abnormalities of diabetic nephropathy at age 7
months. Electron microscopy was performed on 7-month-old male kidney cortex samples. FVB mice display normal glomerular ultrastructural
features with well-preserved foot processes and glomerular basement membranes of normal thickness (A). By comparison, OVE26 glomeruli
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sure was comparable among the four groups (Table 1),
specifically without hypotension in any mice. Mean urine
flow rates were similar between the FVB and OVE26 mice,
without or with RKO (Table 1). Urine flow rate, however,
was lower in the FVB RKO group versus the OVE26 RKO
group (P � 0.0073). Despite this decrease in flow rate,
their absolute urine volumes (	75 �l per period) posed no
technical problems for counting inulin or quantification by
mass. Overall, these hemodynamic parameters suggested
good stability of the surgical preparations during anesthe-
sia. Body weight (BW) was comparable among the four
groups (Table 1). Weights of both kidneys (KW) in OVE26
mice were markedly increased (0.82 � 0.03 vs. 0.49 �
0.02 g in FVB controls, P � 0.0001) (Fig. 6A), consistent
with the well-known nephromegaly in diabetes. Further-
more, KW/BW was also markedly increased in OVE26
versus FVB controls (2.82 � 0.11 vs. 1.54 � 0.08%, respec-
tively; P � 0.0001) (Fig. 6B). Although nephromegaly was
prominent in OVE26 diabetic mice, this was partially
attenuated by RAGE deletion (0.71 � 0.02 g, P � 0.005,

 � 14% reduction) (Fig. 6A). KW/BW of OVE26 mice was
reduced by RKO (2.35 � 0.05 vs. 2.82 � 0.11%, P � 0.001,

 � 17% reduction) (Fig. 6B).
Absence of impaired renal functional phenotypes in
FVB RKO mice. While RKO imparted major structural
(Figs. 3 and 4) and functional effects in OVE26 mice (Figs.
5 and 6, vide infra), we could not detect any significant
alterations in BW, Hct, systolic blood pressure, KW, or
renal function in FVB RKO controls. More specifically,
GFR was essentially unchanged by RKO in FVB mice
whether expressed in units per mouse (Fig. 6C), per 100 g
BW (Fig. 6D), or per grams KW (Fig. 6E).

Renal insufficiency in OVE26 versus nondiabetic

controls. Compared with age- and sex-matched FVB
controls, 7-month-old OVE26 mice showed a significant
reduction in GFR (456 � 18 vs. 325 � 24 �l/min/mouse,
P � 0.0003, 
 � 29% reduction, Fig. 6C). The decline in
GFR remained significant whether factored for BW (1,106
vs. 1,443 �l/min/100 g BW, P � 0.003, 
 � 24% reduction,
Fig. 6D) or factored for KW (401 vs. 940 �l/min/g KW, P �
0.001, 
 � 57% reduction, Fig. 6E).
Preservation of renal function in OVE26 mice by

RKO. In OVE26 mice, RKO prevented loss of GFR, which
otherwise developed in OVE26 mice (436 � 37 vs. 325 � 24
�l/min per mouse, P � 0.005, 
 � 34% increase, Fig. 6C).
Further, in OVE26 mice, RKO preserved GFR, since levels
were comparable to those of FVB and FVB RKO mice
(456 � 18 and 404 � 21 �l/min per mouse, respectively;
Fig. 6C). Likewise, reduction in renal function was pre-
vented in OVE26 RKO mice versus OVE26 mice, whether
GFR was factored by BW (1,457 � 134 vs. 1,106 � 78
�l/min/100 g BW, P � 0.006, 
 � 32% increase, Fig. 6D) or
factored by KW (620 � 60 vs. 401 � 35 �l/min/g KW, P �
0.004, 
 � 55% increase, Fig. 6E). Significantly, in OVE26
RKO mice, GFR was preserved when factored for BW at
levels similar to those of FVB controls, with or without
RAGE (1,457 � 134 vs. 1,443 � 56 and 1,287 � 64
�l/min/100 g BW, Fig. 6D). Although OVE26 RKO mice did
not appear to have fully normalized GFR when factored by
KW compared with levels of FVB controls (Fig. 6E), this
was primarily a mathematical aberration and due to the
marked nephromegaly (Fig. 6A). Although RKO signifi-
cantly reduced KW of diabetic mice, the attenuation was
only 14% (Fig. 6A). Thus, RKO is reno-protective in OVE26
mice. The prevention of renal insufficiency conferred by
RKO is independent of glycemic control and systemic
hemodynamic alterations.
Increases in PAI-1, Tgf-�1, Tgf-�–induced, and �1-
(IV) collagen transcripts are found in OVE26 kidney
cortex but are prevented by RAGE deletion. To ex-
plore the pathogenic mechanisms linked to diabetic ne-
phropathy in OVE26 mice, we identified significant
changes in Serpine1 expression (the gene for plasminogen
activator inhibitor 1 [PAI-1]) through a microarray study
comparing expression of genes in isolated glomeruli from
FVB and OVE26 mouse kidneys at 2 months of age.
Serpine1 levels were significantly increased by 1.46-fold in
OVE26 glomeruli (false discovery rate � 0.02) (see sup-
plemental Table S1 in the online appendix). To determine
whether PAI-1 could be a downstream effector of RAGE in
the diabetic kidney, we performed real-time PCR on kidney
cortex RNA from mice at 7 months of age and found that
levels of PAI-1 mRNA were increased 4.3-fold in OVE26
compared with FVB kidney cortex (P � 0.0001), whereas the
levels in PAI-1 mRNA in OVE26 RKO were significantly lower
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FIG. 5. Deletion of RAGE in OVE26 mice imparts partial protection
from functional abnormalities of diabetic nephropathy at age 7 months.
Albumin-to-creatinine levels were measured in male FVB, FVB RKO,
OVE26, and OVE26 RKO mouse urine retrieved from metabolic cages at
7 months of age (***P < 0.005, ###P < 0.0001). n � 7–13 per group.

TABLE 1
Metabolic, hemodynamic, and urine flow data during inulin clearance studies

Groups Genotypes N

Body
weight (g)

Hct initial
(%)


 Hct
(%)

Hct final
(%)

Avg. of 5
Hct during
clearance

(%)
Avg. systolic

BP (torr)

Avg. urine
flow rate
(�l/min)

I FVB Mean � SE 10 31.65 � 0.80 42.85 � 1.10 �6.50 � 0.78 36.38 � 1.00 39.00 � 1.10 109.37 � 2.50 6.50 � 1.19
II FVB RKO Mean � SE 8 31.45 � 0.85 44.06 � 0.76 �5.11 � 1.70 38.95 � 2.15 40.19 � 1.34 109.00 � 3.43 4.11 � 0.53
III OVE26 Mean � SE 9 29.30 � 0.63 45.17 � 1.71 �6.30 � 1.71 38.90 � 1.99 41.60 � 1.30 105.61 � 1.50 6.86 � 0.61
IV OVE26 RKO Mean � SE 6 30.16 � 1.24 46.08 � 1.57 �4.92 � 1.72 41.20 � 2.63 41.93 � 2.00 107.80 � 1.62 *9.08 � 1.88

*P � 0.01 vs. group II.
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than those in OVE26 (P � 0.0005) and were not significantly
different from FVB cortex (P � 0.3723) (Fig. 7A).

One of the central pathways that has been implicated in
the pathogenesis of diabetic nephropathy is the Tgf-�
pathway. Previous studies illustrated that PAI-1 expres-
sion may be induced by Tgf-�, leading to inhibition of
extracellular matrix degradation (12–14). PAI-1 can also
directly stimulate Tgf-� expression leading to increased
synthesis of extracellular matrix (13). We thus performed
real-time PCR on kidney cortex RNA from mice for Tgf-b1
at 7 months of age and found that levels of Tgf-b1 were
increased 1.9-fold in OVE26 compared with FVB cortex
(P � 0.01), whereas levels in OVE26 RKO were much
lower and not significantly different from FVB cortex (P �
0.8904) (Fig. 7B).

To further investigate the impact of RAGE on the
Tgf-�1 pathway in the OVE26 and OVE26 RKO cortex,
we performed real-time PCR on transforming growth
factor (TGF)-�–induced transcript as a measure of
activity level and found significantly lower levels in
OVE26 RKO compared with OVE26 cortex (P � 0.0005)
(Fig. 7C).

In parallel, to explore the effects of RAGE on extracel-
lular matrix deposition, we performed real-time PCR for

COL4A1, the gene for �1-(IV) collagen, one of the collagen
IV species secreted by podocytes of the glomeruli (15),
and found significantly lower levels in OVE26 RKO com-
pared with OVE26 cortex (P � 0.001) (Fig. 7D).

The type I Tgf-� receptor may interact with a number of
different molecules including RhoA, which activates
ROCK1 (16,17). ROCK1 has recently been shown to be
potentially important in diabetic nephropathy (18,19) and
has been shown to be downstream of RAGE signaling in
the diabetic vasculature (20). We thus measured ROCK1
activity in OVE26 and OVE26 RKO kidney cortex and
found that ROCK1 activity was significantly lower in
OVE26 RKO compared with OVE26 cortex lysates (n � 3
per group) (P � 0.005) (Fig. 7E).

DISCUSSION

In this study, we used OVE26 mice to investigate the role
of RAGE for the first time in a model displaying progres-
sive and advanced features that closely resemble human
diabetic nephropathy, including loss of GFR (10,11,21,22).
Several previous models used to study RAGE, such as
streptozotocin injection and db/db mice (3), do not
progress beyond microalbuminuria and mild mesangial
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FIG. 6. Deletion of RAGE in OVE26 mice preserves GFR in OVE26 mice
at age 7 months. Body weight and glomerular function at 7 months are
shown. A: Weights of both kidneys from 7-month-old male mice. B:
Ratios of kidney weight to body weight of 7-month-old mice. C–E:
Clearance of inulin (CIN) expressed as CIN per mouse (C), CIN per
100 g body weight (D), and CIN per g kidney weight (E) (**P < 0.01,
***P < 0.005, ##P < 0.0005, ###P < 0.0001). n � 6–10 per group, as
indicated in Table 1.
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expansion. Diabetic mice, due to the iNOS transgene,
display advanced glomerulosclerosis but no tubulointersti-
tial fibrosis or arteriolar hyalinosis (4,23), features that are
present in OVE26 mice (9).

Here, we have illustrated that several of these advanced
features of diabetic nephropathy in the OVE26 model are
affected by deletion of RAGE, such as the occurrence of
segmental and global glomerular sclerosis, nodule forma-
tion, tubular atrophy, podocyte effacement, and thickening
of the GBM. Importantly, the decline in GFR suggested
previously in OVE26 mice, (9) and validated in our study,
was completely prevented by RAGE deletion. In the pre-
vious study, however, although a 17% decrease in GFR in
OVE26 versus nondiabetic control mice was demon-
strated, this occurred in the presence of hypotension, thus
supporting that the decline in GFR in OVE26 mice was due
to the structural pathology associated with diabetic ne-
phropathy and not hemodynamic factors (9).

A recent study reported increased serum creatinine in
OVE26 mice but paradoxically increased creatinine clear-
ance compared with FVB mice at ages 3, 6, and 9 months
(11). This disparity underscores the limitations of using
creatinine clearance to assess GFR, which could be inac-
curate because of artifacts from urine collection or because
of the use of non–high-performance liquid chromatography
methods for determination of serum creatinine in dia-

betic animals (21,23,24). To overcome these limitations,
we used inulin clearance, the gold standard for measur-
ing GFR (25).

Beyond confirming previous findings of segmental and
global sclerosis, nodule formation, and tubular atrophy,
the observed decline in GFR in OVE26 mice in the ab-
sence of hypotension in our studies suggests a causal
relationship with the pathology associated with diabetic
nephropathy. This inference is supported by the degree of
mesangial matrix expansion and the accompanying reduc-
tion in capillary lumen diameter, which would be expected
to decrease ultrafiltration surface area and hence GFR. In
addition, the focal tubular atrophy and interstitial fibrosis,
which are known to correlate with declining renal function
(26), may have contributed to renal insufficiency. This
close functional-pathologic correlation helps establish the
utility and validity of OVE26 mice to study clinical diabetic
nephropathy, providing a basis to test the hypothesis of
renoprotection by RKO.

Our results indicate that renal insufficiency in OVE26
mice was prevented by RKO, associated with significant
ameliorations of pathology and albuminuria. Their nephro-
megaly was only minimally improved, possibly due to
other upstream factors directly consequent to hyperglyce-
mia. Over a shorter duration of streptozotocin-induced
diabetes, we previously found normalization of KW/BW by
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RKO (3). Another study found persistently increased glo-
merular volume despite marked podocyte loss in advanced
diabetic nephropathy of OVE26 mice (22), making it
conceivable for the coexistence of nephromegaly and
preserved glomerular function.

Despite limitations of previously used diabetic nephrop-
athy models, it has been reported that deletion or block-
ade of RAGE or inhibitors of AGE consistently led to
partial preservation of renal structure and/or improved
serum creatinine.(3,5–7,27–31) The diversity of these mod-
els provides further evidence for the role of RAGE, as
sRAGE (3), anti-RAGE antibodies (6,7), or frank RAGE
deletion exert salutary effects on the increased albumin-
uria and histopathology in early stages of mouse diabetic
nephropathy. Previously, in 27-week-old db/db mice exhib-
iting low creatinine clearance, we found significant bene-
fits of sRAGE administration (3), corroborating the
adverse impact of RAGE on raising serum creatinine (4)
and the salutary action by RKO on reducing serum creat-
inine in a type 1 diabetic nephropathy model (5). Our
present studies, however, provide the first direct evidence
for functional preservation in diabetic mice by RKO, as
assessed by GFR.

Methylglyoxal, a highly reactive �-oxoaldehyde, is
formed in cells primarily from the triose phosphate inter-
mediates of glycolysis, dihydroxyacetone phosphate, and
glyceraldehyde 3- phosphate. In diabetes, hyperglycemia
triggers enhanced production of methylglyoxal, one con-
sequence of which is the rapid modification of proteins
and other substrates to generate AGEs, which may trigger
signaling pathways leading to structural and functional
changes of diabetic nephropathy, at least in part via the
actions of TGF-� and PAI-1. The finding that methylglyoxal
is significantly lower in OVE26 RKO mice, which have
fewer structural changes and less functional impairment
than OVE26 mice, supports this hypothesis. Notably, blood
glucose levels in the OVE26 RKO did not differ significantly
from the OVE26 mice. This suggests that the difference in
levels of methylglyoxal did not result from a reduction in
plasma glucose. Glyoxalase 1, a defense against glycation
in vivo (32), detoxifies reactive �-oxoaldehydes, thereby
removing deleterious species such as methylglyoxal. Our
finding that glyoxalase 1 mRNA and protein levels are
higher in OVE26 RKO mouse kidney cortex suggests that
reduced activation of RAGE by AGEs may occur because
of enhanced removal of methylglyoxal. The importance of
the link between RAGE and glyoxalase 1 is that this may
set up a positive feedback loop with relevant conse-
quences. We have shown that by deleting RAGE, glyox-
alase 1 mRNA and protein levels increase significantly,
which decreases the tissue concentration of methylglyoxal
and suppressed related AGE formation. These data sug-
gest that disruption of RAGE signaling may be a beneficial
therapeutic target in prevention of the progression of
diabetic nephropathy.

To begin to explore potential molecular mechanisms
accounting for the reduction in mesangial sclerosis noted
in OVE26 RKO mice, we assessed mRNA levels of PAI-1,
Tgf-�1, Tgf-�–induced, and �1-(IV) collagen. PAI-1 has
been implicated previously in the pathogenesis of diabetic
nephropathy. In PAI-1 knockout mice treated with strep-
tozotocin or crossed with type 2 diabetic db/db mice,
albuminuria was improved and glomerular injury was
reduced compared with the diabetic PAI-1–expressing
animals (13,33,34). A link between PAI-1 induction and
RAGE has been previously demonstrated, but only in cell

culture. Berrou et al. (35) measured PAI-1 protein expres-
sion in cultured mesangial cells in response to both
glycated albumin and carboxymethyl lysine AGE, two
RAGE ligands identified through in vitro experiments. An
anti-RAGE antibody partially blocked the AGE and car-
boxymethyl lysine–induced PAI-1 expression in these
cells. The significant reduction we find in Tgf-�1, Tgf-�–
induced, and PAI-1 in OVE26 RKO mice suggests that
deletion of RAGE may both reduce mesangial matrix
accumulation and facilitate matrix degradation, both fac-
tors linked to reduced glomerulosclerosis. Reduced levels
of �1-(IV) collagen expression in OVE26 RKO kidney
cortex confirm these findings, since they are indicative of
mesangial matrix accumulation.

Here we have shown that ROCK1 activity is significantly
decreased in OVE26 RKO compared with OVE26 kidney
cortex lysates. The importance of this finding is high-
lighted not only by known roles of R7OCK1 in diabetic
nephropathy (18,19), the involvement of ROCK1 in Tgf-�,
and PAI-1 downstream signaling (16,17), but also by our
recent finding that activation of the ROCK1 branch of the
Tgf-� pathway contributes to RAGE-dependent accelera-
tion of atherosclerosis in diabetic ApoE null mice (20).
The significant changes in ROCK1 activity in the kidney in
the absence of RAGE suggests a novel mechanism by
which RAGE may promote pathological change in diabetic
nephropathy.

In future studies, exploration of the relevance of the
OVE26 model of diabetic nephropathy to human diabetic
nephropathy could be explored by administering renopro-
tective agents that are effective in humans, such as ACE
inhibitors, to RAGE-expressing and RKO OVE26 mice.
AGE formation and the renin-angiotensin system have
been shown to interact in the progression of renal disease.
Wilkinson-Berka et al. (36) have shown that blocking AGE
formation can ameliorate angiotensin II–dependent renal
injury. In addition, Thomas et al. (37) have shown that
advanced glycation end products can activate ACE and
other components of the intra-renal renin-angiotensin sys-
tem. We have shown that increased levels of methyl-
glyoxal are found in OVE26 kidney cortex and that the
decreased pathology found in OVE26 RKO mice is accom-
panied by lower levels of methylglyoxal and increased
glyoxalase 1 activity. We expect that treatment of OVE26
mice with ACE inhibitors could serve to prevent progres-
sion of renal disease in this model by potentially blocking
ACE levels that may be elevated by the presence of excess
AGEs in the OVE26 mice.

In conclusion, our data underscore important roles for
RAGE in the structural and functional deteriorations in
advanced and progressive diabetic nephropathy. Our find-
ings support the notion that RAGE blockade may confer
significant benefits by ameliorating severe renal histopa-
thology and by preventing renal insufficiency in mice or
patients at risk for diabetic nephropathy.
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