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ABSTRACT
Accumulating evidence has implicated an involvement of the gut-brain axis in autism spectrum
disorder (ASD) and attention-deficit hyperactivity disorder (ADHD), however with highly diverse
results. This systematic review aims to describe and evaluate studies investigating the gut
microbiota composition in individuals with ASD or ADHD and to evaluate if variations in gut
microbiota are associated with these disorders.

Twenty-four articles were identified in a systematic literature search of PubMed and Embase up
to July 22, 2019. They consisted of 20 studies investigating ASD and four studies investigating
ADHD. For ASD, several studies agreed on an overall difference in β-diversity, although no
consistent bacterial variation between all studies was reported. For ADHD, the results were
more diverse, with no clear differences observed.

Several common characteristics in gut microbiota function were identified for ASD compared
to controls. In contrast, highly heterogeneous results were reported for ADHD, and thus the
association between gut microbiota composition and ADHD remains unclear. For both disorders,
methodological differences hampered the comparison of studies.
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Introduction

In recent years, the prevalence of autism spectrum
disorder (ASD) and attention-deficit disorder/atten-
tion-deficit/hyperactivity disorder (in this paper both
disorders are referred as ADHD) has increased.
Globally, ASD and ADHD are estimated to affect
1.0–2.0%1,2 and 7.2%,3 respectively, of all children
and both disorders are associated with potentially
severe social, adaptive, and educational problems.
Thus, the development of these disorders is receiving
increasing research attention.4,5 While ASD describes
a range of abnormalities characterized by impairment
of social and communicative skills combined with
restrictive-repetitive behavior, ADHD is defined by
symptoms of inattention, impulsivity, and/or
hyperactivity.6 Despite these seemingly different symp-
toms, the two disorders are often co-existing, with
previous studies reporting that up to 63% of ASD
cases displayed ADHD symptoms.6 Both disorders
have substantial genetic contributions, with heritability

estimates of approximately 54% and 74% for ASD and
ADHD, respectively.7,8 Furthermore, the two disorders
share several genetic variants.9 Despite these clear
genetic involvements, heritability has not been able to
satisfyingly predict the disorders, and instead, they are
believed to be the result of a complex interaction
between genetic and environmental factors.7,8,

For both ASD and ADHD, gastrointestinal (GI)
symptoms are common, with constipation, diarrhea,
and GI pain affecting up to 70% of ASD patients,10,11

and the intensity of GI symptoms are positively corre-
lated with ASD severity.10,12 Similar to ASD, GI symp-
toms like constipation, fecal incontinence, and
abdominal pain are commonly reported by ADHD
patients.13,14 Based on these observations, dietary inter-
ventions have been attempted. These include the use of
gluten and casein-free diets for management of ASD
symptoms,15 and, for ADHD, omega-3, and −6 fatty
acid supplementation and removal of food coloring.
Results have varied, although reduction of core
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symptoms of ASD and ADHD has been
demonstrated.15,16 Overall, while dietary interventions
have not been successful in treating ASD or ADHD,
the symptom improvements observed may suggest
that components of the GI tract are involved in ASD
or ADHD. A number of studies has suggested that the
gut microbiota may serve as one of these
components.17–19

The GI tract contains a thriving population of
bacteria, that together with viruses, fungi, protozoa,
and archaea, forms a community of microorganisms
termed the gut microbiota.20 Variations within the
normal bacterial composition have been associated
with the development of different pathophysiologi-
cal conditions including type 2 diabetes,21 obesity,22

and inflammatory disorders.23–25 Studies have indi-
cated that GI bacteria are involved in a bidirectional
interaction with the brain, which has been shown to
be important for normal neurodevelopment.26,27

Disruption of this interaction, termed the “gut-
brain axis”, has been hypothesized to be implicated
in several neurological or psychiatric disorders like
Parkinson’s disease,28 depression,29,30 or bipolar
disorder.31 A number of direct and indirect contri-
buting pathophysiological mechanisms has been
proposed by which the gut microbiota may impact
these disorders. Direct mechanisms include stimula-
tion of the vagus nerve32,33 and production of psy-
choactive metabolites as reported for ASD.34 The
indirect mechanisms include a number of functional
differences that may result in increased GI tract
permeability,35 allowing leakage of bacterial pro-
ducts like lipopolysaccharides to the blood, and
thus result in low-grade systemic inflammation.28,

Several studies have examined the role of gut micro-
biota in ASD using culturing or targeted
approaches.17,36,37 A recent preclinical study demon-
strated that autism-like behavior could be transferred
to mice through fecal microbiota transplant from chil-
dren with ASD.38 Other studies have attempted probio-
tic treatment, but with conflicting results.39–41 Although
gut microbiota has been suggested as a potential clinical
target in treatment, the role of gut microbiota in ASD is
still not completely understood.42UnlikeASD, informa-
tion on the role of gut microbiota in ADHD is limited.
In the few studies published so far, a lowered abundance
of fecal Bifidobacterium in infancy or early life infection
with Streptococcus has been associated with increased
risk of developing ADHD.18,43

Despite several indications suggesting
a relationship between an altered gut microbiota
and ASD or ADHD, the nature of this involve-
ment is still not clear. In order to facilitate the use
of gut microbiota in improving diagnosis and
treatment of core symptomology in ASD and
ADHD, we require a better understanding of
which bacteria are associated with these neurode-
velopmental disorders, and how they affect their
pathophysiological characteristics.

Thus, the aim of this study was to investigate and
describe the current findings relating to altered gut
microbiota composition in individuals with ASD and
ADHD.

Methods

Search protocol

The protocol for this systematic review was registered
at the International Prospective Register of Systematic
Reviews (PROSPERO) under the ID number
CRD42018111458, prior to commencement of this
study. The guidelines provided by the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyzes (PRISMA) were used.44 A systematic search
strategy was performed prior to July 22, 2019, using the
databases PubMed and Embase, with no restrictions
on publication year. Search strings were tailored for
each database, based on existing publications, and are
visualized in Table 1. The references of included stu-
dies were screened to identify potentially missed
studies.

Eligibility criteria

Articles were included based on the following criteria:
The included studiesmust be original studies performed
in humans, diagnosed with one or both of the following
diagnoses: ASD (299.00 or 299.80 according to the
“Diagnostic and Statistical Manual of Mental
Disorders” (DSM)-IV or 5 criteria and F84.0, F84.1,
F84.5, or F84.8 according to the “International
Statistical Classification of Diseases and Related Health
Problems” (ICD)-10 criteria) or ADHD (314.00 or
314.01 according to DSM-IV or 5 or F90.0, F90.1 or
F98.8 according to the ICD-10 criteria). The complete
microbial communitymust be assessed in fecal samples.
The microbial community should be compared to
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a control group without either ASD or ADHD. The
articles must be written in English or Danish.

Articles were excluded if they included less than
10 study participants or focused on co-morbidity
between ASD/ADHD and other disorders.

All inclusion or exclusion criteria are available at the
Collaborative Approach toMetaAnalysis andReview of
Animal Data from Experimental Studies
(CAMARADES) website SyRF (http://app.syrf.org.uk/
projects/5ffc6aab-3415-43b3-be6a-1fc5084f08fa/detail).

Study selection

Articles obtained from the literature searches were com-
bined, andduplicateswere removedusing the automatic
function implemented in the reference manager
Mendeley (https://www.mendeley.com/). The articles
were analyzed in two stages: Initially, titles and abstracts
were screened independently by two researchers (CBN
and JKK), using SyRF (http://syrf.org.uk/), according to
the eligibility criteria. Next, the included articles were
subjected to whole-paper revision. Disagreements
between the two reviewers were resolved by consensus-
based discussion, and, if necessary, a third reviewer was
involved (SES).

Data extraction and quality assessment

Data were extracted to a Microsoft Excel file
(Supplementary Table 1), focusing on demographics,
diagnostic methodology, microbiota assessment
methodology, bacterial richness, diversity, and taxo-
nomic bacterial composition (phylum, family, genus,
and species only). Meta-analysis was not performed
due to the heterogeneity of methodology.

Quality assessment of the included studies was
evaluated, using the Newcastle-Ottawa Scale (NOS)
for case–control studies. NOS contains three cri-
teria: selection (are cases and controls effective com-
munity controls?), comparability (are cases and
controls comparable?), and exposure (how are diag-
nosis and microbiota assessed?). A quality score
ranging from 0 to 10 was obtained by the use of
a rating algorithm previously described:42 0–5
(poor), 6–7 (moderate), and 8–10 (high).

Results

Study selection

The initial database search generated 1,841 articles,
which were reduced to 1,532 unique articles after
automatic duplicate removal. Subsequent screening
of titles and abstracts resulted in 62 articles assigned
to whole paper revision. During whole paper revi-
sion, 38 articles were excluded due to non-complete
eligibility criteria upon closer inspection. This
included articles that only investigated a subset of
the gut microbiota (n = 12); were conference
abstracts (n = 12); characterized gut microbiota in
GI biopsies or urine samples rather than fecal sam-
ples (n = 5); only characterized gut microbiota fol-
lowing pro- or prebiotic intervention (n = 4); were
duplicates of already included studies (n = 2); had
less than 10 study participants (n = 2); or did not
compare the gut microbiota to a control population
(n = 1). Finally, 24 original articles were included in
this systematic review. These articles included 20
articles investigating ASD45-64 and 4 investigating
ADHD65- (Figure 1, supplementary data 1). None

Table 1. Search terms used for the systematic search. Use of “AND” or “OR” in the search engines has been indicated.
Horizontal lines divided by “AND”

Cases Outcome

Search terms (Vertical lines
divided by “OR”)

● Neurodevelopmental
disorders[MESH]

● Attention Deficit Disorder*[Text
Word]

● Attention Deficit Hyperactivity
Disorder[Text Word]

● ADHD[Text Word]
● ADD[Text Word]
● Autism[text word]
● “Autism Spectrum Disorder”[MESH]
● Neurodevelopmental*[text word]
● Neurodevelopmental

disorder[MESH]

● (Microbiology[MESH] OR Microbiology[Subheading] OR
Microbiology[Text Word])AND(Feces”[MESH] OR
Gastrointestinal Tract[MESH])

● Gastrointestinal Microbiome[MESH]
● Gastrointestinal Microbiome*[text word]
● Gastrointestinal Microbiot*[text word]
● Gut microbiot*[text word]
● Gut microbiome*[text word]
● Intestinal Microbiot*[text word]
● Intestinal Microbiome*[text word].
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of the studies included study participants with both
disorders. [Figure 1 near here]

As indicated in Table 2, all studies received a NOS
score ranging from six (moderate) to eight (high). Four
studies,47,52,54,57 all investigating ASD, received a score
of eight (high), due to matching cases and controls on
other variables than age alone. Conversely, four studies
(three investigating ASD and one investigating
ADHD)49,51,64,65 received a score of six (moderate),
due to inadequate description of samples,64 controls
represented by children undergoing surgery and thus
not being representative community controls,49 or
controls being older than ASD or ADHD cases (tables
3 and 4).51,65 The remaining studies all received a score
of seven (moderate).

Characteristics of studies investigating ASD or
ADHD

Demographics of the included studies are seen in
tables 3 and 4 for ASD and ADHD, respectively.

Geographically, the studies were performed in
USA,45,47,58,59,61,63,64 Europe,49,51,56,57,60,65,66 Taiwan,
People’s Republic of China,48,50,52-55, Australia,46 and
India.62 The studies investigating ASD included in
total 733 cases and 590 controls (138 siblings and
452 non-related controls), whereas the studies of
ADHD included in total 114 cases and 156 controls
(21 siblings and 135 non-related controls).

The majority of studies used non-related partici-
pants as controls, while four studies compared ASD
cases to siblings,46,57,59,62 and two (one ASD and one
ADHD) compared cases to both siblings and non-
related controls.45,65 It is noteworthy, that while the
majority of studies included cases and controls
younger than 18 y only, one study investigating
ADHD65 included cases and controls older than
18 y. For most studies investigating ASD, there was
a higher percentage of males among cases compared
to controls (total of 74.6% for cases, 41.3% for siblings,
and 63.3% for non-related controls, for all studies
providing this). This was also true for studies

Figure 1. PRISMA flow diagram, summarizing the studies identified during the systematic literature search and reviewing process.
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investigating ADHD (total of 77.2% for cases com-
pared to 62.8% for controls). Only three studies used
gender-matched cases and controls.52,54,66 We also
recorded information regarding the use of special
diets or nutritional supplements, presence ofGI symp-
toms as well as the use of medication. We found that
for three studies investigating ASD45,58,59 and one
study investigating ADHD, the diet, or use of probio-
tics, of cases differed from that of controls. Similarly,
presence of GI symptoms (primarily constipation, but
also diarrhea and abdominal pain) was common for
ASD (reported in 31.5% of cases versus and 7.3% for
controls), which was not seen for ADHD. All studies
excluded participants who recently received antibio-
tics, while two studies investigating ADHD65,66

included cases that received ADHD medication. No
other medical treatments were observed to be preva-
lent in the studies (tables 3 and 4).

Handling and analysis of samples

A number of differences in sample handling and ana-
lyzes was observed between the individual studies, and
are described in Table 5. Following sample collection,

the majority of studies stored the fecal samples at
either −20°C or −80°C, while other studies used pre-
serving buffers47,50,57,59 or stored samples at 4°C.54,65,66

Two studies did not provide information on storage of
samples.51,58 For DNA extraction, most studies used
commercial spin column-based extraction kits, with
approximately half of the studies implementing pre-
treatment steps to increase DNA extraction from
gram-positive bacteria.47,50,53,56-61,63,66, All studies,
with the exception of two that used metagenomic
sequencing,51,55 assessed fecalmicrobiota using ampli-
con sequencing of the 16 S ribosomal ribonucleic acid
(rRNA) gene, targeting a number of hypervariable
regions. Taxonomy was assessed using a variety of
different databases, with Greengenes47-50,60–64 being
the most common.

Children and adolescents with ASD have distinct
gut microbiota

The gut microbial communities of ASD cases were
compared to controls, assessing α- and β-diversity as
well as changes in individual bacterial abundances.

Table 2. Quality assessment of included studies based on the newcastle-ottawa scale for case–control studies. The articles were rated based
on selection and characterization of cases and controls (Selection, max score 4), comparability between case and controls (Comparability, max
score 2), and ascertainment of effects of microbiota (Exposure, max score 4), for a potential score ranging from 0 to 10 points.
Study Year Selection Comparability Exposure Total

ASD
Finegold et al.45 2010 4 1 2 7
Gondalia et al.46 2012 4 1 2 7
De Angelis et al.57 2013 4 2 2 8
Kang et al.58 2013 4 1 2 7
Son et al.59 2015 4 1 2 7
Strati et al.60 2017 4 1 2 7
Kang et al.61 2017 4 1 2 7
Pulikkan et al.62 2018 4 1 2 7
Kang et al.63 2018 4 1 2 7
Berding et al.64 2018 3 1 2 6
Rose et al.47 2018 4 2 2 8
Zhang et al.48 2018 4 1 2 7
Coretti et al.49 2018 3 1 2 6
Li et al.50 2019 4 1 2 7
Carissimi et al.51 2019 4 0 2 6
Liu et al.52 2019 4 2 2 8
Zhai et al.53 2019 4 1 2 7
Ma et al.54 2019 4 2 2 8
Wang et al.55 2019 4 1 2 7
Plaza-Díaz et al.56 2019 3 2 2 7
ADHD
Aarts et al.65 2017 4 0 2 6
Prehn-Kristensen et al.66 2018 4 1 2 7
Jiang et al. 2018 4 1 2 7
Wang et al. 2019 4 1 2 7
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The most consistent microbiota differences are visua-
lized in Table 6, with a more comprehensive list
presented in supplementary data 1. Highly

heterogeneous results were obtained for α- (number
of species and their diversity within samples) and β-
diversity. (difference in bacterial composition between

Table 3. Demographics of ASD cases included in this systematic review. No studies included participants that received antibiotic
treatment. In the row labeled “Total”, the total number of participants, and total gender distribution and GI symptoms percentage
(for studies providing numbers) for all studies combined, are displayed.

ASD

Study Country Sample size
Gender
(Male %)

Age
(years)

Diagnostic
instrument

GI symptoms
(% of total) Special diet

Finegold et al.45 USA ASD:
SIB:
Ctrl:

33
7
8

72.7
28.6
62.5

2-13 N/A 100.0
0.0
0.0

Diet: Unspecified number of
cases used special diet.

Gondalia et al.46 Australia ASD:
SIB:

51
53

82.4
35.8

2-12 N/A 54.9
7.5

N/A

De Angelis et al.57 Italy ASD:
SIB:

20
10

46.7 4-10 ADI-R, ADOS 0.0
0.0

No special diet

Kang et al.58 USA ASD:
Ctrl:

20
20

90.0
85.0

3-16 ADI-R, ADOS,
ATEC,
PDD-BI

100.0
0.0

Diet: 5 cases.
Dietary supplements: 13 cases +
8 Ctrls.

Son et al.59 USA ASD:
SIB:

59
44

88.1
47.7

7-14 N/A
(DSM-IV)

42.4
29.5

Diet: 4 cases + 1 Ctrl.

Strati et al.60 USA ASD:
Ctrl:

40
40

77.5
70.0

Mean
age:
11.1

N/A
(DSM-IV)

12.5
27.5

No special diet

Kang et al.61 Italy ASD:
Ctrl:

18
20

88.9
90.0

7-16 ADI-R 100.0
0.0

No special diet

Pulikkan et al.62 India ASD:
SIB:

30
24

93.3
62.5

3-16 CARS,
ISAA

Common for
ASD cases

No special diet

Kang et al.63 USA ASD:
Ctrl:

2123 65.2
95.6

4-17 ATEC,
PDD-BI

Common for
ASD cases

N/A

Berding et al.64 USA ASD:
Ctrl:

26
32

73.1
59.4

2-7 N/A Common for
ASD cases

No special diet

Rose et al.47 USA ASD:
Ctrl:

50
41

84.0
92.7

<13 ADI-R, ADOS 42.0
17.1

No special diet

Zhang et al.48 People’s
Republic of
China

ASD:
Ctrl:

35
6

82.9
83.3

3-8 N/A
(DSM-IV)

31.4–60.0
0.0

No special diet

Coretti et al.49 Italy ASD:
Ctrl:

11
14

81.8
57.1

2-4 ADOS2,
ADI-R, GMDS,
VABS, CARS

18.2
0.0

No special diet

Li et al.50 People’s
Republic of
China

ASD:
Ctrl:

59
30

84.7
66.7

2-10 ADOS, ABC 50.8
23.3

No special diet

Carissimi et al.51 Italy ASD:
Ctrl:

16
7

100.0
28.6

2-6
5-16

GMDS, ADOS2 Common for
ASD cases

N/A

Liu et al.52 People’s
Republic of
China

ASD:
Ctrl:

30
20

83.3
80.0

2.5-18 N/A
(DSM-5, ICD-10)

30.0
5.0

No special diet

Zhai et al.53 People’s
Republic of
China

ASD:
Ctrl:

78
58

71.8
53.4

Mean
age:
4.9

ATEC Common for
ASD cases

N/A

Ma et al.54 People’s
Republic of
China

ASD:
Ctrl:

45
45

86.7
86.7

6-9 CARS N/A No dietary differences between
cases and controls

Wang et al.55 People’s
Republic of
China

ASD:
Ctrl:

43
31

83.7
58.1

2-8 N/A
(DSM-5)

44.2
0.0

No difference between cases and
controls

Plaza-Díaz et al.56 Spain ASD:
Ctrl:

48
57

Matched 2-6 ADI-R, ADOS,
PDD-BI

Common for
ASD cases

N/A

Total ASD
SIB
Ctrl

733
138
452

74.6
41.3
63.3

2-18 31.5
12.3
5.8
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samples). The majority of studies did, however, find
that the overall microbiota composition of ASD cases
differed from that of controls.45,47-50,52-54,57,60,63,64

A number of differences was observed between
ASD cases and controls when comparing the relative
abundance of individual bacterial phyla and genera.
For phyla, three studies reported increased relative
abundance of Proteobacteria in ASD cases.45,49,56

Nine studies reported altered Firmicutes-Bacteroi
detes ratio, although they differed in the direction of
change.45,48,49,52,53,57,60,62,64 For bacterial genera, sev-
eral studies reported increased relative abundance of
Bacteroides,45,49,53,57 Barnesiella,52,57,63 Clostridium,50,
55,57,64 and Roseburia,49,57,64 as well as reduced relative
abundance of Bifidobacterium,45,49,57,61,64 Coproco
ccus,57,58,63 Dialister,45,60,64 Faecalibacterium,57,63,64

Prevotella,50,57,58,63 and Streptococcus45,48,49,52,57 in
cases. However, no specific bacteria consistently dif-
fered between ASD cases or controls in all of the
included studies. A few of the studies also looked at
the effects of microbial differences; The metabolism
was reported to be affected by several of the microbial
changes associated with ASD.48,49,51,52,54,55,57,64 This
was especially true for short-chain fatty acids
(SCFAs) metabolism, that was reported to be affected
by changes in Faecalibacterium, Ruminococcus, and
Bifidobacterium composition.48,49,52,57,64 Further
more, two studies reported that the gut microbiota
of ASD was associated with increased concentrations
of pro-inflammatory cytokines,47,51 while Wang et al.

reported that the increased Clostridium and
Bacteroides associated with ASD resulted in reduced
cortisol concentrations.

Studies investigating gut microbiota in ADHD
cases yield inconclusive results

As for ASD, studies investigating the gut microbiota
of ADHD compared to controls used α- and β-
diversity as well as changes in individual bacterial
abundances (Table 6, more comprehensive list in
supplementary data 1). No clear overall conclusion
could be drawn from the studies. The two studies
originating from Europe observed that the gut micro-
biota β-diversity of ADHD cases differed from
controls,65,66 whereas none of the two East-Asian
studies observed any significant differences.,

Furthermore, changes in individual bacteria were
inconsistent between the four studies. All found
ADHD specific changes, but no studies agreed on
what bacterial taxa differed. Three studies discussed
the causes and effects of the gut microbial variations.
Wang et al. reported increased Bacteroides in children
with ADHD, which was correlated to dietary differ-
ences. Jiang et al. reported that Faecalibacterium was
negatively associated with ADHD symptoms, while
Aarts et al.65 reported that genes encoding cyclohex-
adienyl dehydratase (CDT) had increased functional-
ity in the ADHD-associated bacteria. The authors

Table 4. Demographics of ADHD cases included in this systematic review. No studies included participants that received antibiotic
treatment. In the row labeled “Total”, the total number of participants, and total gender distribution and GI symptoms percentage
(for studies providing numbers) for all studies combined, are displayed.

Study Country Sample size
Gender
(Male %) Age (years)

Diagnostic
instrument

GI symptoms
(% of total)

Special diet or
ADHD medication

Aarts et al.65 The
Netherlands

ADHD:
SIB:
Ctrl:

19
21
56

68.4
SIB/ctrl:
53.2

Mean age:
ADHD:
19.5

SIB+Ctrl: 27.1

K-SADS-PL N/A Diet: N/A
Unspecified number of cases
received ADHD medication

Prehn-Kristensen
et al.66

Germany ADHD:
Ctrl:

14
17

100.0
100.0

Mean age:
11.9

K-SADS-PL N/A Diet: No difference in diet.
10 cases received
Methylphenidate.

Jiang et al. People’s
Republic of
China

ADHD:
Ctrl:

51
32

74.5
68.8

6-10 K-SADS-PL 0.0
0.0

No special diet
No pharmacological treatment
of ADHD

Wang et al. Taiwan ADHD:
Ctrl:

30
30

76.7
60.0

6-16 K-SADS-PL
ADHD-RS

0.0
0.0

Diet of cases differed from that
of controls.
No pharmacological treatment
of ADHD

Total ADHD
SIB
Ctrl

114
21
135

77.2
SIB/ctrl
62.8

6-N/A N/A/
0.0
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further reported that the increased abundance of CDT
was significantly associated with decreased reward
anticipation, previously reported in ADHD.65

Discussion

Understanding the microbial communities asso-
ciated with ASD and ADHD has the potential of

improving current treatment options for individuals
with these disorders. While studies have attempted
to utilize fecal microbiota transfer61 or probiotics in
the treatment of ASD or ADHD, results have been
limited.18,39,61 Given the large inter-individual varia-
tions in the healthy microbiome,67 a better under-
standing of normal variation, as well as whether gut
bacteria are involved in the etiology of ASD and

Table 5. Handling of samples from cases and controls. N/A: No information provided.
Study Sample storage DNA extraction Sequencing technique/target Reference database

ASD
Finegold et al.45 Transported overnight on

ice
QIAamp DNA Stool mini kit 454 FLX pyrosequencing,

16 S rRNA
Custom database
similar to RDP-II

Gondalia et al.46 Transported overnight on
ice

QIAamp DNA Stool mini kit 454 FLX pyrosequencing,
16 S rRNA V1-V3 region

BLASTn

De Angelis
et al.57

RNAlater, frozen at −80°C Bead-beating.
FastDNA pro soil-direct kit

454 FLX pyrosequencing,
16 S rRNA V1-V3 region

GenBank

Kang et al.58 −20°C for up to 24 hours Bead-beating.
QIAamp DNA Stool mini kit

454 FLX pyrosequencing,
16 S rRNA V2-V3 region

SSURef

Son et al.59 RNAlater, stored cold
overnight

Bead-beating.
ZR Fecal DNA MiniPre

Illumina sequencing,
16 S rRNA V1-V2 + V1-V3
region

SILVA

Strati et al.60 −80°C Bead-beating.
FastDNA Spin kit for feces

454 FLX pyrosequencing,
16 S rRNA V3-V5 region

Greengenes

Kang et al.61 N/A Bead-beating.
Powersoil DNA kit

Illumina Miseq,
16 S rRNA V4 region

Greengenes

Pulikkan et al.62 −80°C QIAamp DNA Stool mini kit Illumina sequencing,
16 S rRNA V3 region

Greengenes

Kang et al.63 −20°C for up to 24 hours Bead-beating.
Powersoil DNA kit

454 FLX pyrosequencing,
16 S rRNA V2-V3 region

Greengenes

Berding et al.64 −80°C QIAamp Fast DNA Stool mini kit Illumina sequencing,
16 S rRNA V2-V3 region

Greengenes

Rose et al.47 RNAlater, frozen at −20°C Bead-beating.
Powersoil DNA kit

Illumina sequencing,
16 S rRNA V3-V4 region

Greengenes

Zhang et al.48 −80°C within few hours N/A Illumina sequencing,
16 S rRNA V3-V4 region

Greengenes

Coretti et al.49 −80°C QIAamp DNA Stool mini kit Illumina Miseq,
16 S rRNA V3-V4 region

Greengenes

Li et al.50 99% ethanol. Later
frozen at −80°C

Bead-beating.
FastDNA Spin kit for feces

Illumina Hiseq,
16 S rRNA V1-V2 region

Greengenes

Carissimi et al.51 N/A QIAamp DNA Stool mini kit Illumina paired end Shotgun
sequencing

-

Liu et al.52 −80°C within 30 min QIAamp Fast DNA Stool mini kit Illumina Miseq,
16 S rRNA V3-V4 region

SILVA

Zhai et al.53 Transported on ice Bead-beating.
FastDNA Spin kit for soil

Illumina Miseq,
16 S rRNA V3-V4 region

N/A

Ma et al.54 4°C for up to 12 hours QIAamp Fast DNA Stool mini kit Illumina Hiseq,
16 S rRNA V3-V4 region

SILVA

Wang et al.55 −80°C upon delivery at
lab

StoolGen fecal DNA extraction kit Illumina Hiseq Shotgun
sequencing

-

Plaza-Díaz
et al.56

−80°C upon delivery at
lab

95°C pretreatment in lysis buffer.
QIAamp DNA Stool mini kit

Illumina Miseq,
16 S rRNA V3-V4 region

RDP

ADHD
Aarts et al.65 Stored at 4°C for up to

24 hours
Dneasy blood and tissue kit 454 FLX pyrosequencing,

16 S rRNA V3-V6 region
RDP

Prehn-Kristensen
et al.66

Stored at 4°C Bead-beating.
FastDNA Spin kit for Soil

Illumina Miseq,
16 S rRNA V1-V2 region

N/A

Jiang et al. −20°C for up to 24 hours QIAamp DNA Stool mini kit Illumina Miseq,
16 S rRNA V3-V4 region

N/A

Wang et al. −20°C for up to 24 hours Pretreatment with lysis buffer. QIAamp
DNA Stool mini kit

Illumina Miseq,
16 S rRNA V3-V4 region

RDP
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ADHD, is needed to develop future microbiota-
based treatments.

Gut microbiota of ASD and/or ADHD

In this systematic review, we sought to evaluate
whether individuals with ASD or ADHD had
a distinct microbiota composition compared to
controls. Importantly, for ASD, the majority of
studies identified that the gut microbiota of ASD
cases differed from controls, although no specific
bacteria was consistently altered across studies. As
suggested by Turnbaugh et al.,68 the microbiome
of a pathologic condition can also be defined by an
altered function rather than an altered bacterial
composition. Amongst bacteria reported to have
increased relative abundance in ASD cases, several
genera has previously been associated with
inflammation.69–71 Conversely, several commensal
bacteria with lower relative abundance are known

to induce anti-inflammatory effects72,73 or are
involved in the maintenance of normal
metabolism.64,73-75 The findings have been sup-
ported by Rose et al.47 and Carissimi et al.,51 who
reported that ASD cases had an increased concen-
tration of pro-inflammatory cytokines. However,
we still lack more in-depth analyzes in the func-
tions affected by the gut microbiota in ASD. These
include, but are not limited to, studies investigat-
ing bacterial metabolites and effects on inflamma-
tion and metabolism.

Compared to ASD, the number of published stu-
dies investigating the involvement of gut microbiota
in ADHD are surprisingly limited. This is supported
by a recent systematic review, where only two studies
on ADHD and gut microbiota were identified; both
studies are also included in the present review.76

Amongst the included studies, the results were
furthermore too heterogeneous to make confident
conclusions regarding whether ADHD is associated

Table 6. Table depicting the most important observations on bacterial composition between ASD or ADHD cases, and controls. Only
bacteria, for which two separate studies have agreed on the direction of difference, are displayed in the table. Empty boxes
represent that no difference was reported for this measurement, between cases and controls in the represented study. For De
Angelis et al.57 autism and PDD-NOS were combined. ↑ = higher α diversity or bacteria are more abundant, in ASD/ADHD compared
to control; ↓ = Lower α diversity or bacteria are less abundant, in ASD/ADHD compared to control; D = bacterial β-diversity differ
between ASD or ADHD cases compared to controls. N = No difference in β-diversity. – = no information.
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with a different gut microbiota profile. Reduced rela-
tive abundances were reported of the bacterial genera
Parabacteroides, Prevotella,66 Faecalibacterium,
Dialister, and Lactobacillus77 in ADHD cases com-
pared to controls. These genera are known to assist
with maintenance of the normal GI tract
function,72,75,78-80 which fits with the observed func-
tional differences in carbohydrate and fat metabolism
in ADHD, reported by Wang et al. Both Aarts et al.65

and Jiang et al. reported a significant correlation
between specific microbial differences and ADHD
symptomology. While intriguing, more studies are
urgently needed to further elucidate whether these
microbial interactions might directly influence the
pathophysiology of ADHD. A previous study by
Cheng et al.81 further reported that single nucleotide
polymorphisms (SNPs) associated with the genus
Desulfovibrio and the order Clostridiales, were
enriched in ADHD cases, although we could not
substantiate this observation. Interestingly, in a large
study of microbiota–drug interactions, Zimmermann
et al.82 reported that certain gut bacteria could che-
mically modify the common ADHD drug
Methylphenidate. Since the response of ADHD
patients to medication differs, studies are needed to
investigate whether gut microbiota could be used to
predict drug response in ADHD patients.

As previously mentioned, there is a high degree
of overlap between ASD and ADHD. It is there-
fore interesting if the two disorders share gut
microbiota variations. Both ASD and ADHD are
associated with a lower relative abundance of com-
mensal bacteria related to the maintenance of
a healthy GI function, which may explain the
high frequency of GI dysfunctional conditions. It
is however important to note that the differences
in methodologies and the reported heterogeneous
microbiota compositions in the reviewed articles
hamper our ability to investigate the possibility of
a shared gut microbiota in ASD and ADHD.

Differences in methodology may explain the
heterogeneous results

It is well known that several factors may have an
influence on the composition of gut microbiota,
including geographic, cultural, dietary, and demogra-
phical differences,67,83-86 which may explain some of
the observed discrepancies between different studies.

Intriguingly, Winglee et al. showed that urbanized
Chinese people had gut microbiota with closer resem-
blance to Americans rather than that of rural Chinese
people.87 This indicates that differences previously
attributed to ethnical or geographical differences
may instead be explained by differences in lifestyle.
While a fiber-rich, plant-based diet is associated with
a gut microbiota rich in the Bacteroidetes phylum and
the genus Prevotella, a typical western diet is asso-
ciated with increased Firmicutes and
Bacteroides.83,84,87,88 It is recognized, that children
with ASD often have a lower vegetable intake com-
pared to children without ASD, often due to selective
eating and sensory disturbances,89,90 and it is thus
interesting, that several studies included in this sys-
tematic review reported increased Bacteroides and
decreased Prevotella for ASD cases.45,49,53,57,58,63

GI dysfunctions, primarily constipation, and diar-
rhea, were common amongst the ASD cases in several
of the studies included in this systematic review. As
reported by Vandeputte et al.,91 gut microbiota compo-
sition is highly associated with colon transit time as
indicated by fecal consistency. While a fast transit time
selects for fast-growing bacteria, the slow transit time
observed in constipation enables more slowly growing
bacteria to thrive. As a result, the increased presence of
GI symptoms in ASD cases may explain some of the
differences in gut microbiota observed between the
studies.

Importantly, we observed that studies differed
in selection of control groups. The majority of
studies compared cases with non-related controls,
some compared to siblings, and some to both
groups, to correlate for similarities in environ-
ment. Finegold et al.45 reported that the gut micro-
biota of siblings to children with ASD, had
a bacterial composition resembling a middle
group between ASD and non-related controls.
This may explain why two studies using siblings
as controls only observed none to minor bacterial
differences compared to controls.46,59

While sequencing enables highly sensitive determi-
nation of the microbiota composition, several factors
in conjunctionwith handling of samplesmay influence
data output.92,93 Among the studies included in this
systematic review, several different storage techniques
were utilized, ranging from lowered temperature to the
use of storage buffers. While gut microbiota is robust,
differences in storage can lead to growth or disruption
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of susceptible bacteria, and thus result in differences in
bacterial composition between studies.92,94,95

Extraction of DNA from gram-positive bacteria is
problematic, due to the presence of a thick cell wall,
that can prevent effective bacterial lysis during DNA
extraction.93,96 This can lead to underrepresentation of
gram-positive bacteria in studies investigating gut
microbiota.93 Only half the studies included in this
systematic review took steps to increase DNA extrac-
tion from gram-positive bacteria. Despite this, we did
not detect a clear pattern in differences in bacteria
known to be difficult to extract, like the Streptococcus
genera,96 and the impact is thus uncertain. Finally,
most of the included studies investigated microbiota
composition by sequencing the different hypervariable
regions of the 16 S rRNA gene. However, primers
targeting different regions have different affinities to
specific bacteria, and thus may capture different bac-
teria in the same samples.93 This makes comparison of
studies using primers targeting different regions
problematic.

Besides differences in sample handling, the studies
also differed in the choice of bioinformatics pipelines
and reference databases. Two commonly used refer-
ence databases amongst the included studies were
Greengenes (http://greengenes.secondgenome.com/)
and SILVA (https://www.arb-silva.de/). As reported
by Park et al.97 these reference databases may not
always identify the same microbial genera, which
impairs proper comparison of studies. Here it is note-
worthy that none of the included studies using the
SILVA reference database identified differences in the
Bacteroidetes phylum. In contrast, five out of nine
studies using the Greengenes database reported differ-
ences for this phylum.

Overall, several methodological differences were
observed between the studies included in this sys-
tematic review, but no single factor explained the
heterogeneity. It is thus unclear whether the het-
erogeneous gut microbiota compositions for each
disorder presented in this systematic review, repre-
sent natural variations, or whether several factors
together cause these variations in gut microbiota.

Limitations

A number of limitations needs to be addressed: First,
analysis of the included studies proved complicated,
since they varied widely regarding methodology and

demography. This made the performance of a meta-
analysis unfeasible. Secondly, all systematic reviews
are susceptible to publication bias, where studies
reporting differences in microbiota composition
between cases and controls are more likely to be
published. We read the references of the included
studies, to determine if other studies were missed in
the systematic search. This did not reveal any addi-
tional studies, suggesting that we adequately covered
the published literature. Finally, new studies may
have been missed, if MESH terms had not been
assigned at the time of the systematic search.

Conclusion

This systematic review has demonstrated that ASD
and ADHD cases are associated with a gut micro-
biota different from controls without neurodevelop-
mental disorders. However, studies varied widely
concerning methodology, resulting in highly hetero-
geneous gut microbiota compositions between stu-
dies. A specific ASD or ADHD-associated gut
microbiota could therefore not be established,
although, for ASD, a few shared functional differ-
ences were suggested. Future studies should consider
investigating differences in gut microbiota function
as well as composition. Furthermore, the differences
in methodology and demography could have influ-
enced the gut microbiota of the studies, and thus
studies are needed that investigate the gut micro-
biota jointly in these often comorbid diagnoses.
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