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ABSTRACT: The partial least squares (PLS) algorithm is a
commonly used key performance indicator (KPI)-related perform-
ance monitoring method. To address nonlinear features in the
process, this paper proposes neural component analysis (NCA)-
PLS, which combines PLS with NCA. (NCA)-PLS realizes all the
principles of PLS by introducing a new loss function and a new
principal component selection mechanism to NCA. Then, the
gradient descent formulas for network training are rederived. NCA-
PLS can extract components with large correlations with KPI
variables and adopt them for data reconstruction. Simulation tests
using a mathematical model and the Tennessee Eastman process
show that NCA-PLS can successfully handle nonlinear relationships
in process data and that it performs much better than PLS, KPLS, and NCA.

1. INTRODUCTION
Multivariate statistics-based process monitoring (MSPM)1−5 is
one of the most attractive data-driven approaches for
monitoring complex processes with high-dimensional data
structures, for example, biopharmaceutical and chemical
processes. Its core idea is to transform high-dimensional
process data to low-dimensional principal components (PCs)
and monitor them using several statistical indices.6−8

It should be noted that process data contain two types of
information: key performance indicator (KPI)-related and
KPI-unrelated,1 where KPIs are indicators of product quality or
process safety that must be emphasized in process monitoring.9

Partial least squares (PLS),9−12 as a commonly used KPI-
related performance monitoring method,13 can maximize the
variation between process variables and KPI-related variables
and use KPI-related information to detect faults. As such, PLS
is more sensitive to abnormal changes in KPI-related
components, and hence, it is suitable for monitoring the
industrial process with clear KPI indices.
As a linear approach, PLS cannot handle nonlinear

relationships among process variables. To address this issue,
kernel PLS (KPLS)14−18 has been proposed, and it has become
the mainstream nonlinear PLS approach.19 KPLS is a two-step
method, which addresses the nonlinearity by calculating inner
products between data samples (in both the training and
testing stage) and monitoring them by traditional PLS. Much
research work has been carried out on KPLS, and many
improved versions have been proposed and applied in process
monitoring. Wang et al. found that the nonlinear mapping of
kernel methodology completely obscures the correspondence

between the original variable sample and the kernel model, and
hence, they integrated KPLS with the kernel sample equivalent
replacement (KSER) method in KPLS−KSER.20 Yang et al.
introduced a cross-validatory framework to address the
parameter selection problem of KPLS.21 Wang et al. found
that existing KPLS methods cannot accurately decompose
measurements into KPI-related and KPI-unrelated parts and
proposed a new space division strategy for KPLS.22 Zhang et
al. applied KPLS in dynamic processes and proposed dynamic
KPLS.23

The nonlinear fitting ability of KPLS is not very good in
practical industrial applications, as the kernel function in PLS
should be defined manually, but picking the kernel function
and setting its parameters are still open issues that need to be
solved. As a result, these parameters should be tuned by trial
and error, and the nonlinear mapping model is not optimal.24

Inspired by the artificial neural network (ANN)25,26 and
principal component analysis (PCA),27−29 Lou et al. proposed
a nonlinear approach called neural component analysis
(NCA),30 which reconstructs the ANN with PCA principles,
adopts a neural network structure for nonlinearity description,
and updates the parameters by gradient descent.31 As such,
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NCA provides a new idea for solving the nonlinear monitoring
issue, which can be transplanted to other algorithms. For
example, Chen et al. applied the NCA structure in the
description of canonical correlation analysis32 and proposed
artificial neural correlation analysis,33 and Lou et al. applied the
NCA structure in a non-Gaussian process and proposed
improved NCA.34

In this article, NCA is combined with PLS, as NCA-PLS, to
address the KPI monitoring issue. By introducing a new loss
function and a new PC selection mechanism, all principles of
PLS are realized by the NCA network structure. Simulation
tests with a mathematical model and the Tennessee Eastman
(TE) process35 show that NCA-PLS can successfully address
the nonlinear relationships among process data and extract the
KPI information for process monitoring; moreover, it performs
better than PLS, KPLS, and NCA.
The main contributions of this study are as follows. First, we

propose a new nonlinear PLS approach, which inherits the
nonlinear fitting ability of the ANN; second, we rederive the
formulas of the gradient descent method for NCA-PLS; third,
we propose a new PC extraction mechanism for NCA-PLS.
The remainder of this paper is organized as follows. Section

2 reviews the ideas of PLS and NCA. The new nonlinear PLS
approach is proposed in Section 3, and some details are
discussed. A nonlinear mathematical model and the TE process
are employed to demonstrate the performance of the proposed
method in Section 4. Section 5 relates our conclusions.

2. METHODS
2.1. PLS. PLS can decompose process data X∈Rn×s and KPI

data Y∈Rn×r (where n is the number of samples, s is the
number of process variables, and r is the number of process
variables) into
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where TPLS∈Rn×k and UPLS∈Rn×k refer to the score matrices,
PPLS∈Rs×k and QPLS∈Rr×k are the loading matrices, EPLS∈Rn×s

and FPLS∈Rn×r are the residual matrices, and k is the number of
PCs.
The model objective of PLS is to maximize the variation

between X and Y, as follows

Y Xmaximize

subjectto 1and 1

T T

w c,

= = (2)

where Xβ and Yα are columns of TPLS and UPLS
correspondingly. The solution to eq 2 is achieved by an
iterative algorithm, NIPALS.36

2.2. NCA. The main idea of NCA is to realize the principles
of PCA through the ANN. As shown in Figure 1, the middle
layer in NCA, the PC layer, is responsible for nonlinear
mapping and PC selection. The main steps of NCA are as
follows: (1) obtain the inputs of the PC layer by linear
transformation as H w b j sx ( 1,2, , )j i

s
ij i j1= + = ···= . (2)

Obtain the uncorrelated PCs Ij(j = 1,2,···,s) by a nonlinear
activation function as I f H( )j j= . (3) Calculate the PC

selection score, j( )
D Isign( ( ) var ) 1

2
j stand= +

, where D(*) is the
variance function and varstand is the boundary value for D I( )j{ }
calculated by the cumulative percent variance method.37 (4)
Calculate the outputs of the PC layer as Hj′ = HjΞ(j). (5)
Linearly map from the PC space to the original data space as

w H b j sx ( 1,2, , )j i
s

ij i j1= + = ···= . Parameters {wij} and
{wij′} are the weights, and {bj} and {bj′} are bias terms. The
abovementioned parameters in NCA are symmetric, that is, bj′
= −bj(j = 1,2,···,s), andÄ
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Figure 1. NCA Framework.
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X x x x, , , s1 2= [ ··· ] and all the PCs are uncorrelated, the two
cost functions are combined into one
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where σ is a weight parameter and cov(*) is the covariance
function.

3. NCA-PLS
The main difference between PLS and PCA is that PCA
extracts components with large autocorrelation coefficients
(large variance) in X, while PLS extracts components with
large correlation with UPLS, so NCA should be adjusted for
PLS principles, as shown in Figure 2.
3.1. Modification for NCA Cost Function. Basedon eq 2

in Section 2.1, one understands that PLS extracts the
components with large correlation with Yα rather than Y. In
most cases, the dimension of output variable Y is much lower
than that of X, that is, r ≪ s, and hence r is equal to or very
close to k. Because FPLS is orthogonal to UPLSQPLS

T , one obtains
r kF Y U Qrank( ) rank( ) rank( ) 0T

PLS PLS PLS= = . A s
such, the most information contained in output variable Y
has been extracted, and hence, there is little information loss
during matrix transformation (FPLS ≈ 0 and Y ≈ UPLSQPLS

T ).
Therefore, extracting the PCs in Y is not a necessary step for
PLS. Based on the abovementioned content, in most cases, the
objective of PLS can be replaced as extracting the components
with large correlation with Y.

To extract the components with large correlation with Y, we
define the correlation coefficient value between latent variable
Ii and the jth KPI variable Yj as

r
I

D I D

Y

Y
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i j
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(5)

Hence, the cost function for NCA-PLS is
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(6)

where cost function E1 maximizes the correlation between the
PCs in X and cost function E3 minimizes the correlation
between the PCs in X and Y.
Then, parameters {wij} and {bj} can be obtained by applying

the gradient descent method to cost function E
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where E
wij

1 and E
bj

1 have been deduced in paper.30 For E
wij

3 , we

obtain

Figure 2. Framework of NCA-PLS.
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Similarly, we obtain
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In the abovementioned equations, I t
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Hence, parameters {wij} and {bj} can be calculated using
following steps:

Step 1: set random initial values for {wij} and {bj} (e.g.,
random values between 0 and 1) and set a value for learning
rate η (e.g., 0.1).
Step 2: set gen = 1 and set total iteration number Gen.

Step 3: calculate E
wij

1 and E
bj

1 according to eq 12 in paper.30

Step 4: calculate E
wij

1 and E
bj

1 according to eqs 8−14.

Step 5: update {wij} and {bj} as follows

E
w

E
w

E
wij ij ij

gen
1 3= +

(15)

E
b

E
b

E
bj j j

gen
1 3= +

(16)

w w E
wij ij

ij

gen 1 gen
gen=+

(17)

b b E
bj j

j

gen 1 gen
gen=+

(18)

and take gen = gen + 1.
Step 6: If gen = Gen, output {wij} and {bj}; else, go back to

Step 3.
3.2. New PC Extraction Mechanism for NCA-PLS.

Different from PCA, the components highly related to KPI
variables are picked as PCs in PLS. The following new PC
extraction mechanism is proposed for NCA-PLS:
Step 1: calculate the correlation coefficient between latent

variable Ii and KPI variable Yj with eq 5;
Step 2: calculate the correlation score for each latent variable

Ii as

rscorei
j

i j
1

r

,
2=

= (19)

Step 3: sort scorei values from large to small and find the
threshold varstand using the cumulative percent variance
method;37 and
Step 4: calculate the picker score for each latent variable as

i( ) sign(score var ) 1
2

i stand= + .

Based on the abovementioned new PC extraction mecha-
nism, when Ii contains KPI-related information, scorei will have
a nonzero value; then Ξ(i) = 1, and hence, Hi is used for data
reconstruction. In contrast, when Ii is KPI-unrelated, then
scorei is very close to zero, and hence, Ii is not picked as a PC.

4. RESULTS AND DISCUSSION

4.1. Nonlinear Numerical Model. The following
mathematical model is designed to test the proposed algorithm
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where Ni (i = 1,2,···4) denotes independent Gaussian variables
and ωi (i = 1,2,···7) denotes Gaussian noise. In this paper, xi (i
= 1,2,···5) denotes process data and yi (i = 1,2) denotes KPI

variables. In this process, N1 and N2 are contained in y1 or y2,
and hence, they are KPI-related. Approximately, 960 samples
are generated for offline modeling.
Figure 3 shows the cost functions of NCA-PLS during

training iterations. In this paper, the sigmoid function is used
in NCA-PLS, with 500 gradient descent iterations. According
to Figure 3, both E1 and E3 decrease in each iteration, E1
reaches a value close to zero after the 150th iteration, and E3
decreases from initial value −0.03 to −0.1. Therefore, NCA-
PLS can successfully minimize the correlation between the PCs
and maximize the correlation between them and the KPIs.
This process generates another 960 samples for testing,

introducing faults at the 161th sampling points. There are
three types of faults:
fault 1: a step fault occurs at variable x1 with amplitude 5;

Figure 3. Cost function values of NCA-PLS.

Table 1. False-Alarm and Fault-Detection Rates (%) of Three Methods

method PLS KPLS NCA-PLS

index T2 SPE T2 SPE I2 SPE

false-alarm rate 6.25 0.63 7.50 0.63 0.00 0.00
fault-detection rate fault 1 49.30 0.25 29.63 2.13 99.00 3.50

fault 2 28.38 3.38 28.37 5.88 90.88 6.13
fault 3 2.50 11.13 35.63 3.75 62.75 57.25

Figure 4. Monitoring charts for fault 1.
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fault 2: a step fault occurs at variable N1 with amplitude 2;
and
fault 3: a step fault occurs at variable N3 with amplitude 2.
Faults 1 and 2 are KPI-related because they occur in

components containing information of N1 and N2, and fault 3
is KPI-unrelated because it only occurs in N3.
These data are used to compare PLS, KPLS, and NCA-PLS.

Table 1 shows the false-alarm and detection rates for the three
types of faults. For NCA-PLS, the number of gradient descent
iterations is set to 500. For KPLS, the PC number is set by trial
and error. In this study, all control limits are based on 99%
confidence limits. The best result for each item is bolded and
underlined.
In Table 1, NCA-PLS achieves a zero false-alarm rate, which

is lower than PLS (6.25%) and KPLS (7.50%). Because PLS
cannot handle nonlinear features, it has the worst fault-
detection rate. KPLS adopts the kernel function for nonlinear
approximation, so it performs much better than PLS on fault 3.
However, as no prior knowledge is available to set kernel
function parameters, the KPLS model is not suitable for all
faults, and it performs poorly on the other two faults. As NCA-
PLS can successfully handle nonlinear features using an ANN
and can extract KPI-related information for fault detection, it
successfully detects faults 1 and 2. Although fault 3 is not
related to KPI, NCA-PLS still achieves a 67.25% fault-
detection rate. NCA-PLS can generally achieve a high fault-
detection rate without false alarms.
Figures 4 and 5 show the monitoring charts of faults 1 and 3,

respectively. For PLS and KPLS, the control limit line is very
close to the monitoring indices under normal and fault
conditions. As such, the monitoring indices of PLS and KPLS
may be beyond the control limit line under normal conditions,
which causes a large false-alarm rate, and they may go below
the control limit line after a fault occurs and thus cause a low
fault-detection rate. Different from them, the control limit line
of NCA-PLS is very high, and the monitoring indices increase
quickly after a fault occurs, so NCA-PLS is sensitive to process
faults and will not cause a false-alarm problem.
4.2. Tennessee Eastman Process. The Tennessee

Eastman (TE) process, proposed by Downs and Vogel35 in
1993, is a widely used simulation model for testing MSPM
methods. The TE process simulates the chemical industry
process containing nonlinear features, which consists of five
major unit operations: a reactor, a product condenser, a
vapor−liquid separator, a recycle compressor, and a product
stripper. The whole process includes 34 measurable variables
and another 19 unmeasurable composition measurements. As
the agitation speed, one measurable variable, is not

manipulated, this paper takes the 33 measurable variables as
the input X. Two unmeasurable variables, XMES (35) and
XMES (36), representing products G and H, respectively, are
chosen as the KPI matrix Y. Approximately, 960 samples of
normal data are generated for offline training. According to
paper,38 nine types of faults are considered to be quality-
related faults in the TE process, which are listed in Table 2. As

such, nine test data sets are generated as testing data, and each
testing data set contains 960 samples; for each testing data set,
the fault is introduced from the 161th sample and continues
until the end. Table 2 describes these faults.
Table 3 lists the monitoring results of NCA-PLS, PLS,

KPLS, and NCA. The best result for each item is marked in
bold and underlined. In Table 3, NCA-PLS achieves the best
result in faults 1, 5, 8, 10, 12, and 13; for faults 2, 6, and 7,
which can be easily detected by all four methods, the fault-
detection rate of NCA-PLS is also very close to the other three
methods. Among the four methods, NCA-PLS achieves the
highest fault-detection rate. One issue should also be noted
that NCA-PLS also achieves the lowest false-alarm rate, and
hence, NCA-PLS is more reliable than other three methods.
For fault 10, NCA-PLS achieves much greater fault-

detection rates than KPLS, which demonstrates that it has
better nonlinear fitting ability than KPLS. In addition, the
parameters of KPLS should be tuned by trial and error and
those of NCA-PLS are trained by the gradient descent method
automatically, which means NCA-PLS is more convenient for
engineering application.
Although NCA has the similar nonlinear fitting ability as

NCA-PLS, it performs much worse than NCA-PLS and KPLS.
Furthermore, NCA also achieves lower average fault-detection

Figure 5. Monitoring charts for fault 3.

Table 2. Quality-Related Faults in the TE Process

no. description type

1 feed ratio of A/C, composition
constant of B (stream 4)

step

2 composition of B, ratio constant of A/C (stream 4) step
5 inlet temperature of condenser cooling water step
6 feed loss of A (stream 1) step
7 header pressure loss of C�reduced availability

(stream 4)
step

8 feed composite of A, B, and C (stream 4) random
variation

10 feed temperature of C (stream 4) random
variation

12 inlet temperature of condenser cooling water random
variation

13 reaction kinetics slow drift
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rate than PLS, which is a linear method. The reasons for this
phenomenon are as follows: (a) on the one hand, NCA loses
the information of KPIs and (b) on the other hand, NCA
monitors all components in process data rather than the KPI-
related components, and hence, it is insensitive to faults in
KPI-related components.
Two issues should also be noted, which differ from the

testing results in Section 4.2: (a) the false-alarm rate is not zero
in this testing, because the TE process is not static, and a
dynamic feature will cause model deviation and (b) NCA-PLS
cannot achieve 100% detection even for faults that can be
easily detected, such as fault 7, because NCA-PLS adopts
summation to calculate the I2 index, which may cause a tiny
detection delay.30

5. CONCLUSIONS
The NCA structure was adopted to handle the nonlinear issue
of traditional PLS. By proposing a new loss function and a new
PC selection mechanism, all PLS principles were realized by
NCA.
The superiority of NCA-PLS was verified by several

simulation tests. In a mathematical model test, it achieved
much better detection performance on three types of faults,
which could not be effectively detected by PLS and KPLS.
NCA-PLS performed better than other improved MSPM
algorithms on TE process testing.
Our future work will focus on analyzing the convergence of

NCA-PLS and addressing the detection delay issue in NCA-
PLS.
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