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A B S T R A C T   

Background: The soluble suppression of tumorigenicity 2 (sST2) is closely associated with stroke 
and atrial fibrillation (AF). However, no studies on sST2 and AF detected after stroke (AFDAS) 
have been reported. This study investigated the correlation between sST2 and AFDAS. 
Methods: This was a single-center, retrospective, clinical observational study. Patients diagnosed 
with a transient ischemic attack (TIA) or acute ischemic stroke were enrolled, and all patients 
underwent sST2 detection and electrocardiogram (ECG) or Holter monitoring for at least 24 h. 
Results: In total, 970 patients were enrolled, including 72 (7.4 %) with AFDAS. Multivariate 
analysis showed that age (OR 1.078; 95 % CI, 1.050–1.107; p < 0.001), heart rate (HR) (OR 
1.025; 95 % CI, 1.007–1.044; p = 0.007), national institutes of health stroke scale (NIHSS) score 
(OR 1.089; 95 % CI, 1.029–1.152; p = 0.003), high sensitivity C-reactive protein (hs-CRP) (OR 
1.006; 95 % CI, 1.002–1.009; p = 0.001), and sST2 (OR 1.018; 95 % CI, 1.010–1.026; p < 0.001) 
were independent risk factors of AFDAS. The areas under the curve (AUCs) for age, HR, sST2, hs- 
CRP, and NIHSS were 0.731, 0.599, 0.815, 0.664, and 0.700, respectively. The conventional 
model included age, HR, NIHSS score, and hs-CRP level based on multivariate results. After 
adding sST2 to the model, the model’s performance in predicting AFDAS increased significantly. 
Conclusion: Higher sST2 levels were associated with the occurrence of AFDAS. Thus, sST2 can 
improve the risk model for AFDAS.   

1. Introduction 

Reperfusion therapy for ischemic stroke has recently gained significant popularity but remains one of the leading causes of death 
and disability among adults worldwide [1]. Irreversible nerve damage caused by stroke makes secondary prevention particularly 
important. Furthermore, correct etiological classification is key to selecting the best plan for secondary prevention. Unfortunately, 
despite advances in diagnostic techniques, the cause of ischemic stroke remains undetermined in approximately 20–30% of patients 
[2]. Atrial fibrillation (AF) is known to be closely associated with ischemic stroke [3,4]. In particular, latent AF is a real challenge for 
the secondary prevention of ischemic stroke because it is asymptomatic or paroxysmal [5]. Previous studies have shown that among 
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stroke patients with no known history of AF, nearly a quarter was diagnosed with post-stroke atrial fibrillation, also known as “AF 
detected after stroke (AFDAS)," after continuous electrocardiogram (ECG) monitoring [6]. While wearable or implantable heart 
monitors can identify more patients with AF [7], they often come at a higher cost [8]. In addition, strokes due to AF have a high rate of 
disability and death, and there are significant differences in the treatment between strokes caused by AF and other causes [4]. Thus, 
early identification of AFDAS will contribute to the early diagnosis of stroke caused by AF. 

Inflammation is essential in ischemia/reperfusion injury of acute ischemic stroke (AIS) and AF [9,10]. Suppression of tumorige-
nicity 2 (ST2) is a member of the interleukin-1 receptor family involved in the body’s inflammatory response and organ fibrosis [11, 
12]. Soluble ST2 (sST2) is a form of ST2 present in the body [13], and previous studies have shown that sST2 expression is closely 
associated with stroke [14], AF [15]. new-onset AF after myocardial infarction [16], and post-stroke depression [17]. However, no 
studies on sST2 and AFDAS have been conducted. This study aimed to explore the predictive value of sST2 levels for AFDAS in patients 
with ischemic stroke. 

2. Methods 

2.1. Study population 

This retrospective study was conducted at the Xuzhou Medical University and was approved by the local Ethics Committee, and the 
written informed consent was exempted due to low risk to patients according to the relevant IRB regulatory guidelines (No. XYFY2022- 
KL200-13). We retrospectively screened all patients diagnosed with a transient ischemic attack (TIA) or acute ischemic stroke [18] 
between January 2019 and December 2022. Inclusion criteria: Participants aged ≥18 years, sST2 detection completed upon admission, 
at least one ECG during the hospital stay, continuous electrocardiographic monitoring or a Holter at least 24 h. The exclusion criteria 
encompassed the following: Prior known AF before admission, recent (defined in terms of the half-life of the drug) or ongoing use of 
antiarrhythmic drugs, history of myocardial infarction, history of heart failure, presence of cardiac thrombosis, malignancy, or 

Fig. 1. Study flow chart.  
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inflammatory disease, severe valvular heart disease, and thyroid dysfunction. In total, 970 patients who met the eligibility criteria 
were enrolled in this study (Fig. 1). 

2.2. Clinical and laboratory data assessment 

Baseline clinical data, including sex, age, body mass index (BMI), hypertension, diabetes, left ventricular ejection fraction (LVEF), 
and National Institutes of Health Stroke Scale (NIHSS) scores, were collected for all cases. NIHSS is a 15-item impairment scale used to 
measure stroke severity. This includes the level of consciousness, eye movements, the integrity of the visual fields, facial movements, 
arm and leg muscle strength, sensation, coordination, language, speech, and neglect [19]. After admission, venous blood samples were 
collected for laboratory analyses. The concentration of sST2 in blood samples was determined using an enzyme-linked immunosorbent 
assay (ELISA, Elabscience Biotechnology, China). AFDAS was defined as AF after stroke without prior history of AF [20]. 

2.3. Statistical analysis 

SPSS24.0 software and R were used for the statistical analysis. Data conforming to a normal distribution were expressed as mean ±
standard deviation (SD) and analyzed using an independent sample t-test. Non-normally distributed data were represented by M(Q25, 
Q75) and analyzed using a non-parametric (Mann–Whitney U) test. Categorical variables were analyzed using the chi-square test or 
Fisher’s exact test. Univariate and multivariate regression analyses were used to identify risk factors for AFDAS, and variables with p <
0.05 in univariate analysis or with clinical importance were progressively included in the multivariate analysis. A receiver operating 
characteristic (ROC) curve was constructed to determine the threshold for the sST2 level prediction of AFDAS. The net reclassification 
index (NRI) and integrated discrimination improvement (IDI) were used to evaluate additional discriminants of risk factors. P < 0.05 
was considered statistically significant. 

3. Results 

3.1. Baseline characteristics 

AFDAS was detected in 72 (7.4 %) patients. Compared with the patients without AFDAS, patients with AFDAS were older (73.58 ±
8.47 vs. 63.65 ± 12.93; p < 0.001) and had higher hate rate [81 (71,95) vs. 78 (68,87) bpm; p = 0.005], peak of high sensitivity C- 
reactive protein (hs-CRP) [45.8 (14.8, 134.8) vs. 20.3 (7.5, 56.8) mg/L; p < 0.001], NIHSS score [6 [4,16] vs. 4 [3,6]; p < 0.001], and 

Table 1 
Patient Characteristics and the differences between the two groups.   

w/o AFDAS（n = 898） AFDAS（n = 72） P-Value 

Age, years 63.65 ± 12.93 73.58 ± 8.47 ＜0.001 
Male, n (%) 601 (66.9) 53 (73.6) 0.244 
BMI, kg/m2 24.97 ± 3.53 25.26 ± 5.34 0.514 
HR, bpm 78 (69, 87) 81 (71, 95) 0.005 
SBP, mmHg 130 (115, 145) 124 (105, 145) 0.104 
DBP, mmHg 79 (70, 89) 79 (69, 89) 0.859 
Current smoker, n (%) 372 (41.4) 27 (37.5) 0.515 
Hypertension, n (%) 427 (47.6) 41 (56.9) 0.125 
Diabetes mellitus, n (%) 232 (25.8) 20 (27.8) 0.718 
LVEF, % 52 (48, 57) 52 (49, 55) 0.593 
NIHSS 4 (3,6) 6 (4,16) ＜0.001 
Type of stroke 

CI, n (%) 748 (83.3) 66 (91.7) 0.063 
TIA, n (%) 150 (16.7) 6 (8.3) 0.063 

Medication 
Aspirin, n (%) 801 (89.2) 67 (93.1) 0.305 
P2Y12 inhibitors, n (%) 850 (94.7) 69 (95.8) 0.666 
Statins, n (%) 849 (94.5) 69 (95.8) 0.640 

Laboratory findings 
Peak hs-CRP, mg/L 20.3 (7.5, 56.8) 45.8 (14.8, 134.8) ＜0.001 
TSH, mIU/L 2.73 (1.38, 5.19) 2.71 (1.48, 5.42) 0.686 
Total cholesterol, mmol/L 4.27 (3.64, 4.99) 4.39 (3.51, 5.16) 0.732 
Triglycerides, mmol/L 1.25 (0.92, 1.81) 1.28 (0.98, 2.12) 0.154 
LDL cholesterol, mmol/L 2.64 (2.06, 3.20) 2.90 (2.09, 3.40) 0.191 
HDL cholesterol, mmol/L 0.98 (0.81, 1.20) 0.97 (0.83, 1.12) 0.507 
sST2, ng/mL 30.38 (24.14, 39.16) 54.28 (39.25, 101.52) ＜0.001 

AFDAS atrial fibrillation detected after stroke, BMI body mass index, HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure, NIHSS 
national institutes of health stroke scale, CI cerebral infarction, TIA transient ischemic attack, TSH thyroid stimulating hormone, HDL high density 
leptin cholesterol, LDL cholesterol low density leptin cholesterol, hs-CRP high sensitivity C-reactive protein, sST2 soluble ST2, LVEF left ventricular 
ejection fraction. 
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sST2 [54.28 (39.25, 101.52) vs. 30.38 (24.14, 39.16) ng/mL; p < 0.001] (Table 1). 

3.2. Association between sST2 and AFDAS 

Univariate analysis showed that the AFDAS was associated with age, heart rate, NIHSS score, hs-CRP, and sST2. In a multivariable 
model, age (OR 1.078; 95 % CI, 1.050–1.107; p < 0.001), hate rate (OR 1.025; 95 % CI, 1.007–1.044; p = 0.007), NIHSS score (OR 
1.089; 95 % CI, 1.029–1.152; p = 0.003), hs-CRP (OR 1.006; 95 % CI, 1.002–1.009; p = 0.001), and sST2 (OR 1.018; 95 % CI, 
1.010–1.026; p < 0.001) were independent risk factors of AFDAS. All these factors were associated with a higher risk of AFDAS in the 
present study (Table 2). 

3.3. Diagnostic performance of sST2 for AFDAS 

ROC analysis demonstrated that sST2 had a cut-off value of 37.88 to predict patients with AFDAS and showed an area under the 
curve (AUC) of 0.815 (95 % CI 0.762–0.868), with a sensitivity of 84.7 % and a specificity of 72.0 %. Therefore, sST2 showed excellent 
diagnostic performance for AFDAS. The independent risk factors for AFDAS, the AUCs of age, heart rate, hs-CRP level, and NIHSS score 
were 0.731 (95 % CI, 0.681–0.782), 0.599 (95 % CI, 0.528–0.671), 0.664 (95 % CI, 0.597–0.730), and 0.700 (95 % CI, 0.632–0.768), 
respectively. The sensitivity and specificity of age, heart rate, hs-CRP, and NIHSS were 86.1 % and 51.9 %; 61.6 % and 56.6 %; 48.6 % 
and 76.1 %; and 68.1 % and 69.0 %, respectively (Table 3 and Fig. 2). 

3.4. Incremental value of sST2 in patients with AFDAS 

The conventional model included age, heart rate, NIHSS score, and hs-CRP level based on multivariate results. After adding sST2 to 
the model, NRI increased by 58.10 % (95 % CI, 0.346–0.816; p = 0.001), and IDI was 3.90 % (95%CI, 0.004–0.075; p = 0.031). sST2 
significantly increased the discriminant and reclassification indices, and the model performance for the prediction of AFDAS signif-
icantly increased (p < 0.05). When sST2 was dichotomized based on the cutoff value obtained by ROC, the model with sST2 also 
showed significantly higher discriminant and reclassification abilities [NRI increased by 34.3 % (95 % CI, 0.200–0.485; p < 0.001), 
and IDI was 10.3 % (95%CI, 0.070–0.136; p < 0.001]) (Table 4). 

4. Discussion 

To the best of our knowledge, this is the first study investigating the correlation between sST2 and AFDAS expression. The main 
finding of this study was that higher sST2 concentrations were associated with the occurrence of AFDAS after adjusting for several 
confounding factors. Additionally, the ability to discriminate and reclassify AFDAS was greatly enhanced by integrating sST2 into the 
models with clinical risk factors. 

4.1. The occurrence of AFDAS 

AFDAS is present in many patients with acute ischemic stroke or TIA [6,21]. Giralt-Steinhauer et al. measured the incidence of AF in 
patients at different stages of stroke. Approximately 7.5 % of the patients with a normal initial ECG were diagnosed with AF during 
hospitalization [22]. Furthermore, Anetta et al. found that AF was present in 33 % of stroke patients based on 24-h ECG monitoring 
during hospitalization, and 6 % of the subjects were diagnosed with AF for the first time [23]. Consistent with these studies, AFDAS was 
found in 72 of the 970 patients (7.4 %) in this study. 

Table 2 
Univariate and multivariable logistic regression for the association of variables with atrial fibrillation detected after stroke.  

Univariate Multivariable 

Variables OR (95%CI) P-Value OR (95%CI) P-Value 

Age, years 1.078 (1.052–1.104) ＜0.001 1.078 (1.050–1.107) ＜0.001 
Male, n (%) 1.000(0.580–1.724) 1   
BMI, kg/m2 1.022(0.958–1.090) 0.514   
SBP, mmHg 0.991(0.980–1.002) 0.095   
Hypertension, n (%) 1.459(0.899–2.368) 0.127   
Diabetes mellitus, n (%) 1.104(0.645–1.889) 0.718   
LVEF, % 0.987(0.951–1.024) 0.474   
HR, bpm 1.027 (1.010–1.043) 0.002 1.025 (1.007–1.044) 0.007 
Peak hs-CRP, mg/L 1.007 (1.005–1.010) ＜0.001 1.006 (1.002–1.009) 0.001 
NIHSS 1.155 (1.106–1.206) ＜0.001 1.089 (1.029–1.152) 0.003 
sST2, ng/mL 1.024 (1.017–1.031) ＜0.001 1.018 (1.010–1.026) ＜0.001 

HR heart rate, NIHSS national institutes of health stroke scale, hs-CRP high sensitivity C-reactive protein, sST2 soluble ST2. 
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4.2. The traditional risk factors for AFDAS 

In recent years, considerable research has focused on clinical factors that may predict AFDAS. Several scoring systems have been 
developed to stratify the risk of AFDAS in patients with ischemic stroke or TIA [22,24,25]. Similarly, this study found that older age 
and faster heart rate were associated with AF. Moreover, baseline neurological deficits were more severe in the AFDAS group than in 
the w/o AFDAS group. Notably, higher NIHSS scores have been found to predict AFDAS(22). AFDAS distinguishes pre-existing atrial 
fibrillation (cardiac AFDAS) from atrial fibrillation secondary to neurogenic heart injury (neurogenic AFDAS), and patients with AF 
tend to have more severe strokes and higher NIHSS scores [26,27]. From an outcome perspective, more severe nerve injury is often 
accompanied by a more severe inflammatory response and organ damage, leading to a higher risk of AFDAS(22). Therefore, patients 
with higher NIHSS scores may have a higher risk of cardiac or neurogenic AFDAS. 

4.3. The association between sST2 and AFDAS 

sST2 plays essential roles in inflammation, tissue fibrosis, post-stroke secondary injury, and myocardial cell injury [28–30]. After 
adjusting for major confounding factors, Laura et al. confirmed the predictive value of sST2 for all-cause mortality in patients with AIS 
[31]. Two population studies from the Framingham Offspring Cohort and Finland showed that sST2 was significantly associated with 
stroke events [14,32]. In addition, elevated sST2 levels are strongly associated with an increased risk of poor prognosis in patients with 
a transient ischemic attack or ischemic stroke [33]. Interestingly, in addition to stroke, ST2 is also associated with atrial fibrillation. A 
previous study reported that sST2 was an independent risk factor for predicting AF recurrence of atrial fibrillation after catheter 

Table 3 
Cutoffs for prediction of AFDAS in patients.   

AUC 95%CI Cut-off Value Sensitivity (%) Specificity (%) 

sST2 0.815 0.762–0.868 37.88 84.7 72.0 
Age 0.731 0.681–0.782 65.5 86.1 51.9 
HR 0.599 0.528–0.671 79.5 61.1 56.6 
NIHSS 0.700 0.632–0.768 4.5 68.1 69.0 
Peak hs-CRP 0.664 0.597–0.730 61.1 48.6 76.1 

HR heart rate, NIHSS national institutes of health stroke scale, hs-CRP high sensitivity C-reactive protein, sST2 soluble ST2. 

Fig. 2. ROC curve analysis association of HR, NIHSS, hs-CRP, and sST2 with the risk of atrial fibrillation detected after stroke.  

Table 4 
Reclassification statistics (95 % CI) for depression by sST2 among patients.   

NRI IDI 

Estimate (95 % CI) P value Estimate (95 % CI) P value 

Conventional model Reference – Reference – 
Conventional model + sST2, continuous 0.581 (0.346–0.816) 0.001 0.039 (0.004–0.075) 0.031 
Conventional model + sST2, dichotomized 0.343 (0.200–0.485) <0.001 0.103 (0.070–0.136) <0.001 

CI confidence interval, IDI integrated discrimination index, NRI net reclassification improvement, sST2 soluble suppression of tumorigenicity 2. 
Conventional model included age, HR, hs-CRP, and NIHSS. sST2 was dichotomized based on Cutoff Value obtained by the receiver operating 
characteristics. 
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ablation in patients with paroxysmal atrial fibrillation [34]. Chen et al. found that elevated sST2 levels were associated with an 
increased risk of new-onset AF after acute myocardial infarction [16]. However, studies on sST2 and AFDAS have rarely been con-
ducted. In this study, after adjusting for major confounding factors, it was found that sST2 (OR 1.018; 95 % CI, 1.010–1.026) is an 
independent predictor of AFDAS. There are several potential explanations for this phenomenon. Firstly, as described in this study, the 
hs-CRP level in the AFDAS group was significantly higher than that in the w/o AFDAS group [45.8 (14.8, 134.8) vs. 20.3 (7.5, 56.8) 
mg/L]. The inflammatory response plays a vital role in stroke patients and is associated with AF development of atrial fibrillation [35, 
36]. Secondly, stroke can also produce selective myocardial cell damage and fibrosis during sympathetic nervous system activation, 
leading to new arrhythmias, including AF[37]. There is growing evidence that the IL-33/ST2 signaling pathway is essential for these 
processes. The IL-33/ST2 signaling pathway not only drives the M2 polarization of microglia and macrophages from a 
pro-inflammatory to an anti-inflammatory phenotype and reduces astrocyte activation [38,39] but also exerts cardioprotective effects 
in vivo through antifibrosis, reduced hypertrophy, and reduced macrophage infiltration [40]. sST2 acts as a decoy receptor in vivo to 
sequester free IL-33 in competition with transmembrane ST2, promoting the development of inflammation and inhibiting car-
dioprotective and neuroprotective effects [41], thereby potentially promoting the development of AFDAS. Chen et al. found that the 
AUC value of sST2 for new-onset AF was 0.827 in acute myocardial infarction patients with AMI. Whether as a continuous or 
dichotomized variable, sST2 significantly improves the IDI and INI of the model for new-onset AF(16). In this study, the ROC curve 
consistently showed that the AUC value of sST2 was 0.815. After adding sST2 to the model, NRI increased by 58.10 % (95 % CI, 
0.346–0.816; p = 0.001), IDI increased by 3.90 % (95%CI, 0.004–0.075; p = 0.031), and the model performance for the prediction of 
AFDAS increased significantly. These results indicated that sST2 could identify AFDAS and should be considered in predictive models 
of clinical risk factors. Therefore, it may be a valuable biomarker for the risk stratification of patients with AFDAS. The current 
guidelines recommend using oral anticoagulants for stroke prevention in patients with AFDAS [42]. Defining new factors for AFDAS 
could help identify patients at risk of recurrent stroke, improve anticoagulant patient selection, and potentially identify modifiable risk 
factors for AFDAS. 

5. Limitations 

This study has some limitations. First, this was a single-center retrospective study with limited sample size and selected population, 
and there may have been bias. Second, we did not provide continuous ECG monitoring for all patients admitted to the hospital, which 
may have led to some patients with AFDAS being missed. Third, this was a clinical observational study conducted during admission. If 
regular post-hospital follow-ups can be conducted to detect AFDAS in patients in the chronic stage of stroke, it may have better clinical 
value. 

6. Conclusion 

Higher sST2 concentrations were associated with the occurrence of AFDAS. Thus, sST2 can improve the risk model for AFDAS. 
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