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Abstract: We propose a quantitative approach for quantifying morphological complexity of a
language based on text. Several corpus-based methods have focused on measuring the different word
forms that a language can produce. We take into account not only the productivity of morphological
processes but also the predictability of those morphological processes. We use a language model that
predicts the probability of sub-word sequences within a word; we calculate the entropy rate of this
model and use it as a measure of predictability of the internal structure of words. Our results show
that it is important to integrate these two dimensions when measuring morphological complexity,
since languages can be complex under one measure but simpler under another one. We calculated
the complexity measures in two different parallel corpora for a typologically diverse set of languages.
Our approach is corpus-based and it does not require the use of linguistic annotated data.
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1. Introduction

Languages of the world differ from each other in unpredictable ways [1,2]. Language complexity
focuses on determine how these variations occurs in terms of complexity (size of grammar elements,
internal structure of the grammar).

Conceptualizing and quantifying linguistic complexity is not an easy task, many quantitative
and qualitative dimensions must be taken into account [3]. In general terms, the complexity of a
system could be related to the number and variety of elements, but also to the elaborateness of their
interrelational structure [4,5].

In recent years, morphological complexity has attracted the attention of the research community [1,6].
Morphology deals with the internal structure of words [7]. Several corpus-based methods are successful
in capturing the number and variety of the morphological elements of a language by measuring the
distribution of words over a corpus. However, they may not capture other complexity dimensions
such as the predictability of the internal structure of words. There can be cases where a language is
considered complex because it has a rich morphological productivity, i.e., great number of morphs
can be encoded into a single word. However, the combinatorial structure of these morphs in the word
formation process can have less uncertainty than other languages, i.e., more predictable.

We would like to quantify the morphological complexity by measuring the type and token
distributions over a corpus, but also by taking into account the predictability of the sub-word sequences
within a word [8].

We assume that the predictability of the internal structure of words reflects the difficulty of
producing novel words given a set of lexical items (stems, suffixes or morphs). We take as our method
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the statistical language models used in natural language processing (NLP), which are a useful tool for
estimating a probability distribution over sequences of words within a language. However, we adapt
this notion to the sub-word level. Information theory-based measures (entropy) can be used to estimate
the predictiveness of these models.

Previous Work

Despite the different approaches and definitions of linguistic complexity, there are some main
distinctions between the absolute and the relative complexity [3]. The former is defined in terms of
the number of parts of a linguistic system; and the latter (more subjective) is related to the cost and
difficulty faced by language users. Another important distinction includes global complexity that
characterizes entire languages, e.g., as easy or difficult to learn. In contrast, particular complexity
focuses only in a specific language level, e.g., phonological, morphological, syntactic.

In the case of morphology, languages of the world have different word production processes.
Therefore, the amount of semantic and grammatical information encoded at the word level, may
vary significantly from language to language. In this sense, it is important to quantify the
morphological richness of languages and how it varies depending on their linguistic typology.
Ackerman and Malouf [9] highlight two different dimensions that must be taken into account: the
enumerative (e-complexity) that focuses on delimiting the inventories of language elements (number
of morphosyntactic categories in a language and how they are encoded in a word); and the integrative
complexity (i-complexity) that focuses on examining the systematic organization underlying the
surface patterns of a language (difficulty of the paradigmatic system).

Coterell et al. [10] investigate a trade-off between the e-complexity and i-complexity of
morphological systems. The authors propose a measure based on the size of a paradigm but also on
how hard is to jointly predict all the word forms in a paradigm from the lemma. They conclude that “a
morphological system can mark a large number of morphosyntactic distinctions [. . . ] or it may have a
high-level of unpredictability (irregularity); or neither. However, it cannot do both”.

Moreover, Bentz et al. [11] distinguishes between paradigm-based approaches that use typological
linguistic databases for quantifying the number of paradigmatic distinctions of languages as an
indicator of complexity; and corpus-based approaches that estimate the morphological complexity
directly from the production of morphological instances over a corpus.

Corpus-based approaches represent a relatively easy and reproducible way to quantify complexity
without the strict need for linguistic annotated data. Several corpus-based methods share the
underlying intuition that morphological complexity depends on the morphological system of a
language, such as its inflectional and derivational processes; therefore, a very productive system will
produce a lot of different word forms. This morphological richness can be captured using information
theory measures [12,13] or type-token relationships [14], just to mention a few.

It is important to mention that enumerative complexity has been approached using a
paradigm-based or a corpus-based perspective. However, the methods that target the integrative
complexity seem to be more paradigm-based oriented (which can restrict the number of languages
covered). With that in mind, the measures that we present in this work are corpus-based and they do
not require access to external linguistic databases.

2. Methodology

In this work, we quantify morphological complexity by combining two different measures over
parallel corpora: (a) the type-token relationship (TTR); and (b) the entropy rate of a sub-word language
model as a measure of predictability. In this sense, our approach could be catalogued as a corpus-based
method for measuring absolute complexity of a specific language level (morphology).
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2.1. The Corpora

Parallel corpora are a valuable resource for many NLP tasks and for linguistics studies. Translation
documents preserve the same meaning and functions, to a certain extent, across languages. This allows
analysis/comparison of the morphological and typological features of languages.

We used two different parallel corpora that are available for a wide set of languages. On one
hand, we used a portion of the Parallel Bible Corpus [15]; in particular, we used a subset of 1150
parallel verses that overlapped across 47 languages (the selection of languages and pre-processing
of this dataset was part of the Interactive Workshop on Measuring Language Complexity (IWMLC
2019) http://www.christianbentz.de/MLC2019_index.html). These languages are part of the WALS
100-language sample, a selection of languages that are typologically diverse [16] (https://wals.info/
languoid/samples/100).

On the other hand, we used the JW300 parallel corpus that compiles magazine articles for many
languages [17] (these articles were originally obtained from the Jehovah’s Witnesses website https:
//www.jw.org). In this case, we extracted a subset of 68 parallel magazine articles that overlapped
across 133 languages. Table 1 summarizes information about the corpora.

Table 1. General information about the parallel corpora.

Corpus Languages Covered Total Tokens Avg. Tokens Per Language

Bibles 47 1.1 M 24.8 K
JW300 133 22.4 M 168.9 K

We ran the experiments in both corpora independently. The intersection of languages covered
by the two parallel corpora is 25. This shared set of languages was useful to compare the complexity
rankings obtained with our measures, i.e., test if our complexity measures are consistent across
different corpora.

It is important to mention that no sentence alignment was applied to the corpora. The Bibles
corpus was already aligned at the verse level while the JW300 corpus was only aligned at the document
level. However, for the aim of our experiments, alignment annotation (at the sentence or verse level)
was not required.

2.2. Type-Token Relationship (TTR)

The type-token relationship (TTR) has proven to be a simple, yet effective, way to quantify the
morphological complexity of a language using relatively small corpora [14]. It has also shown a high
correlation with other types of complexity measures such as paradigm-based approaches that are
based on typological information databases [11].

Morphologically rich languages will produce many different word forms (types) in a text, this
is captured by measures such as TTR. From a linguistic perspective, Joan Bybee [18] affirms that
“the token frequency of certain items in constructions [i.e., words] as well as the range of types [. . . ]
determines representation of the construction as well as its productivity”.

TTR can be influenced by the size of a text (Heaps’ law) or even by the domain of a corpus [19,20].
Some alternatives to make TTR more comparable include normalizing the text size or using logarithm,
however, Covington and McFall [19] argue that these strategies are not fully successful, and they
propose the moving-Average Type-Token Ratio. On the other hand, using parallel corpora has shown
to be a simple way to make TTR more comparable across languages [21,22]. In principle, translations
preserve the same meaning in two languages, therefore, there is no need for the texts to have the exact
same length in tokens.

We calculated the TTR for a corpus by simply using Equation (1). Where #types are the different
word types in the corpus (vocabulary size), and #tokens is the total number of word tokens in the

http://www.christianbentz.de/MLC2019_index.html
https://wals.info/languoid/samples/100
https://wals.info/languoid/samples/100
https://www.jw.org
https://www.jw.org
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corpus. Values closer to 1 would represent greater complexity. This simple way of measuring TTR,
without any normalization, has been used in similar works [11,22,23].

TTR =
#types
#tokens

(1)

We use this measure as an easy way to approach the e-complexity dimension; i.e., different
morphosyntactic distinctions, and their productivity, could be reflected in the type and token
distribution over a corpus.

2.3. Entropy Rate of a Sub-Word Language Model

Entropy as a measure of unpredictability represents a useful tool to quantify different linguistic
phenomena, in particular, the complexity of morphological systems [9,12,24].

Our method aims to reflect the predictability of the internal structure of words in a language.
We conjecture that morphological processes that are irregular/suppletive, unproductive, etc.,
will increase the entropy of a model that predicts the probability of sequences of morphs/sub-word
units within a word.

To do this, we estimate a stochastic matrix P, where each cell contains the transition probability
between two sub-word units in that language (see example Table 2). These probabilities are estimated
using the corpus and a neural language model that we will describe below.

Table 2. Toy example of a stochastic matrix using the trigrams contained in the word ‘cats’. The symbols
#, $ indicate beginning/end of a word.

#ca cat ats ts$

#ca 0.01 0.06 0.07 0.33
cat 0.9 0.04 0.05 0.22
ats 0.06 0.78 0.05 0.23
ts$ 0.03 0.12 0.83 0.22

We calculate the stochastic matrix P as follows (2):

P = pij = p(wj|wi) (2)

where wi and wj are sub-word units. We used a neural probabilistic language model to estimate a
probability function.

2.3.1. Sub-Word Units

Regarding to sub-word units, one initial thought would be to use character sequences that
correspond to the linguistic notion of morphemes/morphs. However, it could be difficult to perform
morphological segmentation to all the languages in the corpora. There are unsupervised morphological
segmentation approaches, e.g., Morfessor [25], BPE encoding [26], but they still require parameter
tuning to control over-segmentation/under-segmentation (making these approaches not completely
language independent).

Instead of this, we focused on fixed-length sequences of characters (n-grams), which is more
easily applicable to all the languages in the corpora. This decision is also driven by the evidence
that trigrams encode morphological properties of the word [27]. Moreover, in some tasks such as
language modeling, the use of character trigrams seems to lead to better word vector representations
than unsupervised morphological segmentations [28].

Therefore, we trained the language models using character trigrams. We also took into account
unigrams (characters) sequences, since there are languages with syllabic writing systems in the datasets
and in these cases a single character can encode a whole syllable.
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2.3.2. Neural Language Model

Our model was estimated using a feedforward neural network; this network gets trained with
pairs of consecutive n-grams that appear in the same word. Once the network is trained we can retrieve
from the output layer the probability pij for any pair of n-grams. This architecture is based on [29];
however, we used character n-grams instead of words. The network comprises the following layers:
(1) an input layer of one-hot vectors representing the n-grams; (2) an embedding layer; (3) a hyperbolic
tangent hidden layer; (4) and finally, an output layer that contains the conditional probabilities obtained
by a SoftMax function defined by Equation (3).

pij =
eaij

∑k eaik
(3)

The factor aij in Equation (3) is the jth output of the network when the n-gram wi is the input.
The architecture of the network is presented in Figure 1.

Figure 1. Neural probabilistic language model architecture, wi, wj are n-grams.

Once the neural network is trained, we can build the stochastic matrix P using the probabilities
obtained for all the pairs of n-grams. We determine the entropy rate of the matrix (P) by using
Equation (4) [30]:

H(P) = −
N

∑
i=1

µi

N

∑
j=1

pijlogN pij (4)

where pij are the entries of the matrix P, N is the size of the n-grams vocabulary, and µ represents
the stationary distribution. This stationary distribution can be obtained using Equation (5), for each
i = 1, . . . , N:

µi =
1
N

N

∑
k=1

pik (5)

This equation defines a uniform distribution (we selected a uniform distribution since we observed
that the stationary distribution, commonly defined by Pµ = µ, was uniform for several small test
corpora. Due to the neural probabilistic function, we can guarantee that the matrix P is irreducible; we
assume that the irreducibility of the matrices is what determines the uniform stationary distribution.
See [31]). To normalize the entropy, we use the logarithm base N. Thus, H(P) can take values from
0 to 1. A value close to 1 would represent higher uncertainty in the sequence of n-grams within the
words in a certain language, i.e., less predictability in the word formation processes.

The overall procedure can be summarized in the following steps: (the code is available at
http://github.com/elotlmx/complexity-model)

1. For a given corpus, divide every word into its character n-grams. A vocabulary of size N
(the number of n-grams) is obtained.

http://github.com/elotlmx/complexity-model
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2. Calculate the probability of transitions between n-grams, pij = p(wj|wi). This is done using the
neural network described before.

3. A stochastic matrix P = pij is obtained.
4. Calculate the entropy rate of the stochastic matrix H(P).

3. Results

We applied the measures to each language contained in the JW300 and Bibles corpora. We use the
notations H1, H3 for the entropy rate calculated with unigrams and trigrams respectively; TTR is the
type-token relationship.

To combine the different complexity dimensions, we ranked the languages according to each
measure, then we averaged the obtained ranks for each language (since we ranked the languages from
the most complex to the less complex, we used the inverse of the average in order to be consistent
with the complexity measures (0 for least complex, 1 for the most complex)). The notation for these
combined rankings are the following: TTR+H1 (TTR rank averaged with H1 rank); TTR+H2 (TTR rank
averaged with H2 rank); TTR+H1+H3 (TTR rank averaged with H1 and H3 ranks). In all the cases the
scales go from 0 to 1 (0 for the least complex and 1 for the most complex).

Tables 3 and 4 contain the measures described above for each corpus. These tables only show
the set of 25 languages that are shared between the two corpora. In Figures 2 and 3 we plot these
different complexities, and their combinations. The complete list of languages and results are included
in Appendices A and B.

Table 3. Complexity measures on the Bibles corpus (H1: unigrams entropy; H3: trigrams entropy; TTR:
Type-token relationship); bold numbers indicate the highest and the lowest values for each measure,
the rank is in brackets.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Arabic 0.726 (3) 0.748 (4) 0.31 (3) 0.333 (2) 0.333 (3) 0.333 (2)
Burmese 0.74 (2) 0.823 (2) 0.791 (1) 0.667 (1) 0.667 (1) 0.6 (1)

Eastern Oromo 0.652 (10) 0.573 (22) 0.196 (9) 0.105 (7) 0.065 (18) 0.073 (12)
English 0.703 (5) 0.667 (10) 0.082 (19) 0.083 (11) 0.069 (16) 0.088 (10)
Fijian 0.569 (19) 0.519 (24) 0.048 (24) 0.047 (21) 0.042 (24) 0.045 (24)

Finnish 0.696 (6) 0.59 (20) 0.266 (5) 0.182 (5) 0.08 (9) 0.097 (8)
French 0.607 (17) 0.609 (18) 0.139 (12) 0.069 (16) 0.067 (17) 0.064 (18)

Georgian 0.632 (12) 0.67 (9) 0.238 (6) 0.105 (7) 0.133 (5) 0.107 (5)
German 0.588 (18) 0.664 (12) 0.136 (13) 0.065 (17) 0.08 (9) 0.07 (13)
Hausa 0.61 (16) 0.614 (17) 0.098 (18) 0.059 (19) 0.057 (21) 0.059 (21)
Hindi 0.54 (22) 0.729 (6) 0.057 (22) 0.045 (23) 0.071 (13) 0.06 (20)

Indonesian 0.662 (9) 0.599 (19) 0.115 (17) 0.077 (12) 0.056 (22) 0.067 (16)
Korean 0.394 (25) 0.861 (1) 0.348 (2) 0.074 (14) 0.667 (1) 0.107 (5)

Modern Greek 0.683 (7) 0.655 (14) 0.181 (10) 0.118 (6) 0.083 (8) 0.097 (8)
Malagasy (Plateau) 0.568 (20) 0.519 (24) 0.14 (11) 0.065 (17) 0.056 (22) 0.054 (23)

Russian 0.751 (1) 0.732 (5) 0.225 (8) 0.222 (4) 0.154 (4) 0.214 (3)
Sango 0.538 (23) 0.56 (23) 0.025 (25) 0.042 (25) 0.042 (24) 0.042 (25)

Spanish 0.647 (11) 0.656 (13) 0.133 (15) 0.077 (12) 0.071 (13) 0.077 (11)
Swahili 0.613 (14) 0.576 (21) 0.233 (7) 0.091 (9) 0.071 (13) 0.07 (13)
Tagalog 0.632 (12) 0.629 (16) 0.121 (16) 0.071 (15) 0.063 (19) 0.068 (15)

Thai 0.554 (21) 0.752 (3) 0.055 (23) 0.045 (23) 0.074 (11) 0.063 (19)
Turkish 0.705 (4) 0.63 (15) 0.297 (4) 0.25 (3) 0.105 (6) 0.13 (4)

Vietnamese 0.406 (24) 0.684 (8) 0.066 (20) 0.045 (23) 0.071 (13) 0.058 (22)
Western Farsi 0.67 (8) 0.705 (7) 0.135 (14) 0.091 (9) 0.095 (7) 0.103 (7)

Yoruba 0.613 (14) 0.666 (11) 0.064 (21) 0.057 (20) 0.062 (20) 0.065 (17)
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Table 4. Complexity measures on the JW300 corpus (H1: unigrams entropy; H3: trigrams entropy; TTR:
Type-token relationship); bold numbers indicate the highest and the lowest values for each measure,
the rank is in brackets.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Arabic 0.586 (8) 0.826 (2) 0.171 (4) 0.166 (4) 0.333 (1) 0.214 (1)
Burmese 0.514 (19) 0.75 (5) 0.016 (22) 0.048 (23) 0.074 (12) 0.065 (17)

Eastern Oromo 0.552 (14) 0.568 (23) 0.111 (6) 0.1 (10) 0.068 (16) 0.069 (15)
English 0.682 (2) 0.712 (12) 0.053 (16) 0.111 (9) 0.071 (14) 0.1 (7)
Fijian 0.517 (18) 0.66 (17) 0.022 (21) 0.051 (21) 0.052 (23) 0.053 (21)

Finnish 0.563 (10) 0.628 (20) 0.184 (1) 0.181 (2) 0.095 (6) 0.096 (9)
French 0.522 (17) 0.673 (16) 0.072 (11) 0.071 (14) 0.074 (12) 0.068 (16)

Georgian 0.563 (10) 0.728 (9) 0.175 (2) 0.153 (6) 0.181 (2) 0.136 (3)
German 0.636 (3) 0.686 (14) 0.084 (9) 0.166 (4) 0.086 (9) 0.115 (5)
Hausa 0.527 (16) 0.619 (22) 0.035 (18) 0.058 (17) 0.05 (25) 0.053 (21)
Hindi 0.591 (6) 0.783 (3) 0.023 (19) 0.076 (12) 0.086 (9) 0.103 (6)

Indonesian 0.556 (12) 0.624 (21) 0.051 (17) 0.068 (15) 0.052 (23) 0.06 (19)
Korean 0.349 (24) 0.907 (1) 0.057 (14) 0.052 (20) 0.133 (4) 0.076 (14)

Modern Greek 0.594 (5) 0.753 (4) 0.09 (8) 0.153 (6) 0.166 (3) 0.176 (2)
Malagasy (Plateau) 0.499 (22) 0.537 (25) 0.062 (12) 0.058 (17) 0.054 (22) 0.05 (24)

Russian 0.5 (21) 0.722 (11) 0.137 (5) 0.076 (12) 0.125 (5) 0.081 (12)
Sango 0.385 (23) 0.724 (10) 0.01 (25) 0.041 (24) 0.057 (20) 0.051 (23)

Spanish 0.59 (7) 0.65 (18) 0.079 (10) 0.117 (8) 0.071 (14) 0.085 (10)
Swahili 0.598 (4) 0.565 (24) 0.098 (7) 0.181 (2) 0.064 (18) 0.085 (10)
Tagalog 0.514 (19) 0.676 (15) 0.054 (15) 0.057 (19) 0.066 (17) 0.06 (19)

Thai 0.552 (14) 0.74 (7) 0.013 (24) 0.051 (21) 0.064 (18) 0.065 (17)
Turkish 0.684 (1) 0.65 (18) 0.175 (2) 0.5 (1) 0.09 (8) 0.13 (4)

Vietnamese 0.344 (25) 0.692 (13) 0.014 (23) 0.041 (24) 0.055 (21) 0.049 (25)
Western Farsi 0.569 (9) 0.738 (8) 0.061 (13) 0.09 (11) 0.095 (6) 0.1 (7)

Yoruba 0.553 (13) 0.748 (6) 0.023 (19) 0.062 (16) 0.08 (11) 0.078 (13)

Figure 2. Different complexity measures (above) and their combinations (below) from Bibles corpus.
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Figure 3. Different complexity measures (above) and their combinations (below) from JW300 corpus.

We can see that languages can be complex under one measure but simpler under another one.
For instance, in Figures 2 and 3, we can easily notice that Korean is the most complex language if
we only take into account the entropy rate using trigrams (H3). However, this entropy dramatically
drops using unigrams (H1); therefore, when we combine the different measures, Korean is not the
most complex language anymore.

There are cases such as English where its TTR is one of the lowest. This is expected since English
is a language with poor inflectional morphology. However, its entropy is high. This suggests that a
language such as English, usually not considered morphologically complex, may have many irregular
forms that are not so easy to predict for our model.

We can also find the opposite case, where a language has a high TTR but low entropy, suggesting
that it may produce many different word forms, but the inner structure of the words was “easy” to
predict. This trend can be observed in languages such as Finnish (high TTR, low H3), Korean (high TTR,
low H1) or Swahili (high TTR, low H3).

The fact that a language has a low value of TTR does not necessarily imply that its entropy rate
should be high (or vice versa). For instance, languages such as Vietnamese or Malagasy (Plateau),
have some of the lowest values of entropy (H1, H3); however, their TTR values are not among
the highest in the shared subset. In this sense, these languages seem to have low complexity in
both dimensions.

Burmese language constitutes a peculiar case, it behaves differently among the two corpora.
Burmese complexity seems very high in all dimensions (TTR and entropies) just in the Bibles corpora.
We conjecture that TTR is oddly high due to tokenization issues [32]: this is a language without explicit
word boundary delimiters, if the words are not well segmented then the text will have many different
long words without repetitions (high TTR). The tokenization pre-processing of the Bibles was based
only on whitespaces and punctuation marks, while the JW300 had a more sophisticated tokenization.
In the latter, Burmese obtained a very low TTR and H1 entropy.

Cases with high complexity in both dimensions were less common. Arabic was perhaps the
language that tends to be highly complex under both criteria (TTR and entropy) and this behavior
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remained the same for the two corpora. We conjecture that this is related to the root-and-pattern
morphology of the language, i.e., these types of patterns were difficult to predict for our sequential
character n-grams language model. We will discuss more about this in Section 4.

3.1. Correlation across Corpora

Since our set of measures was applied to two different parallel corpora, we wanted to check if the
complexities measures were, more or less, independent from the type of corpora used, i.e., languages
should get similar complexity ranks in the two corpora.

We used Spearman’s correlation [33] for the subset of shared languages across corpora. Table 5
shows the correlation coefficient for each complexity measure between the two corpora. Burmese
language was excluded from the correlations due to the tokenization problems.

Table 5. Correlation of complexities between the JW300 and Bibles corpora (H1: unigrams entropy;
H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Correlation 0.520 0.782 0.890 0.776 0.858 0.765

Although the Bibles and the JW300 corpora belong to the same domain (religion), they greatly
differ in size and in the topics covered (they are also parallel at different levels). Despite this, all the
measures were positively correlated. The weaker correlation was obtained with H1, while complexity
measures such as TTR or TTR+H3 were strongly correlated across corpora.

The fact that the complexity measures are correlated among the two corpora suggest that they are
not very dependent of the corpus size, topics and other types of variations.

3.2. Correlation between Complexity Measures

In addition to the correlation across different corpora, we were interested in how the different
complexity measures correlate between them (in the same corpus). Tables 6 and 7 show the Spearman’s
correlation between measures in each corpus.

Table 6. Spearman’s correlations between measures in the corpus JW300 (all languages considered)
(H1: unigrams entropy; H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

H1 1.0 0.271 0.423 0.839 0.471 0.788
H3 - 1.0 0.112 0.238 0.746 0.64

TTR - - 1.0 0.843 0.732 0.709
TTR+H1 - - - 1.0 0.72 0.892
TTR+H3 - - - - 1.0 0.909

TTR+H1+H3 - - - - - 1.0

Table 7. Spearman’s correlations between measures in the Bibles corpus (all languages considered)
(H1: unigrams entropy; H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

H1 1.0 0.276 0.384 0.828 0.464 0.810
H3 - 1.0 0.006 0.152 0.693 0.585

TTR - - 1.0 0.815 0.654 0.637
TTR+H1 - - - 1.0 0.668 0.866
TTR+H3 - - - - 1.0 0.862

TTR+H1+H3 - - - - - 1.0
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In both corpora, the entropy-based measures (specially H3) were poorly correlated (or not
correlated) with the type-token relationship TTR. If these two types of measures are capturing, in fact,
two different dimensions of the morphological complexity then it should be expected that they are
not correlated.

The combined measures (TTR+H1, TTR+H3 and TTR+H1+H3) tend to be strongly correlated
between them. It seems that all of them can combine, to some extent, the two dimensions of complexity
(productivity and predictability).

Surprisingly, the entropy-based measures (H1 and H3) are weakly correlated between them,
despite both trying to capture predictability. We conjecture that this could be related to the fact that for
some languages, is more suitable to apply a trigram model and for some others the unigram model.
For instance, in the case of Korean, one character is equivalent to a whole syllable (syllabic writing
system). When we took combinations of three characters (trigrams) the model became very complex
(high H3), this does not necessarily reflect the real complexity. On the other hand, languages such as
Turkish, Finnish or Yaqui (see Appendix B) obtained a very high value of H1 (difficult to predict using
only unigrams, very long words), but if we use the trigrams the entropy H3 decreasse, trigram models
may be more appropriate for these type of languages.

3.3. Correlation with Paradigm-Based Approaches

Finally, we compared our corpus-based morphological complexity measures against two
paradigm-based measures. First, we used the CWALS measure proposed by [11], it is based on
28 morphological features/chapters extracted from the linguistic database WALS [16]. This measure
maps each morphological feature to a numerical value, the complexity of a language is the average of
the values of the morphological features.

The measure CWALS was originally applied to 34 typologically diverse languages. However,
we only took 19 languages (the shared set of languages with our Bibles corpus). We calculated the
correlation between our complexity measures and CWALS (Table 8).

In addition, we included the morphological counting complexity (MCC) as implemented by [34].
Their metric counts the number of inflectional categories for each language, the categories are obtained
from the annotated lexicon UniMorph [35].

This measure was originally applied to 21 languages (mainly Indo-European), we calculated the
correlation between MCC and our complexity measures using the JW300 corpus (which contained all
of those 21 languages) Table 8.

Appendices C and D contain the list of languages used for each measure and the complexities.

Table 8. Spearman’s correlation between CWALS, MCC and our complexity measures (H1: unigrams
entropy; H3: trigrams entropy; TTR: Type-token relationship).

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

CWALS 0.322 −0.392 0.882 0.730 0.395 0.406
MCC 0.064 0.024 0.851 0.442 0.585 0.366

CWALS and TTR are strongly correlated, this was already pointed out by [11]. However,
our entropy-based measures are weakly correlated with CWALS, it seems that they are capturing
different things. MCC metric shows a similar behavior, it is highly correlated with TTR but not with
H1 (unigrams entropy) or H3 (trigrams entropy).

It has been suggested that databases such as WALS, which provide paradigmatic distinctions
of languages, reflect mainly the e-complexity dimension [2]. This could explain the high correlation
between CWALS, MCC, and measures such as TTR. However, the i-complexity may be better captured
by other types of approaches, e.g., the entropy rate measure that we have proposed.
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The weak correlation between our entropy-based measures and CWALS (even negative correlation
in the case of H3) could be a hint of the possible trade-off between the i-complexity and e-complexity.
However, further investigation is needed.

4. Discussion

Our corpus-based measures tried to capture different dimensions that play a role in the
morphological complexity of a language. H1 and H3 are focused on the predictability of the internal
structure of words, while TTR is focused on how many different word forms can a language produce.
Our results show that these two approaches poorly correlate, especially H3 and TTR (0.112 for JW300
and 0.006 for the Bibles), which give us a lead that these quantitative measures are capturing different
aspects of the morphological complexity.

This is interesting since, in fields such as NLP, languages are usually considered complex when
their morphology allows them to encode many morphological elements within a word (producing
many different word forms in a text). However, a language that is complex in this dimension can also
be quite regular (low entropy) in its morphological processes, e.g., a predictable/regular process can
be applied to a large number of roots, producing many different types; this is a common phenomenon
in natural languages [36].

We can also think in the opposite case, a language with poor inflectional morphology may have
low TTR; however, it may have suppletive/irregular patterns that will not be fully reflected in TTR
but they will increase the entropy of a model that tries to predict these word forms.

The aim of calculating the entropy rate of our language models was to reflect the predictability
of the internal structure of words (how predictable sequences of n-grams are in a given language).
We think this notion is closer to the concept of morphological integrative complexity (i-complexity);
however, there are probably many other additional criteria that play a role in this type of complexity.
In any case, it is not common to find works that try to conceptualize this complexity dimension based
only on raw corpora, our work could be an initial step towards that direction.

Measures such as H3, TTR (and all the combined versions) were consistent across the two parallel
corpora. This is important since these corpora had different sizes and characteristics (texts from
the JW300 corpus were significantly bigger than the Bibles one). These corpus-based measures may
not necessarily require big amounts of text to grasp some typological differences and quantify the
morphological complexity across languages.

The fact that measures such as CWALS highly correlated with TTR but negative correlated with H3,
suggests that CWALS and TTR are capturing the same type of complexity, closer to the e-complexity
criteria. This type of complexity may be easier to capture by several methods, contrary to the
i-complexity dimension, which is related to the predictability of forms, among other morphological
phenomena.

Adding typological information of the languages could help to improve the complexity analysis.
As a preliminary analysis, in Appendix E we classified a subset of languages as concatenative vs
isolating morphology using WALS. As expected, there is a negative (weak) correlation between the
TTR and H3. However, this sign of possible trade-off is more evident in isolating languages compared
to the ones that are classified as concatenative. This may be related to the fact that languages with
isolating tendency do not produce many different word forms (low TTR); however, their derivative
processes were difficult to predict for our sub-word language model (high entropy). More languages
and exhaustive linguistic analysis are required.

One general advantage of our proposed measures for approaching morphological complexity
is that they do not require linguistic annotated data such as morphological paradigms or grammars.
The only requirement is to use parallel corpora, even if the texts are not fully parallel at the
sentence level.

There are some drawbacks that are worth to discuss. We think that our approach of entropy rate
of a sub-word language model may be especially suitable for concatenative morphology. For instance,
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languages with root-and-pattern morphology may not be sequentially predictable, making the entropy
of our models go higher (Arabic is an example); however, these patterns may be predictable using a
different type of model.

Furthermore, morphological phenomena such as stem reduplication may seem quite intuitive
from a language user perspective; however, if the stem is not frequent in the corpus, it could be difficult
for our language model to capture these patterns. In general, derivational processes could be less
predictable by our model than the inflectional ones (more frequent and systematic).

On the other hand, these measures are dealing with written language, therefore, they can be
influenced by factors such as the orthography, the writing systems, etc. The corpus-based measures
that we used, especially TTR, are sensitive to tokenization and word boundaries.

The lack of a “gold-standard” makes it difficult to assess the dimensions of morphological
complexity that we are successfully capturing. The type-token relationship of a language seems to
agree more easily with other complexity measures (Section 3.3). On the other hand, our entropy rate is
based on sub-word units, this measure did not correlate with the type-token relationship, nor with
the degree of paradigmatic distinctions obtained from certain linguistic databases. We also tested an
additional characteristic, the average word length per language (see Appendix F), and this does not
strongly correlate either with H3 or H1.

Perhaps the question of whether this latter measure can be classified as i-complexity remains open.
However, we think our entropy-based measure is reflecting to some extent the difficulty of predicting a
word form in a language, since the entropy rate would increase with phenomena like: (a) unproductive
processes; (b) allomorphy; (c) complex system of inflectional classes; and (d) suppletive patterns [37],
just to mention a few.

Both approaches, TTR and the entropy rate of a sub-word language model, are valid and
complementary, we used a very simple way to combine them (average of the ranks). In the future,
a finer methodology can be used to integrate these two corpus-based quantitative approximations.

5. Future Work

In this section, we discuss some of the limitations that could be addressed as future work. The use
of parallel corpora offers many advantages for comparing characteristics across languages. However,
it is very difficult to find parallel corpora that cover a great amount of languages and that is freely
available. Usually, the only available resources belong to specific domains, moreover, the parallel texts
tend to be translations from one single language, e.g., English. It would be interesting to explore how
these conditions affect the measurement of morphological complexity.

The character n-grams that we used for training the language models could be easily replaced
by other types of sub-word units in our system. A promising direction could be testing different
morphological segmentation models. Nevertheless, character trigrams seem to be a good initial point,
at least for many languages, since these units may be capturing syllable information and this is related
to morphological complexity [38,39].

Our way to control the influence of a language script system in the complexity measures was to
consider two different character n-gram sizes. We noticed that trigrams (H3) could be more suitable for
languages with Latin script, while unigrams (H1) may be better for other script systems (like Korean
or Japanese). Automatic transliteration and other types of text pre-processing could be beneficial for
this task.

There are still many open questions, as a future work we would like to make a more fine-grained
typological analysis of the languages and complexity trends that resulted from these measures.
Another promising research direction would be to quantify other processes that also play a role
in the morphological complexity. For example, adding a tone in tonal languages is considered to add
morphological complexity [3].
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6. Conclusions

In this work we tried to capture two dimensions of morphological complexity. Languages that
have a high TTR have the potential of encoding many different functions at the word level, therefore,
they produce many different word forms. On the other hand, we proposed that the entropy rate of a
sub-word language model could reflect how uncertain are the sequences of morphological elements
within a word, languages with high entropy may have many irregular phenomena that are harder to
predict than other languages. We were particularly interested in this latter dimension, since there are
less quantitative methods, based on raw corpora, for measuring it.

The measures were consistent across two different parallel corpora. Moreover, the correlation
between the different complexity measures suggest that our entropy rate approach is capturing a
different complexity dimension than measures such as TTR or CWALS.

Deeper linguistic analysis is needed; however, corpus-based quantitative measures can
complement and deepen the study of morphological complexity.

Author Contributions: Conceptualization, V.M. and X.G.-V.; Investigation, X.G.-V. and V.M.; Methodology, X.G.-V.
and V.M.; Writing—original draft, X.G.-V. and V.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Swiss Government Excellence Scholarship and the Mexican Council
of Science and Technology (CONACYT). Fellowships 2019.0022 and 442471

Acknowledgments: We thank the reviewers, and Tanja Samardzic, for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Complexity Measures for JW300 Corpus

Table A1. Complexity measures on the JW300 corpus (for all languages).

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Afrikaans 0.566 (73) 0.674 (69) 0.047 (82) 0.013 (79) 0.013 (76) 0.013 (79)
Amharic 0.582 (56) 0.875 (4) 0.2 (8) 0.031 (22) 0.167 (1) 0.044 (8)
Arabic 0.586 (53) 0.827 (6) 0.171 (15) 0.029 (25) 0.095 (4) 0.041 (12)

Azerbaijani 0.661 (6) 0.728 (32) 0.151 (21) 0.074 (5) 0.038 (15) 0.051 (5)
Bicol 0.622 (18) 0.69 (57) 0.049 (79) 0.021 (44) 0.015 (63) 0.019 (40)

Cibemba 0.527 (107) 0.581 (115) 0.108 (39) 0.014 (73) 0.013 (79) 0.011 (99)
Bulgarian 0.56 (80) 0.68 (66) 0.091 (45) 0.016 (63) 0.018 (46) 0.016 (62)
Bislama 0.548 (88) 0.662 (75) 0.009 (132) 0.009 (120) 0.01 (117) 0.01 (112)
Bengali 0.546 (90) 0.801 (9) 0.06 (69) 0.013 (83) 0.026 (26) 0.018 (46)

Cebuano 0.543 (93) 0.708 (42) 0.051 (75) 0.012 (87) 0.017 (54) 0.014 (71)
Chuukese 0.579 (58) 0.618 (104) 0.037 (90) 0.014 (75) 0.01 (107) 0.012 (91)

Seychelles Creole 0.593 (46) 0.645 (87) 0.024 (107) 0.013 (77) 0.01 (107) 0.012 (85)
Czech 0.668 (4) 0.777 (13) 0.125 (29) 0.061 (10) 0.048 (9) 0.065 (4)
Danish 0.617 (22) 0.695 (53) 0.063 (65) 0.023 (36) 0.017 (55) 0.021 (34)
German 0.636 (14) 0.686 (62) 0.084 (50) 0.031 (22) 0.018 (47) 0.024 (29)

Ewe 0.488 (124) 0.717 (39) 0.05 (77) 0.01 (109) 0.017 (53) 0.012 (85)
Efik 0.61 (30) 0.657 (80) 0.043 (85) 0.017 (56) 0.012 (94) 0.015 (64)

Modern Greek 0.594 (44) 0.753 (19) 0.09 (47) 0.022 (40) 0.03 (21) 0.027 (22)
English 0.682 (3) 0.713 (41) 0.053 (74) 0.026 (29) 0.017 (51) 0.025 (26)
Spanish 0.59 (48) 0.65 (82) 0.079 (54) 0.02 (51) 0.015 (63) 0.016 (57)
Estonian 0.623 (17) 0.663 (74) 0.155 (19) 0.056 (12) 0.022 (32) 0.027 (22)

Western Farsi 0.569 (71) 0.739 (27) 0.061 (68) 0.014 (71) 0.021 (34) 0.018 (43)
Finnish 0.563 (75) 0.628 (96) 0.184 (9) 0.024 (34) 0.019 (40) 0.017 (52)
Fijian 0.517 (111) 0.66 (77) 0.022 (115) 0.009 (124) 0.01 (105) 0.01 (115)

French 0.522 (110) 0.674 (68) 0.072 (62) 0.012 (90) 0.015 (59) 0.012 (85)
Ga 0.547 (89) 0.664 (73) 0.046 (83) 0.012 (90) 0.013 (83) 0.012 (89)

Kiribati 0.506 (118) 0.592 (113) 0.031 (101) 0.009 (118) 0.009 (125) 0.009 (128)
Gujarati 0.542 (95) 0.835 (5) 0.048 (81) 0.011 (93) 0.023 (28) 0.017 (53)

Gun 0.575 (65) 0.691 (55) 0.024 (108) 0.012 (92) 0.012 (91) 0.013 (81)
Hausa 0.527 (106) 0.619 (102) 0.035 (94) 0.01 (107) 0.01 (109) 0.01 (114)

Hebrew 0.595 (43) 0.763 (17) 0.17 (16) 0.034 (19) 0.061 (6) 0.039 (13)
Hindi 0.591 (47) 0.783 (10) 0.022 (111) 0.013 (81) 0.017 (57) 0.018 (46)
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Table A1. Cont.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Hiligaynon 0.564 (74) 0.699 (48) 0.045 (84) 0.013 (81) 0.015 (62) 0.015 (70)
Hiri Motu 0.543 (94) 0.604 (111) 0.012 (128) 0.009 (122) 0.008 (131) 0.009 (129)
Croatian 0.63 (16) 0.735 (30) 0.109 (38) 0.037 (15) 0.029 (22) 0.036 (16)

Haitian Creole 0.552 (85) 0.662 (76) 0.022 (114) 0.01 (106) 0.011 (104) 0.011 (105)
Hungarian 0.694 (1) 0.747 (22) 0.172 (14) 0.133 (2) 0.056 (7) 0.081 (3)
Armenian 0.575 (64) 0.736 (29) 0.117 (33) 0.021 (44) 0.032 (19) 0.024 (29)
Indonesian 0.556 (82) 0.624 (97) 0.051 (76) 0.013 (81) 0.012 (98) 0.012 (94)

Igbo 0.576 (60) 0.613 (107) 0.032 (99) 0.013 (83) 0.01 (115) 0.011 (101)
Iloko 0.611 (29) 0.64 (89) 0.08 (53) 0.024 (32) 0.014 (71) 0.018 (48)

Icelandic 0.637 (11) 0.704 (45) 0.09 (46) 0.035 (18) 0.022 (30) 0.029 (19)
Isoko 0.569 (70) 0.656 (81) 0.02 (116) 0.011 (99) 0.01 (111) 0.011 (102)
Italian 0.595 (40) 0.614 (106) 0.082 (52) 0.022 (41) 0.013 (87) 0.015 (65)

Japanese 0.302 (133) 0.914 (1) 0.024 (106) 0.008 (128) 0.019 (42) 0.012 (85)
Georgian 0.563 (77) 0.729 (31) 0.175 (12) 0.022 (38) 0.047 (10) 0.025 (27)

Kongo 0.534 (100) 0.619 (103) 0.022 (112) 0.009 (114) 0.009 (127) 0.01 (122)
Greenlandic 0.538 (98) 0.623 (99) 0.335 (1) 0.02 (47) 0.02 (38) 0.015 (65)
Cambodian 0.509 (117) 0.779 (12) 0.011 (129) 0.008 (129) 0.014 (69) 0.012 (96)

Kannada 0.587 (52) 0.754 (18) 0.239 (3) 0.036 (16) 0.095 (4) 0.041 (10)
Korean 0.349 (131) 0.907 (2) 0.057 (71) 0.01 (110) 0.027 (24) 0.015 (69)

Kikaonde 0.553 (83) 0.541 (127) 0.087 (48) 0.015 (68) 0.011 (99) 0.012 (96)
Kikongo 0.486 (126) 0.541 (128) 0.079 (55) 0.011 (94) 0.011 (103) 0.01 (118)
Kirghiz 0.563 (76) 0.695 (51) 0.144 (24) 0.02 (49) 0.027 (25) 0.02 (39)

Luganda 0.601 (36) 0.539 (129) 0.14 (25) 0.033 (20) 0.013 (79) 0.016 (61)
Lingala 0.526 (108) 0.633 (93) 0.04 (88) 0.01 (105) 0.011 (101) 0.01 (109)
Silozi 0.539 (97) 0.598 (112) 0.033 (97) 0.01 (103) 0.01 (119) 0.01 (116)

Lithuanian 0.637 (13) 0.706 (43) 0.167 (17) 0.067 (9) 0.033 (18) 0.041 (10)
Kiluba 0.544 (92) 0.56 (125) 0.112 (35) 0.016 (64) 0.012 (89) 0.012 (91)

Tshiluba 0.489 (123) 0.617 (105) 0.074 (60) 0.011 (96) 0.012 (94) 0.01 (107)
Luvale 0.545 (91) 0.525 (133) 0.145 (23) 0.018 (55) 0.013 (83) 0.012 (90)
Mizo 0.595 (42) 0.681 (65) 0.04 (87) 0.016 (67) 0.013 (78) 0.015 (63)

Latvian 0.582 (57) 0.745 (24) 0.123 (32) 0.022 (38) 0.036 (16) 0.027 (24)
Mauritian Creole 0.583 (55) 0.624 (98) 0.019 (117) 0.012 (90) 0.009 (127) 0.011 (103)
Plateau Malagasy 0.499 (122) 0.538 (131) 0.062 (66) 0.011 (100) 0.01 (111) 0.009 (124)

Marshallese 0.587 (51) 0.718 (38) 0.022 (113) 0.012 (86) 0.013 (76) 0.015 (67)
Macedonian 0.571 (68) 0.698 (49) 0.083 (51) 0.017 (58) 0.02 (38) 0.018 (46)
Malayalam 0.607 (32) 0.701 (47) 0.272 (2) 0.059 (11) 0.041 (14) 0.037 (15)

Moore 0.561 (79) 0.724 (34) 0.027 (104) 0.011 (96) 0.014 (66) 0.014 (75)
Marathi 0.612 (27) 0.738 (28) 0.095 (44) 0.028 (27) 0.028 (23) 0.03 (18)
Maltese 0.616 (24) 0.683 (63) 0.075 (59) 0.024 (33) 0.016 (58) 0.021 (36)
Burmese 0.514 (113) 0.75 (20) 0.016 (121) 0.009 (126) 0.014 (69) 0.012 (93)
Nepali 0.524 (109) 0.768 (15) 0.096 (43) 0.013 (76) 0.034 (17) 0.018 (44)
Niuean 0.389 (129) 0.646 (86) 0.013 (125) 0.008 (131) 0.009 (122) 0.009 (131)
Dutch 0.604 (34) 0.683 (64) 0.061 (67) 0.02 (50) 0.015 (61) 0.018 (42)

Norwegian 0.605 (33) 0.723 (35) 0.056 (72) 0.019 (53) 0.019 (42) 0.021 (34)
Sepedi 0.514 (114) 0.637 (90) 0.037 (91) 0.01 (111) 0.011 (101) 0.01 (112)

Chichewa 0.567 (72) 0.562 (124) 0.124 (31) 0.019 (52) 0.013 (81) 0.013 (80)
Eastern Oromo 0.552 (86) 0.568 (121) 0.111 (36) 0.016 (61) 0.013 (85) 0.012 (88)

Ossetian 0.575 (63) 0.688 (61) 0.077 (57) 0.017 (60) 0.017 (55) 0.017 (53)
Punjabi 0.572 (66) 0.816 (7) 0.025 (105) 0.012 (88) 0.018 (47) 0.017 (51)

Pangasinan 0.612 (28) 0.66 (78) 0.058 (70) 0.02 (46) 0.014 (73) 0.017 (49)
Papiamento (Curaçao) 0.603 (35) 0.704 (46) 0.031 (102) 0.015 (70) 0.014 (73) 0.016 (55)

Solomon Islands Pidgin 0.642 (9) 0.64 (88) 0.013 (123) 0.015 (69) 0.009 (122) 0.014 (76)
Polish 0.617 (23) 0.745 (23) 0.152 (20) 0.047 (13) 0.047 (10) 0.045 (6)

Ponapean 0.533 (102) 0.576 (118) 0.032 (98) 0.01 (107) 0.009 (129) 0.009 (123)
Portuguese 0.595 (41) 0.697 (50) 0.075 (58) 0.02 (47) 0.019 (44) 0.02 (38)
Romanian 0.609 (31) 0.695 (52) 0.071 (63) 0.021 (43) 0.017 (51) 0.021 (36)

Russian 0.5 (121) 0.722 (37) 0.137 (26) 0.014 (74) 0.032 (20) 0.016 (57)
Kirundi 0.534 (101) 0.636 (91) 0.15 (22) 0.016 (62) 0.018 (49) 0.014 (73)
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Table A1. Cont.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Kinyarwanda 0.599 (38) 0.57 (120) 0.134 (28) 0.03 (24) 0.014 (73) 0.016 (59)
Sango 0.385 (130) 0.725 (33) 0.01 (130) 0.008 (133) 0.012 (91) 0.01 (111)

Sinhala 0.578 (59) 0.742 (25) 0.079 (56) 0.017 (56) 0.025 (27) 0.021 (34)
Slovak 0.614 (26) 0.767 (16) 0.124 (30) 0.036 (17) 0.043 (12) 0.042 (9)

Slovenian 0.637 (12) 0.69 (56) 0.111 (37) 0.041 (14) 0.022 (32) 0.029 (20)
Samoan 0.536 (99) 0.629 (95) 0.017 (119) 0.009 (117) 0.009 (125) 0.01 (121)
Shona 0.622 (19) 0.538 (130) 0.18 (10) 0.069 (7) 0.014 (67) 0.019 (41)

Albanian 0.648 (8) 0.723 (36) 0.073 (61) 0.029 (26) 0.021 (37) 0.029 (20)
Sranantongo 0.54 (96) 0.562 (123) 0.01 (131) 0.009 (125) 0.008 (133) 0.009 (132)

Sesotho (Lesotho) 0.465 (128) 0.58 (116) 0.033 (95) 0.009 (123) 0.009 (122) 0.009 (130)
Swedish 0.621 (20) 0.706 (44) 0.066 (64) 0.024 (34) 0.019 (44) 0.023 (31)
Swahili 0.598 (39) 0.566 (122) 0.098 (41) 0.025 (31) 0.012 (93) 0.015 (68)

Swahili (Congo) 0.562 (78) 0.586 (114) 0.098 (41) 0.017 (59) 0.013 (82) 0.013 (82)
Tamil 0.618 (21) 0.715 (40) 0.234 (6) 0.074 (5) 0.043 (12) 0.045 (7)

Telugu 0.66 (7) 0.811 (8) 0.211 (7) 0.143 (1) 0.133 (2) 0.136 (1)
Thai 0.552 (87) 0.74 (26) 0.013 (124) 0.009 (112) 0.013 (75) 0.013 (83)

Tigrinya 0.666 (5) 0.891 (3) 0.162 (18) 0.087 (4) 0.095 (4) 0.115 (2)
Tiv 0.576 (61) 0.659 (79) 0.017 (120) 0.011 (94) 0.01 (113) 0.012 (98)

Tagalog 0.514 (115) 0.676 (67) 0.054 (73) 0.011 (100) 0.014 (67) 0.012 (94)
Otetela 0.529 (105) 0.605 (110) 0.085 (49) 0.013 (78) 0.013 (88) 0.011 (100)

Setswana 0.503 (120) 0.612 (108) 0.031 (100) 0.009 (120) 0.01 (118) 0.009 (127)
Tongan 0.532 (103) 0.688 (60) 0.023 (110) 0.009 (115) 0.012 (96) 0.011 (104)

Chitonga 0.558 (81) 0.647 (85) 0.177 (11) 0.022 (41) 0.021 (35) 0.017 (50)
Tok Pisin 0.575 (62) 0.632 (94) 0.008 (133) 0.01 (104) 0.009 (130) 0.01 (109)
Turkish 0.684 (2) 0.65 (83) 0.175 (13) 0.133 (2) 0.021 (35) 0.031 (17)
Tsonga 0.572 (67) 0.571 (119) 0.036 (93) 0.012 (85) 0.009 (124) 0.011 (106)
Tatar 0.593 (45) 0.689 (58) 0.116 (34) 0.025 (30) 0.022 (31) 0.022 (32)

Chitumbuka 0.588 (49) 0.534 (132) 0.108 (40) 0.022 (38) 0.012 (97) 0.014 (78)
Twi 0.469 (127) 0.664 (72) 0.039 (89) 0.009 (116) 0.012 (90) 0.01 (107)

Tahitian 0.487 (125) 0.669 (70) 0.012 (127) 0.008 (130) 0.01 (111) 0.009 (126)
Ukrainian 0.601 (37) 0.775 (14) 0.136 (27) 0.031 (22) 0.049 (8) 0.038 (14)
Umbundu 0.531 (104) 0.56 (126) 0.048 (80) 0.011 (98) 0.01 (115) 0.01 (119)

Urdu 0.631 (15) 0.781 (11) 0.033 (96) 0.018 (54) 0.019 (42) 0.025 (28)
Venda 0.512 (116) 0.619 (101) 0.031 (103) 0.009 (118) 0.01 (114) 0.009 (125)

Vietnamese 0.344 (132) 0.692 (54) 0.014 (122) 0.008 (131) 0.011 (100) 0.01 (117)
Waray-Waray 0.586 (54) 0.665 (71) 0.042 (86) 0.014 (72) 0.013 (85) 0.014 (72)

Wallisian 0.517 (112) 0.577 (117) 0.013 (126) 0.008 (127) 0.008 (132) 0.008 (133)
Xhosa 0.615 (25) 0.647 (84) 0.237 (4) 0.069 (7) 0.023 (29) 0.027 (24)
Yapese 0.639 (10) 0.635 (92) 0.018 (118) 0.016 (65) 0.01 (120) 0.014 (76)
Yoruba 0.553 (84) 0.749 (21) 0.023 (109) 0.01 (102) 0.015 (59) 0.014 (73)
Maya 0.587 (50) 0.688 (59) 0.05 (78) 0.016 (65) 0.015 (65) 0.016 (60)
Zande 0.505 (119) 0.62 (100) 0.037 (92) 0.009 (112) 0.01 (105) 0.01 (120)
Zulu 0.57 (69) 0.609 (109) 0.235 (5) 0.027 (28) 0.018 (50) 0.016 (55)

Appendix B. Complexity Measures Bibles Corpus

Table A2. Complexity measures on the Bibles corpus (for all languages).

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Amele 0.568 (37) 0.59 (29) 0.134 (26) 0.031 (36) 0.036 (34) 0.032 (36)
Alamblak 0.673 (11) 0.643 (18) 0.203 (15) 0.076 (8) 0.06 (8) 0.068 (9)
Bukiyip 0.651 (16) 0.591 (28) 0.119 (32) 0.041 (25) 0.033 (37) 0.039 (28)
Apurinã 0.592 (29) 0.523 (43) 0.205 (14) 0.046 (19) 0.035 (36) 0.034 (33)

Mapudungun 0.598 (27) 0.596 (27) 0.145 (20) 0.041 (25) 0.042 (20) 0.04 (26)
Egyptian Arabic 0.725 (5) 0.748 (4) 0.31 (4) 0.222 (2) 0.25 (3) 0.23 (2)
Barasana-Eduria 0.526 (45) 0.577 (35) 0.146 (19) 0.031 (36) 0.037 (31) 0.03 (40)

Chamorro 0.678 (10) 0.663 (13) 0.13 (29) 0.051 (17) 0.046 (16) 0.056 (12)
German 0.588 (30) 0.663 (13) 0.136 (24) 0.037 (29) 0.054 (12) 0.044 (18)

Daga 0.585 (32) 0.545 (41) 0.095 (39) 0.028 (40) 0.025 (44) 0.026 (44)
Modern Greek 0.683 (9) 0.655 (16) 0.181 (17) 0.076 (8) 0.06 (8) 0.071 (7)

English 0.703 (7) 0.667 (10) 0.082 (40) 0.042 (22) 0.04 (24) 0.052 (13)
Basque 0.655 (14) 0.588 (31) 0.224 (13) 0.074 (10) 0.045 (17) 0.051 (15)



Entropy 2020, 22, 48 16 of 19

Table A2. Cont.

Language H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Fijian 0.568 (37) 0.519 (44) 0.048 (46) 0.024 (42) 0.022 (47) 0.023 (46)
Finnish 0.696 (8) 0.589 (30) 0.266 (6) 0.142 (5) 0.055 (10) 0.068 (9)
French 0.606 (25) 0.609 (24) 0.139 (23) 0.041 (25) 0.042 (20) 0.041 (23)

Paraguayan Guaraní 0.613 (21) 0.642 (19) 0.174 (18) 0.051 (17) 0.054 (12) 0.051 (15)
Eastern Oromo 0.652 (15) 0.573 (38) 0.196 (16) 0.064 (12) 0.037 (31) 0.043 (19)

Hausa 0.609 (24) 0.613 (23) 0.098 (38) 0.032 (32) 0.032 (39) 0.035 (30)
Hindi 0.54 (43) 0.729 (6) 0.057 (43) 0.023 (43) 0.04 (24) 0.032 (36)

Indonesian 0.661 (13) 0.598 (26) 0.115 (34) 0.042 (22) 0.033 (37) 0.041 (23)
Popti’ 0.624 (20) 0.646 (17) 0.108 (37) 0.035 (30) 0.037 (31) 0.04 (26)

Kalaallisut 0.572 (35) 0.455 (47) 0.542 (2) 0.054 (15) 0.04 (24) 0.035 (30)
Georgian 0.632 (18) 0.67 (9) 0.238 (9) 0.071 (11) 0.111 (5) 0.081 (5)

West Kewa 0.573 (34) 0.583 (33) 0.113 (35) 0.028 (40) 0.029 (41) 0.029 (41)
Halh Mongolian 0.745 (3) 0.601 (25) 0.228 (11) 0.142 (5) 0.055 (10) 0.076 (6)

Korean 0.393 (47) 0.861 (1) 0.348 (3) 0.04 (27) 0.5 (2) 0.058 (11)
Lango (Uganda) 0.602 (26) 0.558 (40) 0.112 (36) 0.032 (32) 0.026 (43) 0.029 (41)

San Miguel El Grande Mixtec 0.57 (36) 0.614 (22) 0.125 (30) 0.03 (39) 0.038 (27) 0.034 (33)
Burmese 0.739 (4) 0.822 (2) 0.791 (1) 0.4 (1) 0.666 (1) 0.428 (1)

Wichí Lhamtés Güisnay 0.586 (31) 0.585 (32) 0.117 (33) 0.031 (36) 0.03 (40) 0.031 (38)
Nama (Namibia) 0.576 (33) 0.665 (11) 0.131 (28) 0.032 (32) 0.05 (14) 0.041 (23)

Western Farsi 0.67 (12) 0.705 (7) 0.135 (25) 0.054 (15) 0.062 (7) 0.068 (9)
Plateau Malagasy 0.567 (39) 0.518 (45) 0.14 (21) 0.032 (32) 0.029 (41) 0.028 (43)

Imbabura Highland Quichua 0.598 (27) 0.492 (46) 0.249 (8) 0.057 (14) 0.037 (31) 0.037 (29)
Russian 0.75 (1) 0.732 (5) 0.225 (12) 0.153 (4) 0.117 (4) 0.166 (3)
Sango 0.537 (44) 0.56 (39) 0.024 (47) 0.021 (47) 0.023 (46) 0.023 (46)

Spanish 0.647 (17) 0.656 (15) 0.133 (27) 0.045 (20) 0.047 (15) 0.05 (17)
Swahili 0.612 (22) 0.575 (36) 0.233 (10) 0.06 (13) 0.043 (18) 0.043 (19)
Tagalog 0.632 (18) 0.629 (20) 0.121 (31) 0.04 (27) 0.038 (27) 0.042 (21)

Thai 0.554 (41) 0.752 (3) 0.055 (44) 0.023 (43) 0.042 (20) 0.034 (33)
Turkish 0.705 (6) 0.629 (20) 0.297 (5) 0.181 (3) 0.08 (6) 0.096 (4)

Vietnamese 0.406 (46) 0.684 (8) 0.066 (41) 0.022 (45) 0.04 (24) 0.031 (38)
Sanumá 0.546 (42) 0.574 (37) 0.05 (45) 0.022 (45) 0.024 (45) 0.024 (45)
Yagua 0.563 (40) 0.524 (42) 0.266 (6) 0.042 (22) 0.04 (24) 0.033 (35)
Yaqui 0.748 (2) 0.579 (34) 0.14 (21) 0.086 (7) 0.036 (34) 0.052 (13)

Yoruba 0.612 (22) 0.665 (11) 0.064 (42) 0.031 (36) 0.037 (31) 0.04 (26)

Appendix C. Complexity Measures Using CWALS

Table A3. CWALS complexity for the subset of languages shared with the Bibles corpus.

Language CWALS H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Amele 0.456 (9) 0.568 (17) 0.59 (13) 0.134 (13) 0.066 (17) 0.076 (16) 0.069 (18)
Apurinã 0.573 (5) 0.592 (15) 0.523 (17) 0.205 (8) 0.087 (12) 0.08 (14) 0.075 (16)
Basque 0.647 (4) 0.655 (8) 0.588 (14) 0.224 (7) 0.133 (5) 0.095 (9) 0.103 (7)

Eastern Oromo 0.487 (8) 0.652 (9) 0.573 (16) 0.196 (9) 0.111 (9) 0.08 (14) 0.088 (11)
Egyptian Arabic 0.563 (6) 0.725 (3) 0.748 (1) 0.31 (1) 0.5 (1) 1.0 (1) 0.6 (1)

English 0.329 (15) 0.703 (5) 0.667 (4) 0.082 (17) 0.09 (10) 0.095 (9) 0.115 (6)
German 0.397 (13) 0.588 (16) 0.663 (6) 0.136 (12) 0.071 (14) 0.111 (5) 0.088 (11)

Halh Mongolian 0.516 (7) 0.745 (2) 0.601 (11) 0.228 (5) 0.285 (3) 0.125 (4) 0.166 (4)
Hausa 0.322 (16) 0.609 (13) 0.613 (10) 0.098 (16) 0.069 (15) 0.076 (16) 0.076 (15)

Imbabura Quichua 0.662 (3) 0.599 (14) 0.492 (19) 0.25 (3) 0.117 (8) 0.09 (12) 0.083 (14)
Indonesian 0.336 (14) 0.661 (7) 0.598 (12) 0.115 (15) 0.09 (10) 0.074 (18) 0.088 (11)

Modern Greek 0.452 (11) 0.683 (6) 0.655 (8) 0.181 (10) 0.125 (6) 0.111 (5) 0.125 (5)
Plateau Malagasy 0.309 (17) 0.567 (18) 0.518 (18) 0.14 (11) 0.069 (15) 0.069 (19) 0.063 (19)

Russian 0.453 (10) 0.751 (1) 0.732 (2) 0.225 (6) 0.285 (3) 0.25 (2) 0.333 (2)
Spanish 0.44 (12) 0.647 (10) 0.656 (7) 0.133 (14) 0.083 (13) 0.095 (9) 0.096 (8)
Swahili 0.675 (2) 0.612 (11) 0.575 (15) 0.233 (4) 0.125 (6) 0.105 (7) 0.096 (8)
Turkish 0.775 (1) 0.705 (4) 0.629 (9) 0.297 (2) 0.333 (2) 0.181 (3) 0.2 (3)

Vietnamese 0.141 (19) 0.406 (19) 0.684 (3) 0.066 (18) 0.054 (19) 0.095 (9) 0.075 (16)
Yoruba 0.178 (18) 0.612 (11) 0.665 (5) 0.064 (19) 0.066 (17) 0.083 (13) 0.085 (13)
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Appendix D. Complexity Measures Using MCC

Table A4. MCC complexity for the subset of languages shared with the JW300 corpus.

Language MCC H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Bulgarian 96.0 (7) 0.56 (20) 0.68 (16) 0.091 (10) 0.016 (20) 0.018 (13) 0.016 (18)
Czech 195.0 (2) 0.668 (3) 0.777 (1) 0.125 (6) 0.061 (3) 0.048 (2) 0.065 (2)
Danish 15.0 (20) 0.617 (9) 0.695 (11) 0.063 (19) 0.023 (12) 0.017 (16) 0.021 (13)
Dutch 26.0 (19) 0.604 (13) 0.683 (15) 0.061 (20) 0.02 (18) 0.015 (19) 0.018 (16)

English 6.0 (21) 0.682 (2) 0.713 (7) 0.053 (21) 0.026 (9) 0.017 (16) 0.025 (10)
Estonian 110.0 (5) 0.623 (7) 0.663 (18) 0.155 (4) 0.056 (4) 0.022 (8) 0.027 (8)
Finnish 198.0 (1) 0.563 (19) 0.628 (20) 0.184 (1) 0.024 (10) 0.019 (11) 0.017 (17)
French 30.0 (18) 0.522 (21) 0.674 (17) 0.072 (16) 0.012 (21) 0.015 (19) 0.012 (21)

German 38.0 (16) 0.636 (6) 0.686 (14) 0.084 (12) 0.031 (8) 0.018 (13) 0.024 (11)
Hungarian 94.0 (8) 0.694 (1) 0.747 (4) 0.172 (2) 0.133 (1) 0.056 (1) 0.081 (1)

Italian 52.0 (13) 0.595 (14) 0.614 (21) 0.082 (13) 0.022 (14) 0.013 (21) 0.015 (20)
Latvian 81.0 (9) 0.582 (18) 0.745 (5) 0.123 (8) 0.022 (14) 0.036 (5) 0.027 (8)

Lithuanian 152.0 (3) 0.637 (4) 0.706 (8) 0.167 (3) 0.067 (2) 0.033 (6) 0.041 (5)
Modern Greek 50.0 (14) 0.594 (16) 0.753 (3) 0.09 (11) 0.022 (14) 0.03 (7) 0.027 (8)

Polish 112.0 (4) 0.617 (9) 0.745 (5) 0.152 (5) 0.047 (5) 0.047 (3) 0.045 (3)
Portuguese 77.0 (10) 0.595 (14) 0.697 (10) 0.075 (15) 0.02 (18) 0.019 (11) 0.02 (15)
Romanian 60.0 (12) 0.609 (12) 0.695 (11) 0.071 (17) 0.021 (16) 0.017 (16) 0.021 (13)

Slovak 40.0 (15) 0.614 (11) 0.767 (2) 0.124 (7) 0.036 (7) 0.043 (4) 0.042 (4)
Slovenian 100.0 (6) 0.637 (4) 0.69 (13) 0.111 (9) 0.041 (6) 0.022 (8) 0.029 (6)
Spanish 71.0 (11) 0.59 (17) 0.65 (19) 0.079 (14) 0.02 (18) 0.015 (19) 0.016 (18)
Swedish 35.0 (17) 0.621 (8) 0.706 (8) 0.066 (18) 0.024 (10) 0.019 (11) 0.023 (12)

Appendix E. Correlation Using Typological Classifications

For each language in the intersection set between the Bibles and JW300 corpora, we extracted
its information about the feature 20A: “Fusion of Selected Inflectional Formatives” (WALS database).
We focused on the languages classified as “concatenative” or “isolating”. For each corpus, we calculated
the correlations within complexity measures for concatenative languages and the correlations within
the isolating ones (Tables A5 and A6).

Table A5. Spearman’s correlation between complexity measures in concatenative and isolating
languages (Bibles corpus).

H1 H3 TTR

Concatenative H1 1.0 0.233 0.618
H3 - 1.0 −0.121

TTR - - 1.0

Isolating H1 1.0 −0.355 0.513
H3 - 1.0 −0.178

TTR - - 1.0

Table A6. Spearman’s correlation between complexity measures in concatenative and isolating
languages (JW300 corpus).

H1 H3 TTR

Concatenative H1 1.0 −0.12 0.296
H3 −12 1.0 −0.369

TTR - - 1.0

Isolating H1 1.0 −0.011 0.438
H3 - 1.0 −0.741

TTR - - 1.0
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Appendix F. Correlation Using Average Word Length

We calculate the average word length per language in both corpora. This is formulated as the
average of the number of characters per word. Tables A7 and A8 show the correlations of the average
word length with the other measures for the Bibles and JW300 corpora, respectively.

Table A7. Spearman’s correlation between complexity measures and the average length per word in
the Bibles corpus.

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Average Word Length 0.354 −0.421 0.697 0.628 0.141 0.278

Table A8. Spearman’s correlation between complexity measures and the average length per word in
the JW300 corpus.

H1 H3 TTR TTR+H1 TTR+H3 TTR+H1+H3

Average Word Length 0.296 −0.359 0.735 0.606 0.265 0.315
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