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Objective: Intent recognition in lower-extremity assistive devices (e.g., prostheses and
exoskeletons) is typically limited to either recognition of steady-state locomotion or
changes of terrain (e.g., level ground to stair) occurring in a straight-line path and under
anticipated condition. Stability is highly affected during non-steady changes of direction
such as cuts especially when they are unanticipated, posing high risk of fall-related
injuries. Here, we studied the influence of changes of direction and user anticipation on
task recognition, and accordingly introduced classification schemes accommodating
such effects.

Methods: A linear discriminant analysis (LDA) classifier continuously classified straight-
line walking, sidestep/crossover cuts (single transitions), and cuts-to-stair locomotion
(mixed transitions) performed under varied task anticipatory conditions. Training
paradigms with varying levels of anticipated/unanticipated exposures and analysis
windows of size 100–600 ms were examined.

Results: More accurate classification of anticipated relative to unanticipated tasks was
observed. Including bouts of target task in the training data was necessary to improve
generalization to unanticipated locomotion. Only up to two bouts of target task were
sufficient to reduce errors to <20% in unanticipated mixed transitions, whereas, in single
transitions and straight walking, substantial unanticipated information (i.e., five bouts)
was necessary to achieve similar outcomes. Window size modifications did not have a
significant influence on classification performance.

Conclusion: Adjusting the training paradigm helps to achieve classification schemes
capable of adapting to changes of direction and task anticipatory state.

Significance: The findings could provide insight into developing classification schemes
that can adapt to changes of direction and user anticipation. They could inform intent
recognition strategies for controlling lower-limb assistive to robustly handle “unknown”
circumstances, and thus deliver increased level of reliability and safety.
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Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 April 2021 | Volume 9 | Article 628050

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2021.628050
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2021.628050
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2021.628050&domain=pdf&date_stamp=2021-04-22
https://www.frontiersin.org/articles/10.3389/fbioe.2021.628050/full
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-628050 April 19, 2021 Time: 7:29 # 2

Kazemimoghadam and Fey Classification of Locomotion With Varying Anticipation

INTRODUCTION

Locomotion is initiated by robust motor patterns within the
nervous system and involves synchronized activity of muscles
and the skeletal system triggering a set of cyclic movements (Chiel
and Beer, 1997). Neuromuscular diseases, aging population,
and limb amputation due to trauma or disease are the factors
that can cause physical limitations and lower limb dysfunction
(McDonald, 2002; Cesari et al., 2005; Ziegler-Graham et al.,
2008). Advanced lower-limb assistive devices (i.e., prostheses and
exoskeletons) are being developed to better aid individuals with
motor impairments/amputation in performing daily activities.
For instance, microcontroller-based/powered assistive devices
have the potential to provide intuitive transitions between
locomotor tasks and allow automatic and smooth “steering”
(Huang et al., 2011; Young and Ferris, 2017). In order to
achieve seamless integration of the device with the wearer, gait
information needs to be acquired real time, and locomotor mode
should be instantaneously identified by the control algorithms
(Varol et al., 2010; Jiménez-Fabián and Verlinden, 2012). Intent
recognition using machine learning has been the popular
methodology to infer user intention for the device, and to
effectively identify target locomotion modes (Young et al., 2013;
Hargrove et al., 2015).

However, to date, intent recognition strategies have been
primarily limited to predicting user movements during straight
walking including steady state locomotion or transitions from
one terrain to another, e.g., level ground to ramp or stairs
locomotion (Au et al., 2008; Tkach and Hargrove, 2013; Chen
et al., 2014). Control approaches become more sophisticated due
to the fact that not only changes of terrain, but also changes
of direction and non-steady maneuvers such as turns/cuts are
among prevalent locomotor tasks performed in daily living and
many sport/recreation activities. Glaister et al. (2007) conducted
a study to investigate how often non-straight locomotion
is performed in daily living. They mimicked the activities
performed most often in a typical day and demonstrated
that turning constitute approximately 50% of all steps taken.
Depending on the frequency of performing certain tasks, the
percentage of such non-straight steps could be even larger.
For instance, performing tasks with tighter constraints or
high demand require subjects to change direction/turn more
frequently (Sedgman et al., 1994). Also, studies showed that
changes of direction and steering body in a new direction was
the dominant choice among participants for avoiding obstacles
(Jansen et al., 2011). The level and rate of human adaptation
to the use of assistive devices such as lower limb prosthesis
and exoskeletons are strongly related to the ability of the
device to provide natural, safe, and stable response for a wide
range of daily living activities and environments. Quick and
correct identification of demanding transitions such as changes
of direction would benefit microcontroller-based lower limb
prosthesis as well as lower limb exoskeletons designed to help
people with walking impairments (Farris et al., 2014) and to
enhance the physical abilities of healthy subjects (Zoss et al.,
2006). Accurate detection of such tasks would allow an assistive

device to implement a proper mechanical response. The study
could benefit the control/design of new prosthetic/orthotic device
solutions for use during demanding and destabilizing locomotor
tasks that continue to challenge currently available assistive
technologies for the lower limb.

The most frequent turn styles include non-steady sidestep
and crossover cuts. During crossover cut, the swing (trailing)
leg crosses over the stance leg, toward the new direction while
in sidestep cut, the swing leg is placed laterally, away from the
stance leg. These tasks demand high level of coordination and
modification of individual’s kinematics to change the plane of
progression from straight to the intended direction of movement,
and induce high levels of braking forces and muscle activation
(Houck, 2003; Potter et al., 2014). It has been reported that
stability is significantly affected during changes of direction,
posing higher risks of injury compared to straight walking,
especially when they are performed in unanticipated manner
(Weinhandl et al., 2013; Wu et al., 2015). When a maneuver
is self-initiated, users make preparatory locomotor adaptations
to kinematics such as frontal plane hip and knee moments,
as well as step size prior to the transition, to optimize their
gait pattern and increase their margin of stability (Rand and
Ohtsuki, 2000; Hak et al., 2013). In contrast, in unanticipated
conditions, such as when an auditory or visual stimulus occurs,
the level of preparatory adaptations decreases, which could
inevitably increase the risk of stumbles and falls (Rand and
Ohtsuki, 2000; Houck, 2003; Iguchi et al., 2014; Stokes et al.,
2017). Nevertheless, current locomotion recognition approaches
implemented in lower-limb assistive devices assume that the tasks
are preplanned and the user can anticipate the events, which does
not accurately represent real environments users experience.

Current assumption in controlling assistive devices
considering identical input signals for anticipated and
unanticipated locomotor tasks may eventually constrain
developing proper task identification strategies to prevent falls.
Furthermore, the fact that most patient populations suffering
from motor impairment are also diagnosed with sensory or
cognitive deficits (Dietz, 2002) make the previously mentioned
assumptions further questionable. Increased task complexity
is another factor placing high demands on the neuromuscular
control system. For example, a sudden change of direction
(cutting) or turning transition requires the forward linear
momentum of the body’s center-of-mass to be changed by a
horizontal angle of adjustment (Cao et al., 1998); but a more
complex, combined cut and stair-ascent transition requires both
horizontal and vertical alterations. Thus, new approaches are
required to predict user intents during locomotion when they
encounter unanticipated variations in the terrain and need to
perform complex and non-steady transitions.

Sliding-window based segmentation has been utilized in
computerized assistive devices to divide neuromechanical
signals, and to identify the locomotion mode associated
with each small snapshot of the gait cycle (Young et al.,
2014a,b). Nonetheless, there has not been much information
on comparing varying analysis window lengths during more
complex locomotion such as unanticipated cutting tasks
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where quick biomechanical adjustments are induced. Linear
discriminant analysis (LDA) has been the benchmark for
locomotion mode recognition in robotic lower-limb assistive
devices (Young et al., 2014a,b; Hargrove et al., 2015), and has
demonstrated a good compromise between computational
efficiency and recognition accuracy. The simplicity of the
model in both preparation and application allows easy
adaptation of the algorithm to new problems in real-time
implementation. In any machine learning technique, appropriate
selection of training data plays a significant role in achieving
better classification outcome and saves computational efforts,
whereas, poor training data allocation results in classifiers
that do not generalize well to target samples (Bishop, 2006).
This arises the question that how anticipatory state of the
classifier’s training data would impact its generalization to
unanticipated target tasks.

In this study, an LDA classifier was used to continuously
predict straight-line walking, sidestep and crossover cuts,
and cuts-to-stair transitions performed under altered task
anticipatory states. We conducted an offline analysis using
accelerographic, gyroscopic, and joint angle signals from the
lower-limb and torso, recorded from able-bodied individuals
as they performed the tasks. We expect that these variables
can be provided with relative ease in an implementation of
a lower-limb assistive technologies. Many signals such as this
are already provided by embedded sensors on many assistive
platforms. For instance, in the Vanderbilt powered knee-
ankle prosthesis, a six-axis IMU captured linear acceleration
and angular velocity of the shank. Position and velocity
signals of knee and ankle were also incorporated for intent
recognition (Young et al., 2014b). In exoskeletons, depending
on the intended application input data configuration varies.
For instance, Hybrid Assistive Limb uses hip and knee joint
angles as the input signals for the controller (Kawamoto and
Sankai, 2005), while H2 robotic exoskeleton functions utilizing
angular position data from right and left hip, knee, and
ankle (Bortole et al., 2015). In addition, other signals that we
compared in our study can be readily provided by wearable
IMU sensors or post-processing of these raw signals, which are
routinely implemented for real-time control (Lenzi et al., 2018;
Duraffourg et al., 2019).

Our primary objective was to investigate the effects of
task anticipatory state (i.e., whether or not a transition was
anticipated) on recognition accuracy. For this purpose, the
classifier was trained with anticipated locomotor modes, and
recognition accuracy of anticipated and unanticipated tasks were
compared. Subsequently, varying repetitions (bouts) of target
unanticipated locomotion were included in the training data
to evaluate its influence on the generalization of the classifier
to a different anticipatory state. Further, a set of sliding and
overlapping windows of size 100–600 ms with a 25 ms increment
were tested within each training paradigm. We hypothesized
that anticipatory state of the locomotion mode would impact
recognition accuracy. We further hypothesized that using larger
analysis window sizes and including bouts of target task to
the training data, would lead to improved recognition of
unanticipated locomotor modes.

MATERIALS AND METHODS

Subjects and Data Collection
Data were collected from five healthy subjects (four females, one
male, average age: 27.7 ± 3.8 years, mass: 52.6 ± 2.8 kg, height:
1.68 ± 0.06 m), with no history of neuromuscular impairments
or injuries. The experimental procedures used for this study
were reviewed and approved by the Institutional Review Board
(STU00060101), and subjects provided written consent before
participating in the experiments.

Subjects were instructed to perform five different locomotor
transitions. They were asked to walk straight over the ground
at comfortable speed (W), perform crossover (CO) and sidestep
(SS) cuts, as well as crossover to stair-ascent (COS) and sidestep
to stair-ascent (SSS) (Figure 1). All the locomotor modes were
performed under both anticipated (A) and unanticipated (UA)
conditions. Changes of transition style was defined as CO versus
SS, and changes of task complexity was defined as cut versus cut
to stair ascent. The lab setup was comprised of a level straight
walkway, a level 45◦ walkway to the right for cutting, and a
portable staircase at 45◦ to the left for the maneuvers with stair
transitions (Figures 2A,B). A custom built 4-step staircase was
used for the tasks with the stair conditions with risers and treads
of dimension 7.5 and 12 in., respectively. For ascent and descent
conditions, the length of the walkway preceding the staircase was
6.2 and 5.2 m, respectively (Peng et al., 2016).

The tasks with and without stair ascent were introduced
as “mixed” and “single” transitions, respectively. Each subject
completed straight-walking trials, followed by five trials for
each anticipated cut style and complexity. Following that,
unanticipated trials were captured when a randomized auditory
cue for “walk,” “cut,” and “stair” was given at the beginning of
the trailing leg swing phase and half a step before the marked
transition point on the terrain (Figure 2B). Similar to anticipated
trials, unanticipated data was comprised of unanticipated trails of
level walking and each task complexity and style. The position of
each leg when the cue was given was used to define the trailing
and leading legs. Each trial was initiated by the first trailing leg
heel strike (THS1). To execute cut, subjects started the transition
at the first trailing leg toe off (TTO1) and ended with the second
trailing leg heel strike (THS2). In mixed transitions, stair ascent
was initiated by the second leading leg toe off (LTO2) and
ended with the third trailing leg heel strike (THS3). Forty-two
reflective markers including four clusters of markers connected
via thermoplastic shells were placed on trunk, pelvis, and legs
(Figure 2C). Kinematic marker data were measured at 120 Hz
using a 10-camera motion capture system (Motion Lab Systems,
Inc.). Cameras were placed circumferentially along the wall of the
motion capture lab, which was roughly 1,000 ft2 in size.

Signal Processing and Training
Paradigms
Kinematic motion data were collected at 120 Hz from the lower-
limb and trunk (Motion Lab Systems, Inc.), and corresponding
signals were computed including linear acceleration and angular
velocity from lower-limb segments (i.e., bilateral foot, shank,
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FIGURE 1 | Experimental setup for locomotor transitions. During crossover cut (CO), the swing (trailing) leg crosses over the stance leg, toward the new direction
while in sidestep cut (SS), the swing leg is placed laterally, away from the stance leg. In crossover to stair ascent (COS) and sidestep to stair ascent (SSS), following
cuts subjects transition to staircase at 45◦ to the left.

thigh), trunk, and pelvis as well as ankle dorsi-plantarflexion
angle, knee flexion-extension angle, and hip rotation angles
in three dimensions using Visual3D (C-Motion, Germantown,
MD, United States). Segment linear acceleration and angular
velocity were expressed in each segment’s reference frame, and

joint angles were computed/expressed in each of the proximal
segment’s reference frame. Data were exported to MATLAB
(Mathworks, Natick, MA, United States) for further analysis.
Each kinematic signal was divided into sliding and overlapping
analysis windows. Six time-domain features including minimum,
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FIGURE 2 | Experimental setup for locomotor tasks. (A) Lab setup for level-ground walking, sidestep and crossover cuts, and cut-to-stair-ascent locomotion. A
custom built 4-step staircase was used for the tasks with the stair conditions with risers and treads of dimension 7.5 in and 12 in, respectively. For ascent and
descent conditions, the length of the walkway preceding the staircase was 6.2 m and 5.2 m, respectively. (B) Subjects enter a locomotor transition at single leg
support. The transition point and path for cut transitions were shown on the walkway. (C) Forty-two reflective markers including four clusters of markers connected
via thermoplastic shells were placed on trunk, pelvis, and legs. Kinematic marker data were measured at 120 Hz using a 10-camera motion capture system (Motion
Lab Systems, Inc.). Cameras were placed circumferentially along the wall of the motion capture lab, which was roughly 1,000 ft2 in size.

maximum, mean, standard deviation, first, and last sample of
each window were extracted. These features are computationally
inexpensive and have functioned relatively well in real-time
control of lower-limb assistive device (Varol et al., 2010; Huang
et al., 2011; Young et al., 2014a,b). A linear discriminant analysis
(LDA) classifier was used to continuously classify the locomotion
modes by associating each analysis window to its predicted mode.

In order to predict anticipated tasks, the nominal windows
of size 300 ms with 25 ms increment was selected, and LDA
was trained on anticipated trials of straight walking, cuts, and
cuts-to-stair locomotion. Prediction of unanticipated locomotion
modes was attempted using five different training paradigms
with varying exposures of anticipated and unanticipated
data as follows.

• Zero-Trial: Only anticipated training data.
• One-Trial: Anticipated training data plus one bout of

unanticipated target task.
• Two-Trials: Anticipated training data plus two bouts of

unanticipated target task.
• All-UA: Only unanticipated training data.
• UA-A: Anticipated and unanticipated training data.

To investigate the influence of analysis window size on
recognition of unanticipated locomotion modes, windows of
size 100–600 ms with 25 ms increment were tested within
each training paradigm. The range of overlapping windows was
selected according to the most common window sizes used in
previous relevant studies (Young et al., 2014a,b).

System Evaluation
All trials were synchronized at the first trailing leg toe off (TTO1)
where a locomotor transition was initiated. For each task, system
evaluation was performed using leave-one-out cross validation
on each subject’s data, and the results were then averaged across

the subjects. Classification accuracy was defined as the number
of correctly identified windows divided by the total number of
windows starting TTO1 to the end of the locomotion, reported in
percentage (1).

Accuracy =
number of correctly classified windows begining toe off

total number of windows × 100
(1)

Classification error patterns over time were obtained by
allocating either 0 or 100 to every single analysis window.
A window was marked as 0 when the predicted class was the same
as the target class and was considered 100 when it was different.
Corresponding windows were then averaged and error trends
versus time were plotted. Overall classification accuracy and error
rates were calculated across all the tasks. Confusion matrix (CM)
was also computed to describe the error distribution among the
locomotion modes due to misclassification (2).

CM =


a11 a12 · · · · · · a15
· · · a22 · · · · · · a25
· · · · · · a33 · · · · · ·

· · · a42 · · · a44 · · ·

a51 · · · · · · · · · a55

 (2)

Each element of matrix CM was defined as (3).

aij =
number ofwindows in class i classified as class j

total number of windows in class i
× 100

(3)
Where the diagonal elements in confusion matrix represent the
classification accuracy for the target locomotion, and off-diagonal
elements represent the levels of misclassification.

The Shapiro-Wilk test was used to check the normality
assumption of the data. Then, two-way ANOVA was performed
with the accuracy rate as the response variable, and training
paradigm and analysis window length as fixed factors. If the
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ANOVA revealed a significant result, post hoc testing using
pairwise comparison with Bonferroni correction was performed.
The α level was set to be 0.01 for all tests. Power analysis was also
performed for statistically significant results. At an α of 0.01, the
null hypothesis (i.e., there is no true difference) was rejected when
statistical power exceeded 80%.

RESULTS

Recognition of Anticipated Locomotor
Tasks
Classification of anticipated tasks were attempted using Zero-
Trial training paradigm and nominal window size of 300 ms
with 25 ms increment. Higher levels of accuracy were reported
for anticipated mixed transitions (A-COS, A-SSS) and straight
walking compared to single transitions (A-CO, A-SS) which was
mainly due to misclassification of A-CO and A-SS as each other
(∼13%) (Table 1). Prediction of anticipated tasks with error rates
of ≤20% appeared to be possible as early as 200 ms prior to
entering the locomotor transition (i.e., trailing leg toe off, TTO1)
(Figure 3). A-SS and A-SSS error rates decreased from 35% at the
beginning of the trial to <20% at approximately 200 ms prior to
TTO1 and remained almost steady towards the end of the trial.
A-COS classification error showed a downward trend over time,
with error reaching ∼5% at 200 ms prior to TTO1. A-CO error
appeared to remain below 20% during task progression. A-W was
predicted best, with errors ranging 0–5% over time.

Recognition of Unanticipated Locomotor
Tasks Using Varying Analysis Window
Sizes and Training Paradigms
Classification of unanticipated locomotor tasks was attempted
using previously introduced training paradigms and varied
overlapping window lengths. Two-way ANOVA did not report
any window size by training paradigm interaction effect. Window
size main effect was shown to be significant only in UA-W, where
increasing window length from 100 to 500/600 ms led to a slight
increase (∼15%) in accuracy only in One-Trial and Two-Trail
paradigms (Figure 4). No statistically significant differences in
the accuracy rates of cuts/cut-to-stair transitions were observed
when window length was varied within each training paradigm

TABLE 1 | Confusion matrix for anticipated locomotor tasks.

Target task Predicted task

A-CO A-COS A-SS A-SSS A-W

A-CO 85.7 (10.9) 0.0 (0) 13.4 (9.7) 0.1 (0.1) 0.9 (1.2)

A-COS 0.1 (0.1) 96.4 (1.6) 0.0 (0) 3.0 (2.1) 0.5 (1)

A-SS 12.3 (4.8) 0.1 (0.1) 86.9 (4.7) 0.6 (0.6) 0.2 (0.1)

A-SSS 0.1 (0.1) 2.5 (1.7) 0.2 (0.4) 93.0 (10) 4.3 (8.8)

A-W 1.4 (2.9) 0.0 (0) 0.6 (1.3) 0.1 (0.19) 97.9 (4.4)

Values represent mean (standard deviation). Diagonal darker elements show
classification accuracies for the target locomotion, and off-diagonal elements are
indicative of misclassification.

(p = 0.09–0.9). Similar results were obtained for overall accuracy
across the locomotion modes.

To compare the impact of varied analysis window lengths
over time, Two-Trials training paradigm was selected and
classification error rates versus time were calculated for
windows of size 100–600 ms (Figure 5). Varying window
sizes demonstrated highly overlapping patterns in each
locomotion mode. No significant differences other than
relatively smoother patterns for the larger windows were
observed. Error rates appeared to gradually decrease starting
TTO1 in all locomotor tasks except in UA-CO, where high
fluctuations were observed over time (Figure 5). Decreasing
trends imply more accurate recognition as the tasks progress
toward the subsequent events.

Training paradigm main effect was reported to be statistically
significant in all locomotion modes. As indicated by post-
hoc comparisons, a substantial increase (∼23%–45%) in overall
accuracy was observed when training paradigms containing
bouts of target task were substituted for Zero-Trial (p < 0.001)
(Figure 4). Whereas Two-Trials, All-UA, and UA-A showed
similar performances (p = 0.06–0.95), they outperformed One-
Trial by 13%–20%. In UA-CO, including one trial of the
target task did not remarkably improve the accuracy relative to
Zero-Trial. Comparing the performances of training paradigms
with ≥2 repetitions of target task to one another did not
demonstrate any significant differences in this mode. However,
they outperformed Zero-Trial by ∼18%–41%. In UA-COS,
including as few as one trial of target task led to improved
accuracy rates (∼36%) (Figure 4). Nonetheless, the outcomes for
training paradigms containing ≥1 bout(s) of target locomotion
appeared to be statistically similar. In UA-SS, One-Trial provided
similar accuracy to Zero-Trial (p = 0.99) (Figure 4). Even
though accuracy rates did not differ across training setups
with ≥2 target task repetitions, they outperformed Zero-Trial
by ∼13%–23%. In UA-SSS, all training paradigms with ≥1
repetition(s) of target locomotion outperformed Zero-Trial by
∼23%–40% (p < 0.001), whereas those with ≥2 exposures
showed comparable performances. Similar results were obtained
for UA-W where including ≥1 exposures of target task increased
the accuracy by ∼40%–71% relative to Zero-Trial, while adding
more than two bouts did not benefit the outcome (p = 0.2–0.5).

Within each transition, the performances of different
training paradigms over time were also tested using analysis
windows of nominal size 300 ms. In all locomotion modes,
Zero-Trial resulted in the highest error rates over time
(Figure 6). Although One-Trial and Zero-Trial paradigms
showed relatively overlapping patterns in UA-CO and UA-
SS, significant differences between the two patterns were
observed in other modes.

Error trends for training paradigms containing ≥2 target
task bouts appeared to highly overlap especially in mixed
transitions (UA-COS, UA-SSS) (Figure 6). However, in single
transitions (UA-CO, UA-SS) and UA-W, smoother patterns
were observed for All-UA and UA-A relative to Two-Trials.
In mixed transitions, error patterns for Two-Trials, All-UA,
and UA-A became relatively steady around 200 ms prior to
THS2 and remained mostly below 25% afterwards (Figure 6).
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FIGURE 3 | Classification error versus time for anticipated straight walking (A-W), cuts (A-CO, A-SS), and cuts to stair ascent (A-COS, A-SSS). The graphs
demonstrate the possibility of predicting the tasks with error rates of < 20% as early as 200 ms prior to entering the transition (TTO1). Each trial was initiated by the
first trailing leg heel strike (THS1). To execute cut, subjects started the transition at the first trailing leg toe off (TTO1) and ended with the second trailing leg heel strike
(THS2). LTO2 stands for the second leading leg toe off. Gait events are the average across subjects. X-axis data was shown up to the length of the shortest trial.

FIGURE 4 | Effects of varying analysis window lengths and training paradigms on recognition accuracy of unanticipated straight walking (UA-W), cuts (UA-SS,
UA-CO), and cut to stair ascent (UA-COS, UA-SSS). Zero-Trial provided the lowest accuracy in all locomotor tasks. Including a few bouts of target task significantly
improved the accuracy. However, there was no statistically significant difference between Two-Trials, All-UA, and UA-A training paradigms (α = 0.01). Altering analysis
window size did not result in a significant change in task recognition accuracy.

In contrast, in single transitions, decreasing error trends were
not observed, unless when the training paradigms with the
maximum amount of target information (i.e., All-UA, UA-
A) were used. These results suggest that only up to two
bouts of target task were required to sufficiently reduce
classification error in mixed transitions. According to the
obtained accuracy rates for different training paradigms in single
transitions/straight walking, even though two repetitions of
target task appeared to be sufficient, including more target trials
may be necessary to accommodate variability in classification
outcome over time.

Confusion Matrices
In order to quantify misclassification error, confusion matrices
were calculated for each training paradigm using sliding and
overlapping windows of nominal length 300 and 25 ms
increment. In Zero-Trial, the lowest and highest accuracy
levels belonged to UA-W and UA-SS, respectively (7.73% vs
55.73%) (Table 2). Using this training paradigm, UA-W was
highly confused with all other transitions and most significantly
with UA-SS and UA-CO by ∼35% and 30%, respectively. UA-
CO and UA-SS were mistakenly recognized as each other
(∼ 59%, 34%), and∼40% misclassification was observed between
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FIGURE 5 | The influence of varying analysis window size on recognition of unanticipated straight walking (UA-W), cuts (UA-CO, UA-SS), and cuts to stair ascent
(UA-COS, UA-SSS) over time. Highly overlapping patterns were observed for different window sizes within each locomotion mode. To execute cut, subjects started
the transition at the first trailing leg toe off (TTO1) and ended with the second trailing leg heel strike (THS2). LTO2 stands for the second leading leg toe off. Events are
the average across subjects. X-axis data was shown up to the length of the shortest trial.

FIGURE 6 | The influence of training paradigms with varying exposures of target task on recognition of unanticipated straight walking (UA-W), cuts (UA-CO, UA-SS),
and cuts to stair ascent (UA-COS, UA-SSS) over time. Even though including a few bouts of target locomotion significantly decreased error rates in mixed transitions
(UA-COS, UA-SSS), maximum exposures of unanticipated information were required to provide robust recognition in single transitions (UA-CO, UA-SS) and UA-W.
To execute cut, subjects started the transition at the first trailing leg toe off (TTO1) and ended with the second trailing leg heel strike (THS2). LTO2 stands for the
second leading leg toe off. Events are the average across subjects. X-axis data was shown up to the length of the shortest trial.

UA-COS and UA-SSS. In One-Trial, UA-SS and UA-CO were
largely misclassified, whereas misclassification of UA-COS and
UA-SSS as each other significantly dropped to ∼12% and their

recognition accuracies improved to ≥70%. Including ≥2 bouts
of a given target transition was shown to remarkably reduce
misclassification rates especially for UA-CO, UA-SS, and UA-W.
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Darker diagonal and lighter off-diagonal shades using paradigms
with more target task trials are indicative of the same fact.

DISCUSSION

Little is known about the influence of task anticipation and
changes of direction on locomotion recognition. Increased speed
during changes of direction relative to normal gait (Rand and
Ohtsuki, 2000; Besier et al., 2003; Inaba et al., 2013) has
been shown to decrease gait stability and cause the tasks to
require increased levels of coordination especially when are
unanticipated (Kang and Dingwell, 2008). These findings further
emphasize the need to better inform assistive device for use
during locomotor transitions, so that device utility and user safety
can be improved. We introduced a set of classification schemes
and tested their performances in identifying level-ground
walking, 45◦ changes of direction (cuts), and cut to stair ascent
performed under anticipated and unanticipated conditions.

Our first hypothesis that anticipatory state of the locomotor
transition would impact locomotion recognition accuracy was
supported. Investigating the performance of Zero-Trial approach

in classifying anticipated versus unanticipated maneuvers
indicated substantially different outcomes (Table 1 vs Table 2)
which could be the result of substantial differences in lower
extremity kinematics between the two conditions (Besier et al.,
2001; Weinhandl et al., 2013; Meinerz et al., 2015). Biomechanics
adaptation to the upcoming anticipatory locomotor task begins
as early as three strides before the transition (Wu et al., 2015;
Peng et al., 2016). Low error values prior to initiating locomotor
transition (i.e., TTO1) in anticipated tasks (Figure 3), could
be indicative of the modification of subject’s kinematics in
the most optimal way during the preparatory phase of such
maneuvers. In real-time implementation, early detection would
also mean more time for an assistive device to react and support
the maneuver. In contrast, unanticipated locomotor tasks were
shown to be highly misclassified prior to and immediately
after entering the locomotor transition (TTO1) (Figure 6).
Neuromechanical adjustments of lower extremity are highly
dependent on the task anticipatory state and the preparatory
period preceding the transition (Meinerz et al., 2015; Wu et al.,
2015). Lack of preparatory time in unanticipated maneuvers
could cause high levels of kinematic dissimilarity between trials
of a given transition performed under two different anticipatory

TABLE 2 | Confusion matrices for unanticipated locomotor tasks using varying training paradigms.

Training paradigm Target mode Predicted mode

UA-CO UA-COS UA-SS UA-SSS UA-W

UA-CO 25.6 (27.7) 5.7 (2.5) 59.0 (30.9) 3.1 (2.2) 6.6 (8.3)

UA-COS 3.0 (3.4) 51.0 (16.2) 5.6 (4) 40.3 (17.8) 0.1 (0.1)

Zero-Trial UA-SS 34.3 (12.5) 4.4 (2.3) 55.7 (14.3) 4.0 (2.9) 1.6 (1.1)

UA-SSS 6.5 (7) 43.1 (6.4) 7.5 (5.9) 41.8 (12.3) 1.1 (1.8)

UA-W 30.2 (9.7) 13.2 (10.3) 35.3 (16.9) 13.5 (2.1) 7.7 (8.6)

UA-CO 44.0 (24.6) 2.6 (3.2) 44.9 (21.4) 1.6 (1.1) 6.9 (6.6)

UA-COS 3.3 (2.3) 78.0 (10.2) 4.8 (2.9) 12.2 (10.5) 1.8 (1.1)

One-Trial UA-SS 32.2 (22.4) 8.2 (6.1) 50.7 (25.6) 3.3 (2.09) 5.7 (3.2)

UA-SSS 7.4 (5.5) 12.8 (6.3) 3.3 (1.4) 73.0 (6.8) 3.5 (5.6)

UA-W 20.4 (11.7) 8.4 (7.3) 13.7 (5.4) 7.5 (3.4) 50.0 (22.4)

UA-CO 61.7 (14.0) 2.2 (3.1) 25.8 (14.7) 3.0 (4.4) 7.3 (4.5)

UA-COS 1.1 (0.8) 85.1 (7.2) 3.0 (2.8) 8.4 (7.9) 2.4 (2.3)

Two-Trials UA-SS 20.6 (12.8) 6.6 (4.8) 64.5 (10.4) 4.0 (4.4) 4.3 (4.4)

UA-SSS 4.1 (3.5) 10.5 (7.2) 2.9 (1.7) 80.2 (11.1) 2.3 (1.9)

UA-W 13.3 (12.8) 5.2 (5.9) 10.5 (8.6) 6.5 (3.7) 64.4 (24.7)

UA-CO 72.6 (16.9) 1.6 (1.1) 7.7 (5.9) 7.2 (4.5) 10.9 (8.7)

UA-COS 2.7 (1.8) 84.1 (11.6) 3.9 (2.4) 3.4 (3.8) 6.0 (6.5)

All-UA UA-SS 8.5 (1.8) 3.6 (3.5) 74.0 (3.4) 4.0 (3.6) 9.9 (3.3)

UA-SSS 8.2 (5.04) 3.5 (1.6) 1.9 (1.2) 80.8 (2.9) 5.5 (1.9)

UA-W 8.2 (5.3) 4.3 (1.1) 8.2 (3.8) 2.4 (2.5) 76.9 (4.6)

UA-CO 72.6 (6.7) 0.5 (0.3) 16.2 (4.5) 6.2 (5.2) 4.5 (1.8)

UA-COS 2.3 (3.6) 86.0 (7.7) 2.3 (1.5) 4.9 (2.9) 4.4 (3.9)

UA-A UA-SS 15.9 (11.08) 2.2 (0.8) 74.8 (10.0) 0.9 (1.5) 6.1 (3.3)

UA-SSS 4.5 (3.5) 5.4 (3.4) 1.8 (2.5) 86.6 (4.9) 1.6 (1.4)

UA-W 12.0 (6) 4.9 (1.6) 10.5 (7.2) 1.6 (1.6) 70.9 (7.2)

Values represent mean (standard deviation). Diagonal elements with darker shades appeared as training paradigms with more repetitions of target task were used, with
off-diagonal elements appearing lighter indicating lower misclassification level.
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states, as well as high gait variability between the trials of a
particular unanticipated task (Stokes et al., 2017), resulting in
poor generalization of the classification model to the test data.
These could be the underlying cause of diminished accuracy
rates in unanticipated locomotor tasks and imply the fact that a
classification scheme designed for a given anticipatory state may
not perform as well under a different state, unless the training
paradigm is adapted.

We also hypothesized that including bouts of target task
in the training data would lead to improved recognition of
unanticipated locomotion modes. This hypothesis was supported
as well. However, the level of impact was moderately different
across varying locomotion modes. For instance, a given training
paradigm with exposures of unanticipated target task, provided
higher accuracy rates in mixed transitions (i.e., cuts to stair
ascent) compared to single transitions (i.e., cuts on level ground)
and straight walking locomotion (Table 2). Only two bouts
of target tasks were sufficient to normalize the data to the
target-task anticipatory state and provide ≥80% accuracy in
recognition of mixed transitions. However, in single transitions
and straight walking, even the paradigms with the maximum
amount of unanticipated information appeared to have lower
accuracies (∼70%–74%). In mixed transitions, using training
paradigms with a few unanticipated bouts led to error trends
with a significant drop prior to THS2 (Figure 6). In contrast,
substantial unanticipated information was required (five bouts)
to provide similar trends and relatively robust recognition of
single transitions over time (Figure 6). One explanation for
more accurate recognition of mixed transitions might come from
significant kinematic alterations in both horizontal and vertical
planes during changes of terrain (e.g., level ground to stair ascent)
(Andersson et al., 1980; Rowe et al., 2000) relative to the tasks
performed on level ground (e.g., single transitions). To prepare
for the increased demands of terrain change, biomechanical
alterations are made as early as when an individual knows they
are going to make a transition (i.e., TTO1 in unanticipated tasks)
(Sheehan and Gottschall, 2011; Peng et al., 2016). This results
in unique differences during the transition that precedes stairs
versus level ground. Increased lower-limb joints ranges of motion
during mixed transitions could provide more discriminating and
predictive information for the classifier, allowing relatively good
generalization to unanticipated state even with minimal number
of target-task bouts.

In the presence of unanticipated perturbations, kinematic
variability becomes substantially higher (Stokes et al., 2017)
posing a difficult classification problem as unanticipated
locomotion modes have high intra-class variation (Theodoridis
and Koutroumbas, 2008). However, as the number of strides
following the perturbation increases, the impact of perturbation
on recruited muscle synergies subsides (Dingwell et al., 2001;
Chvatal and Ting, 2013). Thus, lower gait variation and higher
stability are expected as the tasks progress toward the end,
which could explain lower errors and more steady and robust
error patterns as the transitions continue (Figure 6). The error
patterns reached their minimum at approximately 200 ms prior
to transitioning (trailing) leg heel strike (THS2), and remained
almost steady afterwards (Figure 6), suggesting that a device

worn on the trailing leg could have sufficient time to correct
its mode and adjust its parameters in a smooth manner to
accommodate the upcoming heel strike during unanticipated
cuts, cut-to-stair ascent, and straight walking.

Our third hypothesis regarding improved accuracy with larger
analysis windows was partially supported. Altering analysis
windows did not result in a significant change in recognition
accuracy except in UA-W, where only increasing window length
from 100 to 500/600 ms led to improved outcomes. This could
be due to the fact that larger window lengths contain more
gait information which represent them as a more suitable
option for slower locomotor tasks such as level-ground walking
(Shirota et al., 2014). Highly overlapping error patterns were
observed across the range of window lengths tested (Figure 5).
Nonetheless, larger windows length would increase time delays
in recognizing the locomotion mode, which should be taken into
account in assistive device applications, where such delays could
compromise the real-time control of the device.

Continuous classification utilized in this study is another
factor that could explain the outcomes. The majority of
control systems for lower-limb assistive devices are phase/event
dependent, meaning the locomotion is identified when specific
gait events occur (e.g., heel strike and toe off) (Young et al.,
2014b). Since such systems cannot continuously predict user’s
intended movements and there is a delay between consecutive
decisions, smooth transitions between locomotor activities is
challenged. Another drawback of phase-dependent approaches
is their inability to handle unexpected events such as tripping
(Shirota et al., 2014), or within-cycle changes of locomotor
mode. In contrast, continuous classification can provide higher
levels of maneuverability for the assistive device by allowing
the mechanical response of the devices to be optimally
adjusted during locomotion and adapt to changes according
to the classifier prediction. However, since the variability of
kinematic information is significantly higher across the entire
trial compared to between only specific gait events, continuous
classification is a more complicated case for the recognition
system than event dependent. This makes it more challenging
for the classifier to associate patterns in the target ambulation
mode with the training data which could result in lower accuracy
rates. Nonetheless, incorporating classification models allowing
recursive update of classification parameters as the subject
performs the task and according to new input data, could
provide the system with the ability to adapt to environment
changes, and could lead to improved system robustness across
multiple sessions.

Overall, although correctly identifying unanticipated
maneuvers is essential to prevent the users from potential
stumbles and falls, handling unanticipated maneuvers is still
a challenge in assistive device technology. According to the
findings, including repetitions of target locomotion mode
to the training data helps to normalize the classifier to the
anticipatory state of the task, and was highly beneficial for
reducing recognition errors of unanticipated locomotion.
Whereas, altering analysis window size did not have significant
influence. This study suggest that one practical approach to
handle recognition of unanticipated tasks, rather than increasing
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classifier’s complexity, may be to adjust the training scheme where
subjects execute small numbers of trials of the given task and/or
to temporally adapt the classifier online based on the data that
arrive continually (Spanias et al., 2017).

The study has some limitations. Only able-bodied individuals
participated in this study. Future research should investigate
subjects with gait impairments (e.g., lower-limb amputees)
walking on assistive devices to test the generalizability of the
finding of this study to individuals with mobility disorders.
Human anthropometrics and their effect on human kinematics
are other factors that need to be taken into consideration in future
research. Studies have reported that anthropometric factors such
as trunk and thigh length significantly affect knee and hip
joint angles and range of motion in the lower limbs during
certain tasks (Demers et al., 2018). Moissenet et al. (2019) also
highlighted the fact that anthropometric parameters significantly
influence gait kinematics. In our future work, we expect to
investigate these effects using a larger subject pool with higher
anthropometric variability.

In addition, classifier’s input data include fusion of kinematic
signals from lower-limb and torso. It is possible that a
subset this information would provide comparable outcomes
(Kazemimoghadam and Fey, 2020) improving efficacy of the
system. Future studies should attempt to reduce input signals
redundancy by identifying the sources necessary for accurately
recognizing the user’s intended tasks.

Biomechanical data used in this paper were extracted using
a camera-based motion capture system, and we have not tested
these approaches using physical sensors. Previous work has
demonstrated comparable kinematics measurements using body-
worn sensors and motion-capture data (Mayagoitia et al., 2002;
Aziz et al., 2014), and many techniques exist to take inherent
characteristics of physical sensors into consideration (Metni
et al., 2006; Gallego et al., 2010; Spielvogel and Whitcomb,

2019). However, errors in actual physical sensors (e.g., inertial
measurement unites, IMUs) data such as bias and drift may
still affect system performance and should be considered
in future studies.
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