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Abstract 

Background: DNA methylation differences are associated with kidney function and diabetic 

kidney disease (DKD), but prospective studies are scarce. Therefore, we aimed to study DNA 

methylation in a prospective setting in the Finnish Diabetic Nephropathy Study type 1 diabetes 

(T1D) cohort. 

Methods: We analysed baseline blood sample-derived DNA methylation (Illumina’s EPIC 

array) of 403 individuals with normal albumin excretion rate (early progression group) and 373 

individuals with severe albuminuria (late progression group) and followed-up their DKD 

progression defined as decrease in eGFR to <60 mL/min/1.73m2 (early DKD progression 

group; median follow-up 13.1 years) or end-stage kidney disease (ESKD) (late DKD 

progression group; median follow-up 8.4 years). We conducted two epigenome-wide 

association studies (EWASs) on DKD progression and sought methylation quantitative trait 

loci (meQTLs) for the lead CpGs to estimate genetic contribution. 

Results: Altogether, 14 methylation sites were associated with DKD progression (P<9.4×10–

8). Methylation at cg01730944 near CDKN1C and at other CpGs associated with early DKD 

progression were not correlated with baseline eGFR, whereas late progression CpGs were 

strongly associated. Importantly, 13 of 14 CpGs could be linked to a gene showing differential 

expression in DKD or chronic kidney disease. Higher methylation at the lead CpG cg17944885, 

a frequent finding in eGFR EWASs, was associated with ESKD risk (HR [95% CI] = 2.15 

[1.79, 2.58]). Additionally, we replicated meQTLs for cg17944885 and identified ten novel 

meQTL variants for other CpGs. Furthermore, survival models including the significant CpG 

sites showed increased predictive performance on top of clinical risk factors. 
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Conclusions: Our EWAS on early DKD progression identified a podocyte-specific CDKN1C 

locus. EWAS on late progression proposed novel CpGs for ESKD risk and confirmed 

previously known sites for kidney function. Since DNA methylation signals could improve 

disease course prediction, a combination of blood-derived methylation sites could serve as a 

potential prognostic biomarker. 
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BACKGROUND 1 

Diabetic kidney disease (DKD) is a devastating complication of diabetes. One-third of 2 

individuals with type 1 diabetes (T1D) and severe albuminuria develop end-stage kidney 3 

disease (ESKD).1 Genetic variability affects the risk of DKD2,3 but recent studies highlight the 4 

role of epigenetics as well.4 One common type of epigenetic modification is DNA methylation, 5 

i.e., the attachment of a methyl group at cytosine-guanine dinucleotide (CpG), which 6 

contributes to the regulation of gene expression. Epigenome-wide association studies (EWASs) 7 

with blood-derived methylation data have identified methylation sites associated with DKD5–8 8 

and ESKD9 in T1D. Additionally, kidney function, assessed by estimated glomerular filtration 9 

rate (eGFR), is associated with DNA methylation, both in individuals with10–12 and without13–10 

15 diabetes. Remarkably, some top findings, such as methylation site cg17944885 located in a 11 

zinc finger gene cluster, have replicated across studies in diabetes cohorts, the general 12 

population, and, importantly, multiple ethnic groups. Thus, DNA methylation studies may 13 

provide both insights into causal disease pathways and robust prognostic biomarkers to identify 14 

individuals at risk. 15 

Epigenetic changes may be dynamic, and changes in DNA methylation can represent either the 16 

cause or consequence of DKD. Hyperglycemia can alter DNA methylation, and thereby 17 

contribute to metabolic memory — the prolonged effect of hyperglycemia on microvascular 18 

complications, even years after the improvement of hyperglycemia.16,17  19 

Additionally, genetic variation can regulate DNA methylation.18,19 Importantly, methylation 20 

quantitative trait loci (meQTLs) can be used to infer causality: We recently identified a 21 

methylation site in REV1 as causally linked to DKD in T1D.7 22 
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In diabetes, a cross-sectional study of 119 individuals showed differential blood DNA 23 

methylation at the early and late stage of DKD.20 Furthermore, we have previously shown that 24 

21 of 32 DKD-associated CpGs associated with progression to ESKD7, and recently, an EWAS 25 

on DKD progression to ESKD identified 17 associated CpGs.21 However, no EWAS has yet 26 

explored CpGs associated with early progression of DKD in T1D. Here, we employed a 27 

prospective study setting and analysed baseline DNA methylation as a predictive biomarker of 28 

DKD progression both at the early and late stages of DKD in T1D. Additionally, we searched 29 

for meQTLs and serum protein associations for our key methylation findings. 30 

METHODS 31 

Cohorts 32 

The study participants were from the ongoing multicentre Finnish Diabetic Nephropathy 33 

(FinnDiane) Study that is approved by the Ethics Committee of Helsinki University Central 34 

Hospital (491/E5/2006, 238/13/03/00/2015, and HUS-3313-2018) and follows the Declaration 35 

of Helsinki. At the study visit, after signing an informed consent, the participants complete 36 

questionnaires with the attending nurse or physician, and basic anthropometric measurements 37 

are taken.22 Blood samples are drawn for DNA extraction and, e.g., for serum creatinine 38 

measurement. Albuminuria classification is based on two of three consecutive 24-hour or timed 39 

overnight urine collections. 40 

DKD progression: The early DKD progression sub-cohort comprised 403 individuals (Figure 41 

1) with T1D duration ≥10 years, normal albumin excretion rate (AER<30 mg/24h or <20 42 

μg/min), and eGFR≥60 mL/min/1.73m2. We collected serum creatinine data from baseline 43 

visits and medical records until March 10, 2022, converted Jaffe-method measurements to 44 

IDMS units (CreatinineIDMS=0.953×CreatinineJaffe–7.261), and calculated eGFR using the 45 

revised Chronic Kidney Disease - Epidemiology Collaboration formula (CKD-EPI).23 Early 46 
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DKD progression was defined as eGFR<60 mL/min/1.73m2. Thus, the follow-up time was 47 

years between the baseline visit and the first date of eGFR<60 mL/min/1.73m2 or the latest 48 

available eGFR data point. 49 

The 373 participants in the late DKD progression sub-cohort had T1D and severe albuminuria 50 

(AER>300 mg/24h or >200 μg/min) and eGFR>15 mL/min/1.73m2, at baseline. We collected 51 

data on ESKD, defined as requiring dialysis and/or a transplant, and data on mortality from the 52 

Finnish Care Register for Health Care, study visit questionnaires, and medical records. For 53 

individuals not yet treated for ESKD, an eGFR record <15 mL/min/1.73m2 was considered an 54 

ESKD event. The participants were followed up until the event, death, or December 31, 2020. 55 

Longitudinal samples: Altogether 52 individuals had DNA samples available at two time 56 

points, 3.6–16.4 years apart. Of them, 45 had the second DNA sample analysed as part of the 57 

DKD progression cohorts (Supplemental Figure 1), whereas seven individuals were new. 30 58 

of 52 individuals had normal AER and eGFR>60 mL/min/1.73m2 at both time points. The 59 

remaining 22 individuals had normal AER (n=8) or moderate albuminuria (n=14; AER 60 

between 30–300 mg/24h or 20–200 µg/min) at the first time point and progressed to severe 61 

albuminuria during follow-up. Additionally, we calculated eGFR slopes between the time 62 

points from ≥3 eGFR values ranging over two years. 63 

DNA methylation assessment 64 

We analysed blood-derived genome-wide DNA methylation with Infinium HD 65 

MethylationEPIC v1.0 BeadChip (Illumina, San Diego, CA, USA) within the Northern Ireland 66 

Regional Genetics Centre in Belfast. Altogether 798 samples were from our previous cross-67 

sectional DKD EWAS7, while 100 were new. The quality control (QC) process details are in 68 

Supplemental Methods. In brief, from 898 samples and 866,895 methylation probes, one 69 
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sample and 105,357 probes were removed during QC. Thereafter, we extracted methylation M-70 

values of the remaining 761,538 methylation probes from 897 samples using 'RnBeads'. 71 

Additionally, we calculated principal components (PC) from the non-negative control probe 72 

intensities and mean methylation (mean M-value) of probes known to have invariable 73 

methylation levels in blood-based DNA.24 These variables were used in the subsequent EWASs 74 

to correct for technical deviations. 75 

Statistical analysis 76 

DKD progression: We analysed associations between each methylation site and DKD 77 

progression separately for the early and late DKD progression cohorts using a Cox 78 

proportional-hazards model adjusted for sex, baseline age, six estimated white blood cell 79 

counts (WCCs), PCs 1–3, and intrapersonal mean M from invariable sites. The second model 80 

included baseline eGFR as an additional covariate. Significance threshold was P<9.4×10–8, as 81 

recommended for the EPIC array.25 82 

Longitudinal analyses: Using longitudinal data, we compared methylation change 83 

(Δmethylation) over time between DKD progressors and non-progressors using logistic 84 

regression and residualised methylation values (Supplemental Methods). Additionally, we 85 

tested the association between eGFR slope (dependent variable) and Δmethylation using linear 86 

regression (Supplemental Methods). 87 

Replication: We included several look-up replication cohorts: United Kingdom and Republic 88 

of Ireland (UK-ROI, n=372) T1D cohort with DKD EWAS data7, Joslin Kidney Study with 89 

prospective kidney failure EWAS data (n=277)21 as well as eGFR-EWAS summary statistics 90 

from the Chronic Renal Insufficiency cohort (CRIC)10, the Hong Kong diabetes register11, and 91 

the general population.13–15 To assess whether diabetes contributed to the associations, we 92 
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compared ESKD-DKD (n=108) vs. ESKD due to other causes (n=71)9, DKD (n=252, UK-93 

ROI) vs. individuals without diabetes nor kidney disease (n=340, from the Northern Ireland 94 

Cohort for the Longitudinal Study of Ageing (NICOLA), and ESKD-DKD (n=108, UK-95 

ROI/Renal Transplant Collection samples) vs. the 340 NICOLA participants. 96 

Sensitivity analyses: We tested the association with baseline eGFR and carried out both 10-97 

year-risk and competing risk analyses regarding late DKD progression. Additionally, we 98 

studied pleiotropy with correlation analysis of the methylation data and baseline characteristics 99 

(Supplemental Methods).  100 

Predictive power: We compared the concordance indices (C-index) of Cox models using 101 

clinical risk factors, both with and without CpG methylation values. The chosen clinical 102 

variables were associated with (early or late) DKD progression in a univariable (P<0.25) and 103 

multivariable Cox regression models (P<0.10). Additionally, we included age, sex, and 104 

methylation assay QC-variables in all models, including the clinical model, to separate the 105 

methylation effect from technical variability. We compared models: 1) clinical variables, 2) 106 

clinical variables and baseline eGFR, and 3) clinical variables, eGFR, and CpG methylation. 107 

Additionally, we created a model incorporating all significant CpGs with clinical variables and 108 

eGFR to study the cumulative effect. An increase in the C-index (P<0.05) was considered 109 

significant. 110 

Annotation of methylation sites 111 

CpG location: We examined the overlap of CpG genomic locations with kidney open 112 

chromatin peaks26−28 utilising the Susztaklab Kidney Biobank29, with TF motifs30,31, 113 

quantitative trait methylation (eQTMs) datasets27,34-36,37, and meQTLs32,33. We performed a 114 
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meQTL analysis to identify local (cis, ±1 Mb) and distal (trans) genetic effects for the CpGs 115 

(Supplemental Methods).  116 

Gene expression in the kidney: Differential gene expression in human diabetic kidneys, was 117 

studied in datasets 38,39,40,41 collected into the Nephroseq database v542 (Supplemental 118 

Methods). Additionally, we studied two human DKD kidney tissue gene expression 119 

datasets43,44, preprocessed similarly to the previous study.45 Kidney single-cell gene expression 120 

data46 were accessed through the Kidney Interactive Transcriptomics database.47 121 

Protein expression —Serum proteome data measured with OLINK® Ht assay at SciLifeLab in 122 

Uppsala were available for 188 individuals with normal AER (main analysis group) and 127 123 

individuals with severe albuminuria (replication group). We analysed the association between 124 

methylation and proteins levels of cis-located genes (i.e., cis protein quantitative trait 125 

methylation (cis-pQTM), Supplemental Methods). 126 

Enrichment analysis — We analysed the enrichment of Gene ontology (GO) terms and Kyoto 127 

Encyclopedia of Genes and Genomes (KEGG) pathways with the R package 'missMethyl' 128 

(v.1.22.0) gometh-function for early and late DKD progression separately.  Additionally, we 129 

assessed CpG trait enrichment using EWAS Toolkit.48 130 

RESULTS 131 

CpGs associated with DKD progression 132 

In the early DKD progression cohort of 403 individuals, 37% were women, and mean age was 133 

42 years (Table 1). Over the 13.1-year (interquartile range: 8.4–16.9) follow-up, DKD 134 

progressed in 49 individuals. EWAS identified two methylation sites significantly associated 135 

(P<9.4×10–8) with early DKD progression: cg25013571 between PLPBP and ADGRA2 (HR 136 
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[95%CI] = 3.35 [2.18, 5.13]) and cg05831784 in HAO1 (0.42 [0.30, 0.57]; Table 2, Figure 2, 137 

Supplemental Figure 2). Cg25013571 (PLPBP/ADGRA2) remained significant in EWAS 138 

adjusted for baseline eGFR, whereby the cg05831784 (HAO1) association was modestly 139 

attenuated. Furthermore, in eGFR-adjusted EWAS, cg06334496 in TMEM70 and cg01730944 140 

close to the transcription start site (TSS) of CDKN1C, alias p57Kip2, were significantly 141 

associated with early DKD progression. Cg01730944 was generally hypomethylated (beta-142 

values<0.05) (Figure 3A, Supplemental Figure 3), and low methylation values were 143 

associated with risk of DKD progression (Figure 3B). 144 

The 373 individuals with severe albuminuria at baseline were followed-up for a median of 8.4 145 

(interquartile range: 4.1–15.4) years. Altogether, 38% were women, and mean age 43 years. 146 

Individuals (n=206, 55%) who developed ESKD had lower baseline eGFR compared to those 147 

167 who did not progress to ESKD (43.5 vs. 84.9 mL/min/1.73m2, Table 1). 148 

EWAS on late DKD progression identified ten significant CpGs (P<9.4×10–8) from nine 149 

genomic loci (Table 2). Higher methylation at the top site cg17944885 between ZNF788P and 150 

ZNF625-ZNF20 (chr19p13.2) was associated with ESKD risk (HR [95%CI] = 2.15 [1.79, 151 

2.58]). The nine additional CpGs exhibited lower methylation as risk for progression of DKD 152 

to ESKD (HRs<1.0), supporting the previously suggested trend of general hypomethylation in 153 

advanced DKD.8 In competing risk analysis (n=51 death events), eight CpGs remained 154 

significantly associated with ESKD risk (Supplemental Table 1). 155 

The top ten CpGs were associated with baseline eGFR (Table 2), which likely attenuated their 156 

association with ESKD risk in the eGFR-adjusted EWAS (Supplemental Table 2), where no 157 

epigenome-wide significant associations were seen (Supplemental Figure 4). 158 
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Longitudinal dataset showed that methylation levels of the 14 DKD progression-associated 159 

CpGs seemed relatively stable over time: only at cg17944885 (chr19p13.2) progressors from 160 

normal AER to severe albuminuria had increase in methylation, i.e., in the expected direction, 161 

when compared to non-progressors (P=0.049; non-significant after Bonferroni-correction; 162 

Supplemental Figures 5 and 6). No association between Δmethylation and eGFR slope was 163 

observed (Supplemental Table 3). 164 

Replication 165 

We studied several EWAS datasets to validate the lead findings. Notably, the CpGs associated 166 

with early DKD progression were not associated with eGFR, implying that EWASs on eGFR 167 

are unsuitable for replicating these signals, and no cohort with a comparable early progression 168 

phenotype and EWAS data currently exists. Nevertheless, three of four early DKD progression-169 

associated CpGs showed differential methylation in DKD (n=252) compared to healthy 170 

individuals (n=340) without diabetes and kidney disease: cg25013571 (PLPBP/ADGRA2), 171 

cg05831784 (HAO1), and cg01730944 (CDKN1C), (P-values<1.4×10–6, Supplemental Table 172 

4). 173 

Eight of ten late DKD progression-associated CpGs were nominally (P<0.05) or significantly 174 

(P<3.6×10–3; Bonferroni correction) associated with eGFR in the replication datasets. 175 

Remarkably, higher methylation at cg17944885 (chr19p13.2) was consistently associated with 176 

lower eGFR in five eGFR EWASs (P<1.4×10–9), DKD in the UK-ROI cohort (P=9.5×10–16), 177 

and risk of ESKD in the JKS cohort (P<6.2×10–4). Additionally, cg00994936 and cg12272104 178 

(DAZAP1) were robustly replicated; Cg12272104 is already a known eGFR-associated CpG.13 179 

Notably, the novel cg21871803 (AHCYL2) was significantly replicated in the eGFR slope 180 

EWAS (P=1.3×10–4)11 and nominally in EWAS on DKD progression to ESKD21. 181 
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Association with clinical variables 182 

Methylation sites associated with early DKD progression correlated only modestly with 183 

baseline clinical variables indicating that methylation at these sites is not strongly affected by 184 

these factors (Supplemental Figure 7). Nine of ten late DKD progression-associated CpGs 185 

correlated with baseline eGFR and only modestly with other clinical variables; for instance, 186 

only two sites correlated with HbA1c (Supplemental Figure 8). Interestingly, methylation 187 

values of late DKD progression-associated CpGs correlated with one another (Supplemental 188 

Figure 9). 189 

Prediction of kidney outcomes 190 

When predicting early DKD progression, baseline eGFR did not improve the clinical model: 191 

the C-index was 0.783 vs. 0.775 (Cox model with clinical variables). This implies that baseline 192 

eGFR does not help distinguishing early DKD progressors. The top four CpG sites, separately, 193 

did not improve the model (Supplemental Figure 10), whereas a model including all four 194 

performed better compared with a model with clinical variables and eGFR (C-index 0.859 vs. 195 

0.783, P=0.01, Figure 4). 196 

As expected, adding baseline eGFR into the clinical model improved the Cox model for late 197 

DKD progression (C-index 0.838 vs. 0.691, P<0.001). The significant CpGs, separately, did 198 

not improve the model (Supplemental Figure 11) but a model including them all outperformed 199 

the clinical model with eGFR (C-index 0.849 vs. 0.838, P=0.03). 200 

meQTLs 201 

We subsequently studied the impact of genetic variability on methylation levels at the top sites. 202 

We identified nine independent cis-meQTLs associated with methylation at seven CpGs 203 

(P<0.05 at FDR<0.05, Table 3, Supplemental Table 5). These included rs555097 for 204 
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cg14999724 (RP11-872D17.8) without prior cis-meQTLs in the Genetics of DNA Methylation 205 

Consortium (GoDMC) data (Supplemental Figure 12). Our lead cis-meQTL rs4804653 for 206 

cg17944885 (chr19p13.2) was found also in the general population (GoDMC). 207 

The 68 trans-meQTLs on chromosome 16 for cg17944885 were in linkage disequilibrium 208 

(r2>0.19, 1000 Genomes Finnish population data; LDlink).49 This locus affects (in trans) the 209 

expression of zinc finger genes at chr19p13.250 and methylation at several loci19. The lead 210 

trans-meQTL rs17611866, a missense variant p.Val325Ala in ZNF75A, associates with the 211 

expression of nearby genes.51 Interestingly, three of the 45 CpGs regulated by rs1761186619 212 

showed significant (cg17944885, chr19p13.2) or suggestive (P<10–4; cg18470038 [chr12] and 213 

cg06158227 [chr15]) association with late DKD progression in our EWAS (Figure 5). 214 

Furthermore, cg06158227 (chr15) was identified in an eGFR-EWAS.13 215 

To investigate meQTL loci, we conducted phenome-wide association studies (PheWASs) in 216 

the Finnish biobank data FinnGen52,53 and T1D knowledge portal.54 Although the robust trans-217 

meQTL rs17611866 in ZNF75A showed no significant associations, rs1447267563 near 218 

ZNF75A was the lead variant for "cystic kidney disease" and among the lead loci for 219 

"Congenital malformations of the urinary system", supporting the link between this locus and 220 

kidney health. Furthermore, rs555097 (meQTL for cg14999724/RP11-872D17.8) associated 221 

with Cystatin C, rs12198601 (cg05831784/HAO1) with DKD, and rs34622118 222 

(cg12272104/DAZAP1) with ESKD vs. macroalbuminuria analysis (Supplemental Table 6). 223 

Altogether, these associations between kidney traits and meQTLs support the importance of 224 

our top methylation sites in kidney disease. 225 

Gene and protein expression evidence 226 
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We investigated whether our top methylation sites were associated with gene expression. In 227 

blood cells, only cg17944885 was a significant cis-eQTM (Table 4). Remarkably, when 228 

examining data on other tissues including kidneys, 8 of 14 CpGs were significant eQTM for 229 

the closest gene (Table 4, Supplemental Table 7). 230 

Our cis-pQTM analysis showed that cg14999724 methylation was associated with serum 231 

proteoglycan 3 levels, produced by the nearby PRG3 gene (beta=–0.18, SE=0.04, P=1.7×10–5, 232 

Supplemental Figure 13, Supplemental Table 8). While PRG3 shows limited expression in 233 

kidneys, it is over-expressed in CKD tubules41 and collecting duct in diabetes46,47 234 

(Supplemental Figure 14). 235 

We additionally studied whether the closest or eQTM-genes for the top CpGs show altered 236 

expression in kidney disease. Notably, for 13 of 14 CpGs, the related gene was differentially 237 

expressed in CKD/DKD (P<1.5×10–3) or associated with eGFR in human kidneys 238 

(Supplemental Table 9). For example, CDKN1C (near cg01730944) showed lower expression 239 

in DKD in glomeruli38 (FC=−4.95, Figure 3E) and tubules40 (FC=−1.55). Additionally, 240 

AHCYL2 (near cg21871803) expression in glomeruli and tubules correlated with kidney 241 

function (r=0.34).40 For cg17944885 (chr19p13.2), four zinc finger eQTM-genes were 242 

nominally or significantly (ZNF136) upregulated in CKD tubules.41 243 

In whole kidney samples44
, 13 related genes were differentially expressed in advanced vs. early 244 

DKD, implying true biological differences related to the disease stage and justifying separate 245 

analyses like ours (Supplemental Table 10). 246 

Open chromatin and TFs 247 
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Early DKD progression-associated cg05831784 (HAO1), cg01730944 (CDKN1C, Figure 3C), 248 

and cg06334496 (TMEM70) located at open chromatin peaks27 in kidneys, thus, at potential 249 

regulatory regions or actively transcribed DNA. The late DKD progression-associated loci 250 

located outside of open chromatin. 251 

Furthermore, CpGs associated with early DKD progression overlapped with several TF 252 

motifs30 (Supplemental Table 11). For example, cg01730944 (CDKN1C) overlapped with 253 

EGR1 that is upregulated in hyperglycemia55, exacerbates mesangial cell proliferation55, and 254 

contributes to tubular fibrosis in diabetes56. Taken together, snATAC-seq and TF analyses 255 

suggest that genomic regions at the novel early DKD progression -associated CpGs might have 256 

functional implications and, thus, potential relevance regarding disease progression. 257 

Enrichment analysis 258 

Genes related to CpGs with EWAS P<1×10−4 were not enriched in GO terms or KEGG 259 

pathways at FDR<0.05 (Supplemental Figures 15 and 16). In trait enrichment analysis, early 260 

DKD progression-associated CpGs were enriched in “exposure on glucocorticoids” EWAS 261 

results57 (OR=4.5, P=1.3×10–4). Notably, glucocorticoids are anti-inflammatory medications 262 

used to improve kidney function in non-diabetic kidney disease. For late DKD progression, 263 

“estimated glomerular filtration rate” and “kidney disease” were among the enriched traits, 264 

demonstrating the consistency of our prospective EWAS with previous studies (Supplemental 265 

Figure 17). 266 

DISCUSSION  267 

We and others have reported cross-sectional associations between DNA methylation and DKD 268 

or eGFR and have explored the potential of CpG methylation to predict ESKD.7,21 To our 269 

knowledge, this is the first EWAS on early progression of DKD in T1D, and the largest study 270 
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to investigate CpGs associated with late progression of DKD to ESKD. We identified four 271 

novel loci for early DKD progression, including the podocyte-specific CDKN1C locus. For late 272 

DKD progression, we discovered nine loci — including two previously reported and four novel 273 

sites with significant replication support from EWASs on eGFR, eGFR slope, or risk of ESKD. 274 

Methylation levels at the CpGs associated with early DKD progression were not associated 275 

with eGFR in our data, nor in other EWASs on eGFR. Furthermore, similar early DKD 276 

progression EWAS datasets are lacking, complicating efforts to find supportive evidence. 277 

Interestingly, CpGs at CDKN1C, the closest gene to cg01730944, were differentially 278 

methylated in individuals with diabetes on hemodialysis, in a study of 27,000 methylation sites 279 

in saliva samples.58 280 

CDKN1C is expressed almost exclusively in podocytes46, the key cell type for glomerular 281 

filtration. The Cancer Genome Atlas kidney expression data37 suggest that lower methylation at 282 

cg01730944 (risk of DKD progression) may be linked to higher CDKN1C expression; 283 

however, human DKD kidney datasets consistently showed lower CDKN1C expression. Thus, 284 

further eQTM evidence for cg01730944 is needed. Nevertheless, proximity to the TSS and 285 

overlap with several putative TF motifs suggest that cg01730944 methylation might regulate 286 

transcription. Notably, EGR1, a TF with a DNA-binding motif overlapping cg01730944, was 287 

upregulated in podocytes in individuals with diabetic nephropathy and preserved eGFR.46 288 

Further, JASPAR TF data show that podocyte-specific KLF15 binds at the cg01730944 289 

location. Importantly, KLF15 overexpression in proteinuric mice was concomitant with 290 

upregulation of Cdkn1c and improved kidney health.59 Thus, previous research suggests that 291 

cg01730944 locus is important for kidney health, although more direct evidence is still needed. 292 

Notably, CDKN1C expression is regulated by the imprinting control region ICR2 such that 293 
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CDKN1C is expressed mainly from the maternal allele, whereby loss of methylation at ICR2 294 

decreases the expression.60,61 295 

The late DKD progression-associated cg17944885 (chr19p13.2) and cg00994936 (DAZAP1) 296 

are known eGFR loci, first identified by Chu et al.13 Here, we identified seven novel CpGs for 297 

ESKD risk in individuals with severe albuminuria. These sites were also associated with eGFR 298 

in our study, and CpGs at AHCYL2, TAOK2, CDKN2AIPNL, and RP11-872D17.8 also in other 299 

eGFR EWASs.13–15 Importantly, the association between cg14999724 (RP11-872D17.8) and 300 

ESKD risk was replicated in another prospective EWAS.21 We additionally identified a novel 301 

cis-meQTL rs555097 for cg14999724 and showed that a decrease in cg14999724 methylation 302 

(risk of ESKD) was associated with increase in serum PRG3 protein levels, in our data. 303 

However, we only found a trend in PRG3 levels between the meQTL genotypes, thus, at this 304 

site, no direct link can yet be drawn from the genetic variant, through methylation, to protein 305 

levels. While proteoglycans are components of the endothelial cell glycocalyx, a protective 306 

barrier often disrupted in diabetes-related microvascular complications62, proteoglycan PRG3 307 

is primarily expressed in the bone marrow. Nevertheless, PRG3 is overexpressed in kidney 308 

tubules in CKD. Thus, further research is needed to study its role in DKD. 309 

The novel methylation site cg21871803 for ESKD risk, with supporting evidence from eGFR 310 

EWASs, is in AHCYL2 (Supplemental Figure 18). AHCYL2 hydrolyzes S-adenosyl-L-311 

homocysteine into adenosine and L-homocysteine, a uremic toxin increased in CKD.63 Kidney 312 

gene expression data suggests that lower cg21871803 methylation (risk of ESKD) correlates 313 

with higher AHCYL2 expression. However, human kidney data are inconclusive: AHCYL2 was 314 

upregulated in CKD42 but downregulated in advanced DKD.44 315 
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We noticed a strong genetic influence on some methylation sites: We identified ten novel 316 

meQTLs and replicated cis- and trans-meQTLs for cg17944885. Interestingly, despite a high 317 

heritability of h2=0.419 and robust meQTLs, i.e., high genetic influence, cg17944885 318 

methylation does not seem to be causal for DKD.7 Thus, kidney function decline might trigger 319 

systemic perturbations that, possibly through meQTL loci, lead to cg17944885 320 

hypermethylation. Indeed, trans-meQTL locus genes ZNF75A and ZNF200 were 321 

downregulated in DKD (Nephroseq) and ZNF75A was under-expressed in individuals on 322 

hemodialysis due to CKD.64 323 

The cg17944885 locus (chr19p13.2) zinc finger TFs participate in silencing of endogenous 324 

retroviral sequences65, transposable elements whose elevated levels exacerbate kidney disease 325 

progression.66 Notably, chr19p13.2 locus genes are mostly upregulated in CKD tubules 326 

(Nephroseq), although cg17944885 hypermethylation (risk of ESRD) associate with lower 327 

expression in blood cells. Moreover, cg17944885 methylation appears dynamic: our 328 

longitudinal data showed a nominal increase in methylation in individuals with progressing 329 

DKD during follow-up. Further, blood-derived hypermethylation at cg17944885 reversed to 330 

normal after kidney transplantation.67 As the most replicated methylation site for kidney 331 

function, blood-derived methylation at cg17944885 is a potential general biomarker that, along 332 

with clinical factors and baseline eGFR, significantly improved the survival model for ESKD 333 

when combined with other methylation sites. Indeed, methylation risk scores for disease 334 

prediction are emerging.68,69 335 

Our prospective data are unique, but the study setting has its limitations. Individuals in the 336 

early DKD progression cohort had normal AER and good to moderate kidney function despite 337 

long-lasting diabetes. Notably, most individuals in this cohort were included in our cross-338 

sectional EWAS7, and unlikely included individuals with rapid DKD progression after diabetes 339 
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onset. Moreover, we did not evaluate prospective albuminuria. Therefore, some individuals 340 

with persisting eGFR>60 mL/min/1.73m2 may have developed albuminuria during follow-up 341 

potentially diluting our associations based on eGFR decline. Additionally, eGFR declines with 342 

aging, which we accounted for by adjusting the analysis for baseline age. Despite these 343 

limitations, we identified methylation sites near relevant genes, associated with future 344 

progression to DKD. 345 

To conclude, our two prospective EWASs on the progression of DKD in T1D identified novel 346 

methylation sites for kidney disease progression and highlighted again cg17944885 as a lead 347 

locus in kidney disease. Our findings support the role of a podocyte marker CDKN1C for the 348 

initiation of DKD and provide further evidence that DNA methylation can be used as a dynamic 349 

marker to improve prediction of early and late progression of DKD. 350 
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Table 1. Baseline characteristics of the study participants  

 
Early DKD progression cohort (n=403) Late DKD progression cohort (n=373) 

No event 
Event (eGFR decline 

<60) during follow-up 
No event 

Event (ESKD) 
during follow-up 

n 354 49 167 206 

Women, n (%) 131 (37) 20 (41) 53 (32) 89 (43) 

Age, years 42 ± 11 45 ± 14 43 ± 12 43 ± 10 

T1D duration, 
years 

27 ± 9 28 ± 12 30 ± 9 30 ± 10 

Systolic blood 
pressure, mmHg 

133 ± 18 135 ± 18 143 ± 17 149 ± 21 

Diastolic blood 
pressure, mmHg 

78 ± 8.6 78 ± 9.7 82 ± 9.9 84 ± 11 

Pulse pressure, 
mmHg 

55 ± 15 58 ± 19 61 ± 16 65 ± 19 

HbA1c, mmol/mol 

(%) 
66.2 ± 13.6 70.2 ± 15.8 71.7 ± 16.0 75.6 ± 18.0 

Central obesity, n 
(%) 

163 (46.4) 31 (66.0) 119 (73.0) 135 (66.5) 

Triglycerides, 
mg/dL 

82 (32, 113) 93 (75, 113) 113 (82, 165) 142 (105, 218) 

Granulocytes, % 63 (57, 70) 63 (57, 69) 67 (60, 73) 69 (64, 74) 

Monocytes, % 7 (5, 9) 8 (6, 9) 8 (6, 10) 8 (6, 9) 

CD4+ T-cells, % 11 (8, 14) 12 (8, 17) 10 (7, 13) 10 (6, 13) 

CD8+ T-cells, % 5 (2, 8) 3 (1, 8) 4 (2, 8) 4 (1, 7) 

B-cells, % 4 (2, 5) 3 (2, 5) 3 (2, 5) 2 (0.8, 4) 

NK-cells, % 4 (0.1, 7) 5 (1, 8) 0.9 (0.0, 4.6) 0.7 (0.0, 4.3) 

eGFR, 
mL/min/1.73 m2 

105 ± 14 100 ± 19 85 (71, 106) 44 (28, 67) 

Follow-up time, 
years 

13.5 (8.9, 17.3) 9.7 (4.4, 14.4) 14.1 (7.5, 21.3) 6.1 (2.9, 10.2) 

Data are expressed as mean ± standard deviation or median (interquartile range) 
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Table 2. Epigenome-wide significant methylation CpGs sites for the progression kidney 
disease 

CpG probe Chr Closest gene(s) 

Association with 
progression a 

Association 
with baseline 
eGFR in the 
sub-cohortb 

Association 
with baseline 
eGFR in the 
total cohort 

HR [95%CI] P P P 

Early DKD progression EWAS, n=403; n=49 eGFR decline <60 mL/min/1.73 m2 events 

cg25013571 8 
PLPBP and 
ADGRA2 

3.35 
[2.18,5.13] 

3.1×10–8 0.48 0.41 

cg05831784 20 HAO1 
0.42 
[0.30,0.57] 

4.8×10–8 0.002 0.23 

Early DKD progression EWAS, eGFR adjusted  

cg25013571 8 
PLPBP and 
ADGRA2 

3.53 
[2.25,5.54] 

4.1×10–8 0.48 0.41 

cg06334496 8 TMEM70 
0.12 
[0.06,0.26] 

4.5×10–8 0.58 0.70 

cg01730944 11 CDKN1C 
0.43 
[0.31,0.58] 

8.6×10–8 0.35 0.79 

Late DKD progression EWAS, n=373; n=206 ESKD events) 

cg06536988 4 TMEM154 
0.54 
[0.43,0.67] 

8.5×10–8 2.3×10–6 1.3×10–6 

cg03262246 5 CDKN2AIPNL 
0.22 
[0.13,0.38] 

1.1×10–9 1.0×10–8 3.6×10–6 

cg11115840 6 TRMT11 
0.41 
[0.30,0.57] 

7.6×10–8 1.5×10–9 1.6×10–10 

cg21871803 7 AHCYL2 
0.37 
[0.26,0.52] 

1.5×10–8 6.9×10–9 6.8×10–10 

cg14999724 11 

RP11-872D17.8 
(PRG2 
transcript 
variant 1) 

0.29 
[0.19,0.44] 

2.4×10–10 7.8×10–11 2.6×10–12 

cg10579797 15 SERF2 
0.30 
[0.20,0.46] 

2.6×10–8 1.8×10–5 3.4×10–5 

cg04166335 16 TAOK2 
0.282 
[0.18,0.44] 

4.4×10–9 4.0×10–6 1.1×10–5 

cg00994936 19 DAZAP1 
0.23 
[0.14,0.39] 

1.4×10–8 6.9×10–10 6.9×10–11 

cg12272104 19 DAZAP1 
0.32 
[0.23,0.44] 

1.5×10–12 1.1×10–10 2.7×10–12 

cg17944885 19 
ZNF788P and 
ZNF625-ZNF20 

2.15 
[1.79,2.58] 

2.9×10–16 2.5×10–20 2.1×10–26 

a Cox proportional-hazards model results for DKD progression: same covariates were included in both 
early and late DKD EWASs: baseline age, sex, estimated six white blood cell proportions, technical 
PC1, PC2, PC3 and sample mean M from invariable sites.  

b Association with eGFR in the sub-cohort (early or late DKD progression). Association was calculated 
for log2-transformed eGFR values with limma using the same covariates as in the Cox proportional-
hazards model. 
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c Association with eGFR in the combined cohort including all individuals from the early and late DKD 
progression cohorts. Albuminuria status (normal AER / severe albuminuria) was added to the limma 
model containing the same covariates as in the sub-cohort analyses. 

 

Table 3. Significant independenta methylation quantitative loci calculated with 765 
participants from the FinnDiane study. 

CpG site meQTL meQTL association 

CpG probe Chr Closest gene 
cis / 
trans 

Chr rs number 
Distance 
to CpG 

EA/ 
OA 

beta P FDR 

CpG associated with early DKD progression  

cg05831784 20 HAO1 cis 20 rs4815959 –949,339 A/G 0.183 1.6×10–4 0.02 

trans 6 rs12198601 NA G/T 0.373 3.0×10–9 3.4×10–18 

trans 8 rs111233810 NA A/AG 0.260 1.7×10–8 0.02 

CpG associated with late DKD progression 

cg06536988 4 TMEM154 cis 4 rs4569733 –457 C/T 0.092 4.0×10–4 0.04 

cg03262246 5 CDKN2AIPNL cis 5 rs111929214 4,984 G/A 0.092 1.3×10–4 0.02 

cg11115840  6 TRMT11 cis 6 rs11154342 –2,071 T/A 0.262 2.6×10–35 1.1×10–31 

cg14999724 11 RP11-872D17.8 
(PRG2 transcript 
variant 1) 

cis 11 rs555097 –872 A/C 0.101 8.4×10–7 1.9×10–5 

cis 11 rs7107808 887,490 C/A –0.072 6.8×10–4 0.049 

cg17944885 19 ZNF788P and 
ZNF625-ZNF20 

cis 19 rs4804653 4,240 A/T 0.262 3.1×10–8 1.6×10-5 

trans 16 rs17611866 NA T/C 0.462 1.9×10–25 3.4×10–18 
cg12272104 19 DAZAP1 cis 19 rs34622118 530,159 C/CA 0.116 7.8×10– 5 0.01 

cis 19 rs2283578 –713,116 A/C 0.105 2.4×10–4 0.03 
a  Independent SNVs (r2<0.1 with other SNVs) in 1000 genomes Finnish population data (assessed using 
LDmatrix tool at https://ldlink.nih.gov/). Cis; < ±1 Mb distance between the CpG probe and the meQTL 
variant. EA=effect allele, OA=other allele, FDR=false discovery rate 
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Table 4. Significant cis expression quantitative trait methylation (cis-eQTM) loci in look-
up analysis of 14 methylation sites for DKD progression in blood cell and kidney tissue 
datasets 

CpG site cis-eQTM (gene within 1M from the CpG) 

Methylation 
probe 

Methylation 
risk for 
DKD 
progression 

Gene Tissue 
Study-
specific effect 
size 

P Dataset Ref. 

CpG associated with early DKD progression 

cg01730944 lower CDKN1C kidney r=–0.208 8.6×10–8 TCGA 37 

CpGs associated with late DKD progression 

cg03262246 lower C5orf15 kidney beta=0.077 2.0×10–3 Susztaklab  27,29 

cg21871803 lower AHCYL2 kidney r=–0.261 1.4×10–11 TCGA 37 

cg04166335 lower NPIPB13 kidney beta=–0.184 3.6×10–5 Susztaklab 27,29 

cg00994936 lower 

DAZAP1 kidney r=0.263 8.7×10–12 TCGA 37 

EFNA2 kidney beta=–0.243 3.6×10–4 Susztaklab  27,29 

GAMT kidney beta=–0.109 1.1×10–3 Susztaklab  27,29 

cg12272104 lower 
DAZAP1 kidney r=0.219 1.6×10–8 TCGA 37 

EFNA2 kidney beta=–0.209 3.7×10–4 Susztaklab  27,29 

cg17944885 higher 

ZNF788P 

kidney r=0.181 3.4×10–6 TCGA 37 

monocytes log2FC=–0.045 2.5×10–8 MESA 34 

whole blood log2FC=–0.081 5.9×10–8 HELIX 36 

ZNF69 
monocytes beta=–0.026 6.0×10–6 MESA 34 

whole blood beta<0a 1.9×10–5 Dutch Biobanks 35 

ZNF439 
monocytes beta=–0.043 1.8×10–7 MESA 34 

whole blood log2FC=–0.120 1.1×10–7 HELIX 36 

ZNF844 
whole blood beta<0a 3.6E×10–26 Dutch Biobanks 35 

whole blood log2FC=–0.275 3.2×10–16 HELIX 36 

ZNF763 whole blood log2FC=–0.160 3.2×10–9 HELIX 36 

ZNF44 whole blood beta<0a 2.5×10–9 Dutch Biobanks 35 

ZNF136 whole blood beta<0a 5.9×10–5 Dutch Biobanks 35 

ZNF433-AS1 whole blood beta<0a 3.8×10–6 Dutch Biobanks 35 

Look-up eQTM datasets: TCGA=The Cancer Genome Atlas datasets as represented in the EWAS 
Atlas; Susztaklab=Kidney expression data from Liu et al. browsed at SusztakLab Kidney BioBank29; 
MESA=The Multi-Ethnic Study of Atherosclerosis; HELIX=Human Early-Life Exposome study that 
comprises six population-based birth cohorts; Dutch Biobanks=Four Dutch Biobank results meta-
analysed. 
a Effect-size direction in individual Dutch Biobank studies; effect sizes available separately from four 
cohorts; meta-analysis effect estimates not available. 
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Figures 

 

Figure 1. Study setting. Abbreviations: AER=albumin excretion rate; cis-pQTM = cis protein 
quantitative trait methylation; DKD=diabetic kidney disease; EWAS=epigenome-wide 
association study; eGFR=estimated glomerular filtration rate; eQTMs=expression quantitative 
trait methylations; meQTL=methylation quantitative trait locus; snATAC-seq=single-nucleus 
transposase-accessible chromatin with sequencing. Created in BioRender. Syreeni, A. (2024) 
https://BioRender.com/. 
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Figure 2 Manhattan plots show the results of EWASs on DKD progression. A) Results 
from the EWAS on early DKD progression, B) early DKD progression EWAS additionally 
adjusted for the baseline eGFR, and C) results from the EWAS on late DKD progression (to 
ESKD). X-axis shows the chromosomal position and y-axis shows the −log10 of the association 
P-value. Methylation sites reaching epigenome-wide significance (P<9.4×10−8, green line) are 
annotated into the plot. 
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Figure 3. Methylation site cg01730944 is located close to CDKN1C. A) Density plot of early 
DKD progression cohort (n=403) baseline methylation beta values of cg01730944 shows lower 
methylation in individuals with progressing DKD during follow-up [eGFR decline <60 
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mL/min/1.73 m2 (in orange)] compared to individuals who do not progress (light blue) B) 
Kaplan–Meier plot compares individuals in the lowest and highest tertile for cg01730944 
methylation and shows the proportion of individuals progressing to eGFR<60 mL/min/1.73 m2 

during follow-up. C) Open chromatin peaks in kidney cell types; human kidney single-nucleus 
transposase-accessible chromatin data (Version 2) on 57,229 cells27 accessed in Susztaklab 
Kidney Biobank.29 Figure is adapted from https://susztaklab.com/Human_snATAC/, and 
cg01730944 position is incorporated. D) Kidney single-cell expression data of 23,980 nuclei46 
shows that CDKN1C is mainly expressed in podocytes. Adapted from Humphrey’s Lab 
browser at http://humphreyslab.com47 E) In vivo expression of CDKN1C in human glomerular 
cells38 shows lower expression (fold-change=−4.95, P=4.9×10−5 in diabetic kidney disease 
(group 2, n=9) compared to individuals without DKD (group 1, n=13). Figure adapted from 
Nephroseq v.5 database42 at https://www.nephroseq.org/.  

Abbreviations: PT-S1–PT-S3=proximal tubule segments 1–3; LOH=loop of Henle; 
DCT=distal convoluted tubule; PC=principal cells of collecting duct; IC=intercalated cells, 
Endo=endothelia; Podo=podocytes; Immune=immune cells; lymph=lymphocytes; 
MES=mesenchyme, PEC=parietal epithelial cell; PCT=proximal convoluted tubule; 
DCT/CT=distal convoluted tubule/connecting tubule; CD-PC=collecting duct - principal cell; 
CD-ICA=collecting duct - intercalated cells A; CD-ICB=collecting duct - intercalated cells B; 
Leuk=leukocytes 
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Figure 4. Predictive power of the lead CpGs. The diamonds show the concordance (C-index) 
and its 95% confidence intervals of three Cox proportional-hazards models applied for the early 
(n=393 with non-missing variables) and late DKD progression (n=363 with non-missing 
variables) cohorts. P-values denote the significance of the increase in concordance index 
compared to the previous model; The significant P-values (P<0.05) are marked in the figure. 
The first model, “Clinical variables” (orange color), included baseline triglyceride 
concentration, central obesity, and current smoking status for the early DKD progression 
analysis, and triglyceride concentration, HbA1c, and systolic blood pressure for the late DKD 
progression analysis. Additionally, the model included six white blood cell proportions, 
technical PCs 1–3, mean methylation M value from invariable sites, age, and sex. The second 
model (red color) included additionally baseline eGFR. The third model included methylation 
M values for four (early DKD progression-associated: cg25013571, cg05831784, cg06334496, 
and cg01730944) or nine (late DKD progression-associated: cg06536988, cg03262246, 
cg11115840, cg21871803, cg14999724, cg10579797, cg04166335, cg12272104, and 
cg17944885) methylation sites. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2024. ; https://doi.org/10.1101/2024.11.28.24318055doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.28.24318055
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 

Figure 5. Links between methylation and gene expression of trans-meQTL locus on 
chromosome 16. According to Huan et al19, SNV rs17611866 correlates (in trans) with 
methylation levels of 45 CpGs, of which eGFR-associated methylation sites cg17944885 
(chr19p13.2 locus, in multiple EWASs) and cg0615822713 are shown in the figure. CpG 
cg17944885 has also a close SNV rs4804653 that is associated with its methylation levels in 
the general population (GoDMC) data. We replicated both the cis- and trans-methylation 
quantitative trait loci in our diabetes cohort. Abbreviations: cis-eQTL=cis expression 
quantitative trait locus (SNV that affects gene expression); cis-meQTL=cis methylation 
quantitative trait locus; trans-meQTL=trans methylation quantitative trait locus (SNV that 
associates with CpG site methylation); cis-eQTM=cis-expression quantitative trait methylation 
(methylation site that associates with gene expression). Created in BioRender. Syreeni, A. 
(2024) https://BioRender.com/. 
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Supplemental Material 

The following supplemental material accompanies the current study: 

Supplemental Methods 

Supplemental Figure 1. Overlap of the individuals with longitudinal samples with the DKD 
progression cohorts. 

Supplemental Figure 2. QQ-plots of the four prospective EWASs. 

Supplemental Figure 3. Chromosome 11p15.5 region around cg01730944. 

Supplemental Figure 4. Manhattan plot of EWAS on late progression of DKD (to end-stage 
kidney disease), additionally adjusted for baseline eGFR. 

Supplemental Figure 5. Longitudinal change of cg17904885 methylation values (as residuals) 
in 52 individuals. 

Supplemental Figure 6. Longitudinal change of cg17904885 methylation beta values in 52 
individuals. 

Supplemental Figure 7. Correlation of clinical characteristics and methylation CpGs of the 
early DKD progression cohort (n=403).  

Supplemental Figure 8. Correlation of clinical characteristics and methylation of top CpGs in 
the late DKD progression cohort (n=373). 

Supplemental Figure 9. Correlation (Spearman) of the top CpGs. 

Supplemental Figure 10. Predictive power of early DKD progression associated CpGs. 

Supplemental Figure 11. Predictive power of late DKD progression associated CpGs. 

Supplemental Figure 12. Chromosome 11p15.5 region around cg14999724. 

Supplemental Figure 13. CpG cg14999724 locus protein and SNV associations in 188 
individuals with normal AER. 

Supplemental Figure 14. PRG3 expression in human kidney single cell data set. 

Supplemental Figure 15. Gene Ontology (GO) term enrichment results of the genes related to 
the early and late DKD progression –associated CpGs (P<10–4). 

Supplemental Figure 16. KEGG pathway enrichment results of the genes related to the early 
and late DKD progression –associated CpGs (P<10–4). 

Supplemental Figure 17. Enrichment of CpGs associated with early and late DKD progression 
in traits with EWAS results in EWAS Atlas. 

Supplemental Figure 18. Chromosome 7 region around CpG cg21871803. 
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Supplemental Figure 19. Physicians and nurses at the Finnish Diabetic Nephropathy 
(FinnDiane) study sites. 

 
Supplemental Table 1. CpG sites associated with ESKD in the late DKD progression cohort: 
results from the competing risk and 10-year survival analyses. 
 
Supplemental Table 2. EWAS associations with P<1.0×10−4. 
 
Supplemental Table 3. Association between eGFR slope and methylation change between 
two time points in the longitudinal cohort with eGFR slope data (n=51) 
 
Supplemental Table 4. Replication evidence for the top methylation sites (n=14) from the 
DKD progression EWASs. 
 
Supplemental Table 5. Top methylation quantitative locus (meQTL) results in the FinnDiane 
and general population meQTLs. 
 
Supplemental Table 6. Phenome-wide associations of the 12 significant independent meQTL 
variants from the FinnDiane meQTL analysis. 
 
Supplemental Table 7. Expression quantitative trait methylation (eQTM) dataset lookups for 
the top methylation sites from the DKD progression EWASs. 
 
Supplemental Table 8. Cis protein quantitative trait methylation (cis-pQTM) associations in 
the FinnDiane. 
 
Supplemental Table 9. Expression quantitative trait methylation (eQTM) dataset lookups. 
 
Supplemental Table 10. Gene expression of the closest or the eQTM genes in kidney tissue 
in diabetic kidney disease. 
 
Supplemental Table 11. Transcription factor binding motifs at the top CpG locations in the 
eFORGE-TF database. 
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