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Abstract
Lithium therapy has been shown to affect imaging measures of brain function and micro-

structure in human immunodeficiency virus (HIV)-infected subjects with cognitive

impairment. The aim of this proof-of-concept study was to explore whether changes in brain

microstructure also entail changes in functional connectivity. Functional MRI data of seven

cognitively impaired HIV infected individuals enrolled in an open-label lithium study were

included in the connectivity analysis. Seven regions of interest (ROI) were defined based on

previously observed lithium induced microstructural changes measured by Diffusion Tensor

Imaging. Generalized partial directed coherence (gPDC), based on time-variant multivariate

autoregressive models, was used to quantify the degree of connectivity between the

selected ROIs. Statistical analyses using a linear mixed model showed significant differ-

ences in the average node strength between pre and post lithium therapy conditions. Spe-

cifically, we found that lithium treatment in this population induced changes suggestive of

increased strength in functional connectivity. Therefore, by exploiting the information about

the strength of functional interactions provided by gPDC we can quantify the connectivity

changes observed in relation to a given intervention. Furthermore, in conditions where the

intervention is associated with clinical changes, we suggest that this methodology could

enable an interpretation of such changes in the context of disease or treatment induced

modulations in functional networks.

Introduction
Infection with the human immunodeficiency virus (HIV) is associated with injury of the cen-
tral nervous system (CNS) and HIV-associated neurocognitive disorders (HAND) [1, 2]. In the

PLOSONE | DOI:10.1371/journal.pone.0139118 October 5, 2015 1 / 16

a11111

OPEN ACCESS

Citation: Tivarus ME, Pester B, Schmidt C, Lehmann
T, Zhu T, Zhong J, et al. (2015) Are Structural
Changes Induced by Lithium in the HIV Brain
Accompanied by Changes in Functional
Connectivity? PLoS ONE 10(10): e0139118.
doi:10.1371/journal.pone.0139118

Editor: Lourens J Waldorp, University of Amsterdam,
NETHERLANDS

Received: November 13, 2014

Accepted: September 9, 2015

Published: October 5, 2015

Copyright: © 2015 Tivarus et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available via Figshare (http://dx.doi.org/10.6084/m9.
figshare.1548193).

Funding: This study was supported by grant
01GQ1202, from the German Federal Ministry of
Education and Research (http://www.bmbf.de/en/
index.php), as well as by the National Institutes of
Health (http://www.nih.gov), grants R01DA034977-01
and R01MH099921. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0139118&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1548193
http://dx.doi.org/10.6084/m9.figshare.1548193
http://www.bmbf.de/en/index.php
http://www.bmbf.de/en/index.php
http://www.nih.gov


search for successful adjunctive treatments for this disease, previous studies have shown that
lithium protects neurons against viral protein-induced cell death and virus-associated neurode-
generation [3, 4] and may improve cognitive function [5]. Neuroimaging biomarkers can reveal
early changes in the brain structure and function that may predict, accompany and explain the
therapeutic drug efficacy at a time when clinical responses are not measurable.

MRI studies of patients that have taken lithium have shown increased gray matter volume
and density, supporting the observations that lithium causes neurogenesis in the brain [6]. A
review of studies examining effects of lithium on neuroimaging findings in bipolar disorder
concluded that lithium has normalizing effects on both functional and structural measures,
meaning that the results in medicated subjects were more similar to those found in healthy
individuals [7]. We have previously explored the potential clinical benefit of lithium in HIV
patients with cognitive impairment, using a multi-imaging modality approach [8]. Our find-
ings demonstrated that after lithium treatment the brain activation patterns in cognitively
impaired HIV patients during an attention-switching task using functional MRI (fMRI) were
more similar to those in our healthy control group. Similar normalizing changes were observed
in CNS microstructure using diffusion tensor imaging (DTI), with several brain areas showing
increased fractional anisotropy (FA) and decreased mean diffusivity (MD) after treatment with
lithium [8]. These quantitative measures describe the extent (MD) and directional dependency
(FA) of water diffusion and can be used to infer non-invasively underlying CNS microstruc-
tures as well as alternations of their integrity due to pathological conditions. However, conven-
tional fMRI activation and DTI analyses do not reveal information about functional
connections and their strength. Increased strength in the functional network may reflect
increased efficiency, which in the context of cognitive impairment, would suggest that the
intervention is beneficial and could potentially predict clinical benefit. We sought to further
investigate if the changes observed separately in functional and anatomical measures were
modulated by an increase in brain connectivity measures.

Several approaches have been used in computational neuroscience to address the concept of
directed brain connectivity [9, 10]. A widely used concept for analyzing connectivity patterns
based on fMRI acquisitions is dynamic causal modeling (DCM) introduced by Friston [11].
DCM is based on nonlinear state space models and Bayesian model comparisons; thus, they
require a priori model specifications. Likewise structural equation modeling [12] requires prior
assumptions about the connectivity structure since a constraining (anatomical) model has to
be established. In structural equation modeling the data covariance structure is emphasized,
that is, the covariance structure implied by the anatomical model is compared with the
observed covariance structure of an unconstrained model. An additional, frequently used
methodology is based on Granger’s concept of predictability [13], where various approaches
may be summarized by the notion of Granger Causality (GC). GC characteristics are known in
the time [14, 15] as well as in the frequency domain [16, 17]. Prior assumptions about the
underlying connectivity structure are not necessary and multivariate extensions are straightfor-
ward. In most applications regarding brain connectivity, GC measures are constructed on the
basis of multivariate autoregressive (MVAR) models. Examples of popular directed connectiv-
ity measures in the frequency domain include Directed Transfer Function (DTF) [18] and Par-
tial Directed Coherence (PDC) [19]. Both approaches are based on the direct exploitation of
the transfer function of the underlying MVAR process. At a given frequency, DTF corresponds
to the proportion of inflow from a source channel to a sink channel related to all inflows of the
sink channel. In contrast, PDC refers to the corresponding outflows of the source. Both mea-
sures range from zero to one and exhibit a natural intensity interpretation [17]. As previously
demonstrated in [19], PDC identifies only direct flows between channels, whereas DTF is sus-
ceptible to indirect (e.g. cascaded) interactions. In the case where noticeable differences
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between signal variances exist, Baccalá et al. proposed to use generalized partial directed coher-
ence (gPDC) [20], which represents an advancement of partial directed coherence as it is nor-
malized by the variances of model residuals. MVAR-based characteristics can be extended to
time-variant time series models to capture the temporal dynamics of underlying processes [21–
23].

In this proof-of-concept study we aimed to combine information from structural and func-
tional imaging data collected in a group of HIV-infected individuals, and used gPDC to deter-
mine how lithium induced changes in brain microstructure affected functional connectivity.
Specifically, brain areas that showed microstructural changes following lithium treatment were
used as regions of interest (ROI) in directed connectivity analysis of fMRI time series.

Materials and Methods

Subjects
A cohort of HIV- infected individuals with cognitive impairment (CI) was enrolled in a
10-week, open-label lithium study [8] at the University of Rochester. Participants were
required to be on a stable antiretroviral regimen or off antiretroviral therapy for at least 8
weeks prior to study entry. After an initial baseline evaluation, subjects were instructed to
begin taking lithium carbonate 300 mg PO bid at approximate 12-h intervals. Follow-up evalu-
ations were conducted at 1, 2, 4, 6, and 10 weeks and included safety surveillance laboratory
tests and lithium serum levels measurements. Clinical assessments performed at each visit
included vital signs, updated diagnoses, signs and symptoms, the Karnofsky Performance
Scale, and a pill count to assess medication compliance. Imaging data were collected at baseline
and week 10. CI was defined as (a) performance at least 1.0 standard deviation below age- and
education matched controls on two or more separate neuropsychological tests; and/or (b) per-
formance at least 2.0 standard deviations below age- and education-matched controls on one
or more separate neuropsychological tests. Normative data for neuropsychological test scores
were the same as those used in the Dana and Northeast AIDS Dementia cohorts [24, 25]. A
neurological examination was performed and plasma HIV RNA (Roche Amplicor HIV–1
Monitor Ultrasensitive Method) and CD4+/CD8+ cell counts and percentages were measured
at study entry (viral load—6788.2 copies/ml; mean CD4+ count—329.33/mm3) and week 10
(viral load—4852.0 copies/ml; mean CD4+ count—270.0/mm3). A subset of 7 participants (4
male, age range 43–52, mean = 45.54) who had neuroimaging scanning performed before and
after lithium treatment was used in the present study.

The study was reviewed and approved by the Institutional Review Board at the University
of Rochester Medical Center and all subjects signed a written informed consent prior to under-
going study procedures.

Neuroimaging
Neuroimaging was performed before and after lithium treatment, with a period of 10 weeks
between the studies. Imaging data were collected on a Siemens 3T MRI Trio system with an
8-channel head coil. High-resolution T1 weighted structural images were acquired using
MPRAGE sequence (TR/TE/TI = 2530/3.39/1100 ms, FOV = 256 mm, resolution 1x1x1 mm3),
and used for spatial normalization. DTI data were collected using a single-shot spin-echo EPI
sequence with twice-refocused spin echoes (TR/TE = 10100/100 ms, resolution 2x2x2 mm3,
iPAT (GRAPPA) acceleration factor = 2, 24 diffusion gradient directions, b = 1000 s/mm2 with
one average, and four non-diffusion weighted images with b = 0). A series of BOLD EPI scans
(GRE EPI sequence, TR/TE = 2000/30ms, resolution 4x4x4 mm3) were acquired while partici-
pants performed a working memory task. The task was based on Garavan et al [26] and
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consisted of sequences of large and small squares presented visually for 1500 ms each and inter-
mixed with 100 ms fixation trials. Each sequence of squares was considered a condition and
labeled 1-switch, 2-switch or 3-switch based on how many times the size of the squares
changed during the sequence. Participants were required to retain in memory separate counts
of small and large squares and report it at end of the sequence. Each imaging run was 233 time
points long and consisted of 15 randomly presented conditions, five of each type: 1-switch,
2-switch and 3-switch (Fig 1 left). To avoid practice effects, the length of each of the sequences
was varied between 11 to 15 squares. This ensured the number of squares presented was
enough to make the task challenging, while also keeping the total run time constant. During
each visit (pre or post treatment), participants performed three imaging runs, with the order of
sequence presentation changing from run to run to avoid practice effects. Prior to scanning, all
participants completed a brief training session to ensure comprehension of the task.

Data pre-processing
The DTI results from a previously published study [8] were used to select the ROIs for the con-
nectivity analysis. These were obtained using FSL [26] and SPM2 (The Wellcome Department
of Imaging Neuroscience, University College London) software packages. This analysis is
described in detail in our previous publication [8]. Briefly, pre-processing steps consisted of
correction of eddy current distortions and motion artifacts, field-map based susceptibility arti-
facts correction, calculation of the diffusion tensor, and spatial normalization of tensor-derived
parameter maps. Voxel-based morphometry was implemented to explore brain areas that may
have been affected by lithium treatment. Due to the small data sample, an alternative to family-
wise error rate based correction was adapted for multiple comparison corrections. Thus, com-
parisons using an uncorrected p = 0.001 and a cluster size threshold of 5 revealed several areas
of increased FA and decreased MD (Table 1). FA increases were seen in gray matter areas
including the right cerebellum, right putamen and right medial frontal gyrus whereas decreases
in MD were present in the right and left frontal orbital cortex, right lateral occipital cortex and
right subcallosal cortex. These areas were selected as ROIs for connectivity analysis, which was
applied to fMRI data pre-processed using FSL software package. Pre-processing consisted of
temporal filtering (high pass filter cutoff 264s), slice time correction, field mapping correction,
and intensity normalization.

Connectivity analysis
The degree of directed information transfer between nodes of the fMRI network was quantified
by means of gPDC based on time-variant multivariate autoregressive (tvMVAR) processes. As
a first step, the 7-dimensional fMRI time series (y(1),. . .,y(N)) were approximated by tvMVAR
models

yðnÞ ¼
XR

r¼1
ArðnÞ � yðn� rÞ þwðnÞ 2 <D; n ¼ Rþ 1; . . . ;N; ð1Þ

where R is the model order, Ar(n) (in our case n = 1,. . .,233) are real valued D × D -matrices
and w is a D-dimensional white noise process (in our case D = 7 ROIs). The model order R
indicates the number of samples in the past that are used to approximate the data at a certain
point in time. To obtain an assessment for a suitable choice of model order, we considered pre-
diction errors in conjunction with the number of parameters that have to be estimated, by uti-
lizing Akaike's information criterion (AIC). AIC usually provides a reasonable initial guess.
However it is known that AIC frequently overestimates the model order. That is why the initial
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model order was subjected to a tuning procedure ensuring a sufficient coincidence between the
parametric (MVAR-related) and the Fourier power spectra, where both spectra were compared
for various model orders. Finally, the smallest order was chosen, where all substantial fre-
quency components were represented by the parametric estimation, ensuring that the paramet-
ric spectrum reconstructs all distinctive spectral components of interest. This resulted in a
model order of five.

Fig 1. Left: Task sequence during the three experimental runs; Right: non-parametric Fourier amplitude spectra (solid lines) corresponding to
experimental task sequences together with the exponential approximations (dashed lines) as used for generalized partial directed coherence
aggregation.

doi:10.1371/journal.pone.0139118.g001

Table 1. Areas of significant increases in FA (A) and decreases inMD (B) frombaseline to week 10 (uncorrected p = 0.001, cluster size threshold = 5)
used as ROIs in the gPDC analysis.

FA increases MD decreases

MNI coordinates (x, y, z) mm Brain region MNI coordinates (x, y, z) mm Brain region

(18, -67, -39) Right cerebellum (-14,20, -34) Left orbital gyrus (BA47)

(20, 15, -16) Right putamen (16, 35, -34) Right orbital gyrus (BA47)

(5, 53, -18) Right medial frontal gyrus (BA10) (60, -62, -2) Right lateral occipital cortex (BA37)

(12, 24, -20) Right Subcallosal gyrus (BA11)

doi:10.1371/journal.pone.0139118.t001
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Allowing for prediction errors and complying with common experience, the tvMVAR
model in fMRI analyses order was set to R = 5. The estimation of model parameters in Eq (1)
was carried out by a time-variant, multivariate version of the Kalman filter [23]. The time
courses of all 7 ROIs were integratively approximated by a 7-dimensional tvMVAR model,
where every run was processed separately.

PDC is a common and well-established tool for a frequency-selective quantification of
directed interaction between nodes of a multivariate process [19]. It is based on the Fourier
transform of the tvMVAR model (1)

Aðn; f Þ ¼ I�
XR

r¼1
ArðnÞ � e�2pifr ð2Þ

with normalized frequencies f 2 [0,0.5] and identity matrix I2 <D×’D. In this context, the
degree of information transfer from node j to node i at time point n and frequency f can be cap-
tured by PDC, and is given by

pi jðn; f Þ ¼
jaijðn; f ÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

d¼1
jadjðn; f Þj2

s 2 ½0; 1�; i 6¼ j; ð3Þ

where aij(n,f) denotes the (i,j)-th entry of A(n,f). Due to large differences in some of the esti-
mated prediction error variances, we preferred employing generalized partial directed coher-
ence (gPDC) which is a variance-weighted modification of PDC [20]. This scale-invariant
extension of PDC allows for different signal amplitudes by weighting every model parameter in
Eq (3) by the corresponding standard deviation of the MVAR prediction error at time point n
and frequency f [20]. Finally, the resulting gPDC matrix is of dimensionality: (number of
directed interactions) x (number of frequency bins) x (number of temporal samples). In our
case it is 42×50×233 because there are 7 × 6 possible directed interactions between 7 ROIs,
where each interaction is investigated for every volume (233) and 50 frequencies. Furthermore,
no exogenous input function has to be introduced, as gPDC is calculated on the basis of esti-
mated MVAR model parameters.

Due to artifacts in model residuals we chose to exclude a small number of gPDC values
from further analyses. Because the model order of five implies a smearing at the transitions
between different switching conditions, the first five values of a new switching condition were
also rejected. Therefore, about 4% of the whole data were discarded.

A group-based quantitative analysis of functional connectivity pattern was performed in
order to show an association with lithium treatment. For this purpose, a qualitative inspection
of gPDC maps is not sufficient. Due to the very large time-variant frequency-selective analysis
output, a suitable data reduction is necessary. Typically, advanced analyses rely on dimension
reduction steps in the time and/or frequency domain before statistical models are applied [27,
28], where the specification of frequencies is hypothesis-driven. The relationship between the
paradigm and the frequency information contained in πi j(n,f) is indirectly represented by the
frequency characteristics of the task-associated function describing the alternating switching
blocks (Fig 1 left). To condense the large number of frequency-dependent results we aggregated
gPDC values (in frequency domain) into a weighted sum, where the smoothed power spectrum
of the task changes provides the weighting coefficients (Fig 1 right).

To provide an overall impression of the resulting networks, median gPDC values of all sub-
jects for pre and post lithium treatment for one representative run are presented in Figs 2 and
3. In this illustration, a time-frequency map in the i-th row and j-th column represents the
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time-variant, frequency-selective degree of effective connectivity from ROI j to ROI i. A quali-
tative comparison between Figs 2 and 3 suggests that in general gPDC values slightly increase
from pre to post treatment status. However, this is merely descriptive and specific connectivity
patterns are hardly identifiable due to the high amount of output data [29]. Therefore, an
exhaustive evaluation of these raw results required further processing steps. This was accom-
plished by the already described combination of gPDC-based network measures and the subse-
quent statistical analysis. This detailed analysis confirmed the aforementioned descriptive
assumption, namely a global lithium treatment effect on functional connectivity
characteristics.

Furthermore, aggregated gPDC values of one switching condition block were condensed by
applying the temporal median. Connectivity patterns obtained for any switch condition block
were interpreted as a weighted complete directed graph with seven labeled nodes representing
ROIs, and edge weights defined by the corresponding aggregated gPDCs. To get insights into
the global connectivity structure of these networks we utilized the average node strength as a
scalar characteristic. For each node, the node strength quantifies the accumulated weight of its
interactions and thus measures the integration of a node with other nodes of the network. The
average node strength of a network equals the averaged node strength over all nodes and mea-
sures the strength of interactions these nodes receive or transmit on average. It is a commonly
used approach to analyze thresholded binary networks or series of binary networks obtained

Fig 2. Pre lithium treatment time-variant and frequency-selective functional connectivity maps obtained by gPDC (median over all subjects, for a
representative run); ROI1: Right cerebellum, ROI2: Right putamen, ROI3: Right medial frontal gyrus, ROI4: Left orbital gyrus, ROI5: Right orbital
gyrus, ROI6: Right lateral occipital cortex, ROI7: Right subcallosal gyrus.

doi:10.1371/journal.pone.0139118.g002
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from a multiple threshold strategy [30]. In this study we focused on weighted networks in
order to circumvent information loss, threshold-dependency and the complications that come
from analyzing different samples of binary networks obtained from dichotomizations of the
gPDC data for different, yet arbitrarily defined thresholds.

We also explored other graph indices, including the characteristic path length and weighted
clustering coefficients [31–33]. The characteristic path length is the average length of shortest
paths between all pairs of nodes and is related to fast and resource-efficient information trans-
fer, assuming that information flow in the network preferably takes place on shortest connec-
tions. Clustering refers to local, segregated information processing in tightly knit
neighborhoods of nodes (ROIs) and is measured as the average intensity [34] of triangles cen-
tered at each node.

In addition to the average node strength as a global network characteristic, we considered
the in- and out-strength of each node (the sum of its incoming or outgoing edge weights,
respectively) in order to obtain a localization of possible lithium effects. At the most detailed
level of the analysis we evaluated single edge weights defined by gPDC-values.

Statistical analysis
Since gPDC values were sampled repeatedly in switch condition blocks for each patient v, the
correlation of these data has to be taken into account in the statistical analysis. Standard

Fig 3. Post lithium treatment time-variant and frequency-selective functional connectivity maps obtained by gPDC (median over all subjects, for a
representative run); ROI1: Right cerebellum, ROI2: Right putamen, ROI3: Right medial frontal gyrus, ROI4: Left orbital gyrus, ROI5: Right orbital
gyrus, ROI6: Right lateral occipital cortex, ROI7: Right subcallosal gyrus.

doi:10.1371/journal.pone.0139118.g003
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statistical methods can be applied to summarize the data (e.g. mean of all blocks); however, this
is accompanied by a loss of information and statistical power. Instead, the linear mixed model
(LMM) can be used to analyze efficiently a wide variety of datasets, including repeated mea-
surements and longitudinal data [35]. Hence, a LMM with fixed and random effects was fitted
to compare condensed gPDCs and derived graph indices of the different switching conditions.
Fixed factors included in the model were switching conditions Ssv, s = 1,2,3 and pre/post treat-
ment status Ttv, t = 1,2. Since we were interested in the pre/post change for each condition, we
also incorporated in the model the interaction of condition and status Ssv � Ttv. Measurements
of each block b were correlated for the patients, and hence the block number Bbv was defined as
a random effect with an appropriate AR(1) covariance structure. Finally, a random intercept
B0v was included for the patients to account for the between-subjects variation. The LMM for
any dependent variable X is defined as

Xbvst ¼ b0 þ b0v þ b1bBbv þ b1sSsv þ b1tTtv þ b2stðSsv � TtvÞ þ εbvst

with residuals εbvst. P-values less than 0.05 of the fixed regression coefficients were considered
significant. In addition to the regression coefficients, the estimated marginal means of the
model were used to describe the condensed gPDC differences of the switch conditions at both
time points.

In order to assess if the observed changes in network characteristics are biased by simple
stochastic or mechanistic effects that stem mainly from changes in very basic topological prop-
erties, we performed a surrogate-assisted analysis [36–38] using random networks obtained as
described elsewhere [39], that were then compared to the functional networks (for details see
S1 File) to help report changes in functional brain network characteristics more conclusively.

All analyses were performed with SAS 9.3 for Windows and R 3.2.0 for OSX.

Results
We found a global lithium treatment effect (p = 4.7�10−7), where the average node strength
with respect to the aggregated gPDC-values was increased by lithium treatment. We did not
find significant differences between switching conditions or interactions between treatment
and switching conditions (Fig 4). The increased average node strength of the networks reflects
a network-wide increase in strength of directed interactions between the nodes. A more
detailed look at single frequency bins reveals a very homogenous image. In fact, we showed a
significant increase of the average node strength between pre and post lithium therapy in a
broad frequency window ranging from 0.015 Hz to 0.1 Hz with p< 10−3 for frequencies
between 0.025 and 0.04 Hz, and p< 10−4 for frequencies between 0.04 and 0.1 Hz, respectively.
The increase in interaction strength after lithium treatment constitutes the main finding of this
study. We also found a global lithium effect on the characteristic path length (p< 10−7), which
was decreased by the lithium treatment, and on all seven weighted clustering coefficients
(p< 10−4), which were increased after treatment.

We also found statistical differences in weighted clustering between the functional brain
networks (of either the pre lithium therapy condition or the post lithium therapy condition)
and their randomized surrogate counterparts for some of the nodes (for details see S1 File).

Due to the absence of a control group we supplemented the LMM analysis by a permutation
test, which randomizes the pre/post status label for each subject. Thus, a sample size of seven
results in 128 = 27 possible permutations. According to the LMM, the test statistic is the mean
difference between post and pre treatment average node strength. Under the null hypothesis
that the status label does not matter, we obtained a p-value of 0.031, which indicates a signifi-
cant increase of the average node strength in a pre/post treatment comparison.
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Local lithium effects measured by the in- or out-strength for each node, are presented in
Table 2. The left side of the table depicts the regression coefficients β1t (pre/post treatment sta-
tus as fixed factor) and their standard errors for the LMMs with local out-degrees as dependent
variable. For each ROI negative coefficients indicate a lower out-degree in the pre lithium treat-
ment condition in comparison to the post treatment situation. The Benjamini–Hochberg pro-
cedure [40] was used to meet a 5% false discovery rate. Statistically significant regression
coefficients were obtained for the ROIs marked in bold. The right putamen (ROI2), right

Fig 4. Linear mixedmodel estimates and standard errors of mean average node strength.

doi:10.1371/journal.pone.0139118.g004

Table 2. Regression coefficients β1t, standard errors SE and p-values p for the LMMwith the out-degree and in-degree as dependent variable (sta-
tistically significant regression coefficients in bold). For each ROI negative coefficients indicate lower local node strength in the pre lithium treat-
ment condition in comparison to the post treatment situation.

Out-degree In-degree

ROIs β 1t (SE) P-value β 1t (SE) P-value

ROI1-Right cerebellum -0.033 (0.034) 0.333 -0.026(0.025) 0.308

ROI2-Right putamen -0.076 (0.029) 0.009 -0.068(0.026) 0.008

ROI3-Right medial frontal gyrus -0.011(0.037) 0.762 -0.066(0.025) 0.008

ROI4-Left orbital gyrus 0.023(0.045) 0.605 -0.072(0.028) 0.009

ROI5-Right orbital gyrus -0.073(0.028) 0.010 -0.023(0.029) 0.413

ROI6-Right lateral occipital cortex 0.051(0.042) 0.228 -0.071(0.025) 0.004

ROI7-Right subcallosal gyrus -0.236(0.042) <0.001 -0.022(0.028) 0.430

doi:10.1371/journal.pone.0139118.t002
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orbital gyrus (ROI5), and the right subcallosal gyrus (ROI7) are regions with an increased out-
degree post lithium treatment (intensified sources). Similarly, Table 2 right depicts the regres-
sion coefficients and their standard errors for the LMMs with local in-degrees as dependent
variable. In this case, the right putamen (ROI2), right medial frontal gyrus (ROI3), left orbital
gyrus (ROI4), and right lateral occipital cortex (ROI6) show significant increases in the local
in-degree post lithium treatment (intensified sinks).

The finest analysis level is given by single edge weights defined by gPDC-values. Fig 5 shows
edges with significantly altered weights after the lithium treatment (α = 0.05, adjusted for mul-
tiple comparisons according to Benjamini–Hochberg [40]). The results of this analysis are in
line with results of all coarser analysis levels (local in- and out-strength, average node strength).
The most prominent ROIs are ROI7 (right subcallosal gyrus) and ROI3 (right medial frontal
gyrus). The right subcallosal gyrus exhibits many outgoing edges showing an increased aggre-
gated gPDC after treatment. In contrast, the right medial frontal gyrus noticeably features
many incoming edges with significantly increased edge weights post treatment. A similar, albeit
weaker, finding may be attributed to ROI2 (right putamen) and ROI6 (right lateral occipital
cortex). As shown in Table 2, the right subcallosal gyrus and the right putamen may be consid-
ered as intensified sources. The right medial frontal gyrus and the right lateral occipital cortex
as intensified sinks have increased edge weights associated with interactions from the right sub-
callosal gyrus as well as the right putamen. The right orbital gyrus (ROI5, source), the right
putamen (ROI2, sink), and the left orbital gyrus (ROI4, sink) are labeled as ROIs exhibiting sig-
nificant gPDC changes in Table 2. Based on alpha-adjusted p-values (Fig 5, bold arrows) this
summarized effect is not reflected at the level of single edge weights. In addition, we observed
six additional edge weights involving ROI5 (source), ROI2 (sink), and ROI4 (sink), where the
associated p-values are less than 0.05 (Fig 5, thin dashed arrows). However, after alpha adjust-
ment, these alterations were not significant.

Discussion
In this proof-of-concept study we combined information from structural and functional imag-
ing data of cognitively impaired HIV-infected patients, and gPDC-based measures, to deter-
mine whether treatment-induced changes in brain function and microstructure are
accompanied by changes in brain connectivity patterns.

Average node strength was increased by lithium treatment, which refers to a network-wide
increase in strength of directed interactions between the nodes. In the context of HIV-associ-
ated cognitive impairment this may represent improvement in processing and forwarding of
information in the underlying functional brain networks. In addition, when we considered
other graph indices, in particular the characteristic path length and weighted clustering coeffi-
cients [31–33], the findings were similar to those we observed for the average node strength.
These results are consistent and suggest that the global increase of interaction strengths is the
major reason for changes in network indices. In our study this effect is emphasized by high cor-
relations between average node strength and characteristic path length (correlation: -0.85), or
clustering coefficients (correlation between 0.80 and 0.88), respectively. A decrease of the char-
acteristic path length post treatment could be associated with the benefit of lithium treatment
in restoring or building efficient connections for information transfer between nodes in the
underlying brain network. This finding is in line with the alleged facilitated information trans-
fer as seen in the average node strength of the networks, and might indicate that lithium treat-
ment could improve neuronal plasticity as part of its effect on neurogenesis [6]. It remains in
part unresolved to what extent the changes in the characteristic path length and weighted clus-
tering coefficients are directly caused by increased edge weights post lithium treatment or if
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additional functionally relevant effects are at work, too. Although there is no single method to
approach this issue, we addressed it by using a surrogate-assisted analysis [36–39] of these net-
work characteristics; however, the results did not provide unequivocal answers.

To the best of our knowledge, gPDC has not been used before to show how lithium treat-
ment affects functional connectivity. In particular it has never been shown that the interaction
strengths are increased, which indicates a positive overall effect of lithium treatment on cogni-
tive performance of HIV-infected patients with cognitive impairment.

Fig 5. Edge weights significantly altered after lithium treatment: bold green—significant increase, bold orange—significant decrease. Additional
edge weights with p-values less than 0.05 that were not significant after alpha adjustment, are represented in thin dashed arrows.

doi:10.1371/journal.pone.0139118.g005
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In the present study we used weighted complete graphs. Other possibilities would have been
to either threshold the weighted graphs so that they only contain weighted edges with an edge
weight above the threshold or to threshold and dichotomize edges, which yields unweighted
graphs. In this regard there is no completely satisfying solution for the problem of finding the
right network type [10]. Based on our clinical data set, the concept of graph dichotomization
based on statistical significance tests would not have been feasible due to disproportional high
computational costs of Bootstrap approaches [28, 41], leaving systematic thresholding analyses
as the only possible way to dichotomize weighted gPDC networks and to evaluate threshold-
dependent graph characteristics. It is a generally used and accepted approach to analyze binary
networks resulting from thresholding and dichotomizing the original weighted network or
applying a multiple threshold strategy to a weighted network to yield a series of binary network
instances over a wide range of thresholds [30]. These functions have to be additionally intro-
duced in statistical analyses at the expense of additional post-processing steps or a statistical
power reduction. Thus, in this study we considered weighted networks directly in order to cir-
cumvent information loss.

The temporal selectivity of tvMVAR models addresses the dynamic behavior of brain
response in the course of the experiment. Frequency selectivity of gPDC enables an integration
of the task sequence by using the spectral properties of the experimental protocol. Nevertheless,
a drawback of this analytical approach is the high number of processing steps and the accom-
panying possibility of making wrong decisions in each of these steps.

Another interesting aspect in a pre-post treatment comparison of functional connectivity
measures are the so called hidden sources. In general they represent a problem in connectivity
analyses even if multivariate approaches are applied, because the existence of latent variables
may result in spurious interactions. Eichler [42] developed a graphical method that enables the
determination of causal relations in the presence of possible spurious connections. His method
is particularly interesting when graphs with a small number of nodes have to be identified,
because an exhaustive analysis of many subseries of the full time series has to be performed.
Thus, an obvious drawback of this graphical approach is that statistical errors, related to multi-
step autoregressive model fits, avoid a comparison of different graphical representations, which
would be necessary to investigate therapy effects. In our study, we do not assume that our ROI
set is free from latent variables with the consequence of possible spurious interactions. If latent
variables remain unchanged during the treatment, the observed lithium effect is then directly
caused by the considered ROIs. If latent variables change during treatment, these alterations
may be indirectly mirrored by the analyzed network, regardless of direct changes in the func-
tional connectivity between the considered ROIs. Thus, we still observe a lithium effect on
functional connectivity but the specific localization remains potentially concealed.

A limitation of the study is the small number of data sets available for analysis and the lack
of an appropriate control group due to the open-label nature of the study. Due to the small
number of subjects and the short duration of the study, our previous work demonstrated only
a trend toward improvement in cognitive performance and no significant clinical changes [8],
thus making it difficult to relate imaging outcomes to these changes. It is of interest that the
orbitofrontal and mediofrontal cortices as well as the putamen were among the ROIs where
lithium increased the local node strength, as these areas have previously been reported to be
affected in HIV–associated CNS injury [43, 44].

Our findings suggest that lithium treatment of HIV infected individuals induces changes in
brain microstructure (as assessed by DTI) that are associated with improved performance
related features of brain functional network connectivity (as assessed by fMRI). The increase in
interaction strength after lithium treatment suggests a positive effect of lithium treatment on
functional connectivity in HIV-infected patients, which to the best of our knowledge has never
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been reported before. The use of gPDC-based measures provides insights into brain connectiv-
ity by revealing underlying interactions, their strength and direction. Therefore, gPDC-based
measures offer an advanced way of understanding changes in functional and anatomical inter-
relations of brain networks in the context of a disease process and in response to pharmacologi-
cal intervention.

Supporting Information
S1 File. Surrogate network analysis.
(DOCX)

Author Contributions
Conceived and designed the experiments: MET BP GS LL. Performed the experiments: MET
BP TZ JZ. Analyzed the data: MET BP CS TL LL TZ. Contributed reagents/materials/analysis
tools: GS LL JZ CS. Wrote the paper: MET BP GS LL CS. Statistical analysis: CS TL.

References
1. Heaton RK, Clifford DB, Franklin DR Jr., Woods SP, Ake C, Vaida F, et al. HIV-associated neurocogni-

tive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010; 75
(23):2087–96. doi: 10.1212/WNL.0b013e318200d727 PMID: 21135382; PubMed Central PMCID:
PMC2995535.

2. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for
HIV-associated neurocognitive disorders. Neurology. 2007; 69(18):1789–99. doi: 10.1212/01.WNL.
0000287431.88658.8b PMID: 17914061.

3. Dou H, Ellison B, Bradley J, Kasiyanov A, Poluektova LY, Xiong H, et al. Neuroprotective mechanisms
of lithium in murine human immunodeficiency virus–1 encephalitis. The Journal of neuroscience: the
official journal of the Society for Neuroscience. 2005; 25(37):8375–85. doi: 10.1523/JNEUROSCI.
2164-05.2005 PMID: 16162919.

4. Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S. HIV–1 Tat-mediated activation of glyco-
gen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. Journal of neurochemistry. 1999;
73(2):578–86. PMID: 10428053.

5. Letendre SL, Woods SP, Ellis RJ, Atkinson JH, Masliah E, van den Brande G, et al. Lithium improves
HIV-associated neurocognitive impairment. Aids. 2006; 20(14):1885–8. doi: 10.1097/01.aids.
0000244208.49123.1b PMID: 16954730.

6. YoungW. Review of lithium effects on brain and blood. Cell transplantation. 2009; 18(9):951–75. doi:
10.3727/096368909X471251 PMID: 19523343.

7. Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medication on neuroimaging
findings in bipolar disorder: an updated review. Bipolar disorders. 2012; 14(4):375–410. doi: 10.1111/j.
1399-5618.2012.01023.x PMID: 22631621.

8. Schifitto G, Zhong J, Gill D, Peterson DR, Gaugh MD, Zhu T, et al. Lithium therapy for human immuno-
deficiency virus type 1-associated neurocognitive impairment. Journal of neurovirology. 2009; 15
(2):176–86. doi: 10.1080/13550280902758973 PMID: 19306230; PubMed Central PMCID:
PMC2747099.

9. Horwitz B. The elusive concept of brain connectivity. NeuroImage. 2003; 19(2 Pt 1):466–70. PMID:
12814595.

10. Fallani FD, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical
issues in translational neuroscience. Philos T R Soc B. 2014; 369(1653). Unsp 20130521 doi: 10.1098/
Rstb.2013.0521. WOS:000341695200002.

11. Friston K. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping.
1994; 2(1–2):56–78. Epub 1994. doi: 10.1002/hbm.460020107

12. Buchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions
evaluated with structural equation modelling and fMRI. Cerebral cortex. 1997; 7(8):768–78. PMID:
9408041.

13. Granger CWJ. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.
Econometrica. 1969; 37(3):414–38. WOS:A1969E301800005.

Lithium and Functional Networks in HIV

PLOS ONE | DOI:10.1371/journal.pone.0139118 October 5, 2015 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139118.s001
http://dx.doi.org/10.1212/WNL.0b013e318200d727
http://www.ncbi.nlm.nih.gov/pubmed/21135382
http://dx.doi.org/10.1212/01.WNL.0000287431.88658.8b
http://dx.doi.org/10.1212/01.WNL.0000287431.88658.8b
http://www.ncbi.nlm.nih.gov/pubmed/17914061
http://dx.doi.org/10.1523/JNEUROSCI.2164-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.2164-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16162919
http://www.ncbi.nlm.nih.gov/pubmed/10428053
http://dx.doi.org/10.1097/01.aids.0000244208.49123.1b
http://dx.doi.org/10.1097/01.aids.0000244208.49123.1b
http://www.ncbi.nlm.nih.gov/pubmed/16954730
http://dx.doi.org/10.3727/096368909X471251
http://www.ncbi.nlm.nih.gov/pubmed/19523343
http://dx.doi.org/10.1111/j.1399-5618.2012.01023.x
http://dx.doi.org/10.1111/j.1399-5618.2012.01023.x
http://www.ncbi.nlm.nih.gov/pubmed/22631621
http://dx.doi.org/10.1080/13550280902758973
http://www.ncbi.nlm.nih.gov/pubmed/19306230
http://www.ncbi.nlm.nih.gov/pubmed/12814595
http://dx.doi.org/10.1098/Rstb.2013.0521
http://dx.doi.org/10.1098/Rstb.2013.0521
http://dx.doi.org/10.1002/hbm.460020107
http://www.ncbi.nlm.nih.gov/pubmed/9408041


14. Deshpande G, LaConte S, James GA, Peltier S, Hu XP. Multivariate Granger Causality Analysis of
fMRI Data. Human Brain Mapping. 2009; 30(4):1361–73. doi: 10.1002/Hbm.20606.
WOS:000264696300027. PMID: 18537116

15. Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by
fMRI. Magn Reson Imaging. 2007; 25(10):1347–57. doi: 10.1016/j.mri.2007.03.007.
WOS:000251488500001. PMID: 17499467

16. Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, et al. Estimation of the cortical func-
tional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed
transfer function. NeuroImage. 2005; 24(1):118–31. doi: 10.1016/j.neuroimage.2004.09.036.
WOS:000225811800013. PMID: 15588603

17. Sato JR, Takahashi DY, Arcuri SM, Sameshima K, Morettin PA, Baccala LA. Frequency Domain Con-
nectivity Identification: An Application of Partial Directed Coherence in fMRI. Human Brain Mapping.
2009; 30(2):452–61. doi: 10.1002/Hbm.20513. WOS:000263232800009. PMID: 18064582

18. Kaminski MJ, Blinowska KJ. A NewMethod of the Description of the Information-Flow in the Brain
Structures. Biol Cybern. 1991; 65(3):203–10. doi: 10.1007/Bf00198091. WOS:A1991FX69000006.
PMID: 1912013

19. Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determina-
tion. Biol Cybern. 2001; 84(6):463–74. doi: 10.1007/Pl00007990. WOS:000169042400007. PMID:
11417058

20. Baccala LA, Sameshima K, Takahashi DY. Generalized partial directed coherence. Proceedings of the
2007 15th International Conference on Digital Signal Processing. 2007:163–6.
WOS:000249666900042.

21. Sato JR, Junior EA, Takahashi DY, de Maria Felix M, Brammer MJ, Morettin PA. A method to produce
evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based
time-varying Granger causality. NeuroImage. 2006; 31(1):187–96. doi: 10.1016/j.neuroimage.2005.11.
039 PMID: 16434214.

22. Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, de Vico Fallani F, et al. Assessing cortical func-
tional connectivity by partial directed coherence: simulations and application to real data. IEEE transac-
tions on bio-medical engineering. 2006; 53(9):1802–12. doi: 10.1109/TBME.2006.873692 PMID:
16941836.

23. Milde T, Leistritz L, Astolfi L, Miltner WHR, Weiss T, Babiloni F, et al. A new Kalman filter approach for
the estimation of high-dimensional time-variant multivariate ARmodels and its application in analysis of
laser-evoked brain potentials. NeuroImage. 2010; 50(3):960–9. doi: 10.1016/j.neuroimage.2009.12.
110. WOS:000275408200011. PMID: 20060483

24. Marder K, Albert SM, McDermott MP, McArthur JC, Schifitto G, Selnes OA, et al. Inter-rater reliability of
a clinical staging of HIV-associated cognitive impairment. Neurology. 2003; 60(9):1467–73. PMID:
12743233.

25. Clinical confirmation of the American Academy of Neurology algorithm for HIV-1-associated cognitive/
motor disorder. The Dana Consortium on Therapy for HIV Dementia and Related Cognitive Disorders.
Neurology. 1996; 47(5):1247–53. PMID: 8909438.

26. Garavan H, Ross TJ, Li SJ, Stein EA. A parametric manipulation of central executive functioning. Cere-
bral cortex. 2000; 10(6):585–92. PMID: 10859136.

27. Brzezicka A, Kaminski M, Kaminski J, Blinowska K. Information Transfer During a Transitive Reasoning
Task. Brain Topogr. 2011; 24(1):1–8. doi: 10.1007/s10548-010-0158-6. WOS:000287202000001.
PMID: 20686832

28. Plomp G, Quairiaux C, Michel CM, Astolfi L. The physiological plausibility of time-varying Granger-
causal modeling: Normalization and weighting by spectral power. NeuroImage. 2014; 97:206–16. doi:
10.1016/j.neuroimage.2014.04.016. WOS:000337988700021. PMID: 24736179

29. Pester B, Ligges C, Leistritz L, Witte H, Schiecke K. Advanced insights into functional brain connectivity
by combining tensor decomposition and partial directed coherence. Plos One. 2015.

30. Khalid A, Kim BS, Chung MK, Ye JC, Jeon D. Tracing the evolution of multi-scale functional networks in
a mouse model of depression using persistent brain network homology. NeuroImage. 2014; 101:351–
63. doi: 10.1016/j.neuroimage.2014.07.040. WOS:000344931800033. PMID: 25064667

31. Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959; 1
(1):269–71.

32. Fagiolo G. Clustering in complex directed networks. Physical Review E. 2007; 76(2):026107.

33. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neu-
roimage. 2010; 52(3):1059–69. doi: 10.1016/j.neuroimage.2009.10.003. WOS:000280181800027.
PMID: 19819337

Lithium and Functional Networks in HIV

PLOS ONE | DOI:10.1371/journal.pone.0139118 October 5, 2015 15 / 16

http://dx.doi.org/10.1002/Hbm.20606
http://www.ncbi.nlm.nih.gov/pubmed/18537116
http://dx.doi.org/10.1016/j.mri.2007.03.007
http://www.ncbi.nlm.nih.gov/pubmed/17499467
http://dx.doi.org/10.1016/j.neuroimage.2004.09.036
http://www.ncbi.nlm.nih.gov/pubmed/15588603
http://dx.doi.org/10.1002/Hbm.20513
http://www.ncbi.nlm.nih.gov/pubmed/18064582
http://dx.doi.org/10.1007/Bf00198091
http://www.ncbi.nlm.nih.gov/pubmed/1912013
http://dx.doi.org/10.1007/Pl00007990
http://www.ncbi.nlm.nih.gov/pubmed/11417058
http://dx.doi.org/10.1016/j.neuroimage.2005.11.039
http://dx.doi.org/10.1016/j.neuroimage.2005.11.039
http://www.ncbi.nlm.nih.gov/pubmed/16434214
http://dx.doi.org/10.1109/TBME.2006.873692
http://www.ncbi.nlm.nih.gov/pubmed/16941836
http://dx.doi.org/10.1016/j.neuroimage.2009.12.110
http://dx.doi.org/10.1016/j.neuroimage.2009.12.110
http://www.ncbi.nlm.nih.gov/pubmed/20060483
http://www.ncbi.nlm.nih.gov/pubmed/12743233
http://www.ncbi.nlm.nih.gov/pubmed/8909438
http://www.ncbi.nlm.nih.gov/pubmed/10859136
http://dx.doi.org/10.1007/s10548-010-0158-6
http://www.ncbi.nlm.nih.gov/pubmed/20686832
http://dx.doi.org/10.1016/j.neuroimage.2014.04.016
http://www.ncbi.nlm.nih.gov/pubmed/24736179
http://dx.doi.org/10.1016/j.neuroimage.2014.07.040
http://www.ncbi.nlm.nih.gov/pubmed/25064667
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337


34. Onnela J-P, Saramäki J, Kertész J, Kaski K. Intensity and coherence of motifs in weighted complex net-
works. Physical Review E. 2005; 71(6):065103.

35. Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated
measures and longitudinal data. Stat Med. 1997; 16(20):2349–80. WOS:A1997YA56200007. PMID:
9351170

36. Ansmann G, Lehnertz K. Surrogate-assisted analysis of weighted functional brain networks. Journal of
neuroscience methods. 2012; 208(2):165–72. doi: 10.1016/j.jneumeth.2012.05.008 PMID: 22634707.

37. van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. The Journal of neu-
roscience: the official journal of the Society for Neuroscience. 2011; 31(44):15775–86. doi: 10.1523/
JNEUROSCI.3539-11.2011 PMID: 22049421.

38. Humphries MD, Gurney K. Network 'small-world-ness': a quantitative method for determining canonical
network equivalence. PloS one. 2008; 3(4):e0002051. doi: 10.1371/journal.pone.0002051 PMID:
18446219; PubMed Central PMCID: PMC2323569.

39. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architecture of complex weighted net-
works. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101
(11):3747–52. doi: 10.1073/pnas.0400087101 PMID: 15007165; PubMed Central PMCID:
PMC374315.

40. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate—a Practical and Powerful Approach to
Multiple Testing. J Roy Stat Soc B Met. 1995; 57(1):289–300. WOS:A1995QE45300017.

41. Leistritz L, Pester B, Doering A, Schiecke K, Babiloni F, Astolfi L, et al. Time-variant partial directed
coherence for analysing connectivity: a methodological study. Philos T R Soc A. 2013; 371(1997). Artn
20110616 doi: 10.1098/Rsta.2011.0616. WOS:000330309500005.

42. Eichler M. A graphical approach for evaluating effective connectivity in neural systems. Philos T R Soc
B. 2005; 360(1457):953–67. doi: 10.1098/rstb.2005.1641. WOS:000230676700010.

43. Yiannoutsos CT, Ernst T, Chang L, Lee PL, Richards T, Marra CM, et al. Regional patterns of brain
metabolites in AIDS dementia complex. NeuroImage. 2004; 23(3):928–35. doi: 10.1016/j.neuroimage.
2004.07.033 PMID: 15528093.

44. Zhu T, Zhong J, Hu R, Tivarus M, Ekholm S, Harezlak J, et al. Patterns of white matter injury in HIV
infection after partial immune reconstitution: a DTI tract-based spatial statistics study. Journal of neuro-
virology. 2013; 19(1):10–23. doi: 10.1007/s13365-012-0135-9 PMID: 23179680; PubMed Central
PMCID: PMC3568248.

Lithium and Functional Networks in HIV

PLOS ONE | DOI:10.1371/journal.pone.0139118 October 5, 2015 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/9351170
http://dx.doi.org/10.1016/j.jneumeth.2012.05.008
http://www.ncbi.nlm.nih.gov/pubmed/22634707
http://dx.doi.org/10.1523/JNEUROSCI.3539-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.3539-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22049421
http://dx.doi.org/10.1371/journal.pone.0002051
http://www.ncbi.nlm.nih.gov/pubmed/18446219
http://dx.doi.org/10.1073/pnas.0400087101
http://www.ncbi.nlm.nih.gov/pubmed/15007165
http://dx.doi.org/10.1098/Rsta.2011.0616
http://dx.doi.org/10.1098/rstb.2005.1641
http://dx.doi.org/10.1016/j.neuroimage.2004.07.033
http://dx.doi.org/10.1016/j.neuroimage.2004.07.033
http://www.ncbi.nlm.nih.gov/pubmed/15528093
http://dx.doi.org/10.1007/s13365-012-0135-9
http://www.ncbi.nlm.nih.gov/pubmed/23179680

