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A B S T R A C T   

We present EPIsembleVis, a web-based comparative visual analysis tool for evaluating the consistency of mul-
tiple COVID-19 prediction models. Our approach analyzes a collection of COVID-19 predictions from different 
epidemiological models as an ensemble and utilizes two metrics to quantify model performance. These metrics 
include (a) prediction uncertainty (represented as the dispersion of predictions in each ensemble) and (b) pre-
diction error (calculated by comparing individual model predictions with the recorded data). Through an 
interactive visual interface, our approach provides a data-driven workflow for (a) selecting and constructing the 
COVID-19 model prediction ensemble based on the spatiotemporal overlap of available predictions of multiple 
epidemiological models, (b) quantifying the model performance using both the uncertainty of each model pre-
diction ensemble, and the error of each ensemble member that represents individual model predictions, and (c) 
visualizing the spatiotemporal variability in the projection performance of individual models using a suite of 
novel ensemble visualization techniques, such as the data availability map, a spatiotemporal textured-tile cal-
endar, multivariate rose chart, and time-series leaflet glyph. We demonstrate the capability of our ensemble 
visual interface through a case study that investigates the performance of weekly COVID-19 predictions, which 
are provided through the COVID-19 Forecast Hub UMass-Amherst Influenza Forecasting Center of Excellence 
[47] for the United States and United States Territories. The EPIsembleVis tool is implemented using open-source 
web technologies and adaptive system design, rendering it interoperable with Elasticsearch and Kibana for 
automatically ingesting COVID-19 predictions from online repositories, and it is generalizable for analyzing 
worldwide projections from more epidemiological models.   

1. Introduction 

The COrona VIrus Disease (COVID-19) epidemic began in late 2019, 
spreading human suffering and socio-economic turmoil around the 
world [48,32]. COVID-19 has posed a significant challenge to policy-
makers who have to decide on which mitigation strategies should be 
introduced (e.g., mask mandates, school closures, or lockdown), when 
they should be introduced, and when it is safe to lift these mandates [1]. 
Its infectiousness, combined with a slow onset in symptoms and the 
presence of a high percentage of asymptomatic individuals, have made it 

challenging to understand and predict the spread. Effective intervention, 
mitigation, and control of the epidemic require a solid understanding of 
the mechanism of COVID-19 that governs the pandemic’s transmission, 
disease, and immunity [18,40], as well as precise and timely predictions 
of new cases and deaths. A reliable prediction needs to approach the 
disease from a holistic perspective that considers the interplay between 
the multiple variables (e.g., biophysical, social, and human) across large 
geographical areas [12,46]. 

Epidemiologists and modeling experts world-wide have risen to the 
challenge of developing reliable model predictions of the future COVID- 
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19 pandemic in terms of cases and deaths [1,22,40]. These epidemio-
logical models are designed to clarify the extent and impact of the 
pandemic, providing predictions that help guide the government de-
cisions, planning, and community preparedness in this pandemic 
[11,8,5]. 

Despite their practical value and usefulness, many of these models 
produce divergent and conflicting future projections [18] for some 
geographic areas (e.g., city, country, and state), impeding reliable de-
cision supports for allocating resources and implementing mitigation 
practices. The uncertainty in these predictions often arises from the 
simulation process, where each prediction is computed using models 
based on distinct approaches (e.g., statistical and mechanistic), varied 
parametric assumptions (e.g., transmission and immunity), and different 
quality of calibration data (e.g., divergent detection of cases, reporting 
delays, and poor documentation) [1,18,40]. Since each model has its 
own unique assumptions (e.g., policies, compliance, transmission rate), 
constraints (e.g., geographic and temporal extent, a limited model of 
policy differences between areas), and predicted type of data (e.g., cases, 
hospitalizations, deaths, etc.), model predictions can vary depending on 
the amount and veracity of information about an area, but also 
depending on how strictly mitigation strategies are implemented, and 
how compliant the population is with these strategies [3]. 

Given the divergence in the predictions from different models, it is 
difficult to determine the best-performing models that produce the most 
reliable predictions. Analyzing the consistency of these models, which 
may potentially imply model performances, faces challenges due to the 
complex nature of these model predictions that, similar to ensemble 
members in many other scientific domains (e.g., climate and trans-
portation), these model predictions are spatiotemporal, multivariate, 
and heterogeneous in data format and prediction coverage [24,28]. In 
addition, the high number of different models (over 70 for the United 
States alone [4]) poses new challenges, such as quantifying differences 
and uncertainties among multiple models, comparing their predictions 
against each other, and evaluating the model performance during 
different scenarios (e.g., in states with different population density and 
during different outbreak stages). All these factors make it extremely 
challenging to weigh models against each other at a larger geographic 
scale (e.g., the contiguous United States). 

In this paper, we present the design and development of EPIsem-
bleVis, an innovative visual analysis approach to evaluate the spatio-
temporal variability in the consistency of COVID-19 prediction models 
by analyzing their results as ensembles through interactive and 
comparative visual exploration. The approach aims to provide data- 
driven insights to help epidemiologists and health care professionals 
explore potential factors that may affect the prediction models’ consis-
tency and select the appropriate model to support the decision-making 
in a time- and space-specific scenario. We develop a visual interface to 
provide an integrated workflow for (a) selecting and constructing the 
COVID-19 model prediction ensemble based on the overlapping pro-
jection availability of multiple epidemiological models in both time and 
space, (b) quantifying the consistency of ensemble model using both the 
uncertainty of each model prediction ensemble by comparing its mem-
ber against each other, and the error of each ensemble by comparing its 
members’ prediction with the recorded case information, and (c) visu-
alize the spatiotemporal variability in the consistency of the COVID-19 
model prediction ensembles (e.g., new cases and deaths) using a suite 
of novel ensemble visualization and user interaction techniques. The 
visual interface is integrated into a big-data cyberinfrastructure powered 
by an Elasticsearch-Kibana stack, which adopts an ontology-driven data 
pipeline to automate data mining, transformation, and enrichment 
processes. These processes aim to retrieve model prediction data and 
recorded case data from COVID-19 Forecast Hub [4] and provide the 
most updated record to the visual interface in a near-real-time fashion. 

To demonstrate the capability of the EPIsembleVis, we include a case 
study that investigates the consistency of weekly COVID-19 predictions, 
which are generated at the state level from 4 popular predictive models 

for the contiguous United States. By overlaying our ensemble visuali-
zations with other spatial information, we are able to obtain some data- 
driven insights regarding the empirical relationship between the model 
uncertainty and population density. Developed with adaptive design 
and flexible architecture, the data-driven visual interface of EPIsem-
bleVis is generalizable and extendable, and can support visual analysis 
of ensemble COVID predictions that are produced in other geographic 
entities (e.g., other countries and continents), from more epidemiolog-
ical models, and at alternative spatial (e.g., county and city) and tem-
poral (e.g., monthly and daily) scales. 

In summary, our contributions are as follows:  

1. An big-data cyberinfrastructure that adopts an ontology-based data 
pipeline to create a COVID-19 Forecast Ensemble datasets.  

2. A visual representation that overviews necessary information for the 
ensemble analysis, such as the availability and predicting parameters 
of individual models, at a glance. 

3. A textured tile-based calendar that highlights spatiotemporal pat-
terns of differences between predictions from selected models.  

4. Two glyph-based representations of model-outputs which enable the 
comparison between different model predictions, as well as com-
parison with recorded cases in both the spatial and temporal 
dimension simultaneously. 

2. Related work 

A comprehensive evaluation of the COVID-19 prediction model 
consistency is a complex effort that requires solid understanding and 
knowledge in both the epidemiological modeling, and ensemble model 
analysis and visualization. Based on these two types of effort, we divide 
our related work section into the following subsections. 

2.1. COVID-19 prediction models 

With the global propagation of the coronavirus disease 2019 
(COVID-19), epidemiologists worldwide are rushed to develop epide-
miological models for forecasting the future of the pandemic [22,1]. 
Despite their capability of producing quantitative projections of in-
fections and mortality estimates, these models and their performances 
are usually affected by a set of model assumptions and configurations. As 
many aspects of the COVID-19 epidemics still remain unknown and need 
to be assumed [22], it would not be sufficient and reliable to rely on the 
forecasts of a single model that is developed based on a specific set of 
assumptions and calibration data with limited quality and quantity. 

There are two distinct branches in epidemiological modeling: 
Mechanistic models [15] and Stochastic models [18]. Each type of 
epidemiological model has its strengths and limitations [29,11,52], and 
it is critical to compare results from different models to gain a better 
understanding of potential future behaviors. 

2.1.1. Prediction ensemble 
Given the fact that many epidemiological models produce conflicting 

projections and, according to many modelers, may have varying per-
formances for making forecasts [1,18], one approach to reduce and 
analyze the uncertainty in these models is through the development of 
prediction ensemble, through which models of different types (with 
different configuration and assumptions) are executed to generate 
multiple realizations of the same projections [49]. The prediction 
ensemble approach usually produces a collection of spatiotemporal 
outputs, each of which is generated by a single model run and is defined 
as an ensemble member [37,2]. Currently, ensemble data analysis and 
visualization are widely used in many domains, such as climate science 
and oceanography, to help scientists model complex systems, reduce 
uncertainty, and explore sensitivity to different model parameters, as-
sumptions, and initial conditions [37,36,17,39]. 

Ensemble datasets are an increasingly common tool to help scientists 
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simulate complex systems, mitigate uncertainty, and investigate sensi-
tivity to parameters and initial conditions. These spatiotemporal data-
sets are large, multidimensional, and multivariate. Due to their 
complexity and size, ensembles present challenges in data management, 
analysis, and visualization. Currently, comprehensive ensemble data 
analysis and visualization that evaluates the consistency for COVID-19 
forecasting models in the health geography sector is still rare. The 
most relevant application would be the COVID-19 Forecast Hub [26,4], 
which focuses on the preparation and compilation of COVID-19 
ensemble projections from different models, and provides basic model 
comparison capabilities that only focus on a single data dimension (e.g., 
temporal or spatial) using line charts. 

2.2. Ensemble visualization 

Effective ensemble visualizations help domain scientists gain a more 
intuitive interpretation and understanding of patterns within a complex 
dataset [49]. By nature, ensemble data are typically large, multivariate, 
and multivalued, and can be defined for multiple data dimensions 
[20,28,38]. Due to this complexity, ensemble data often entail multiple 
facets that need to be considered simultaneously during the analysis and 
visualization. They are challenging to explore and comprehend using a 
single visualization technique, which usually covers only one or two 
facets [49,24]. In addition, the unique member dimension in the 
ensemble data cannot be efficiently represented through traditional 
visualization techniques, posing further challenges in data analysis. 
Given these challenges, a variety of analytical and visualization tech-
niques have been proposed to reduce the complexity and dimensions in 
ensemble datasets, characterize uncertainty, and evaluate the accuracy 
and reliability in the data ensemble [36,52,20,39]. 

One of the most recent comprehensive reviews of the ensemble 
visualization and visual analysis is offered by [49], who summarized a 
wealth of past applications that utilize combined visualization tech-
niques (e.g., vectors, color maps, glyphs, maps, and time-series) to 
simultaneously cover multiple facets and dimensions of the ensemble 
data. Examples of these applications include the visualization of 
ensemble uncertainty in (a) the spatial, ensemble, and multivariate di-
mensions [20,35,21], (b) spatial and temporal dimensions [16,17,41], 
and (c) temporal and ensemble dimensions [33,25]. 

Despite useful developments in the ensemble visualization domain, 
many of these past applications were developed as either desktop-based 
or traditional web-based applications. They often face software engi-
neering challenges regarding system adaptability and frequently upda-
ted new data that are available through various online repositories and 
cyberinfrastructure. The above-mentioned challenges limit the capa-
bility of these applications for conducting ensemble analysis on time- 
critical data, such as COVID-19 model projections. In addition, many 
of the past applications rely on the coordination of multiple visualiza-
tions in the visual interface to cover multiple dimensions of the 
ensemble data. This requires a significant amount of interactions be-
tween the user and the visual interface. In this setting, the visual analysis 
tool might not be very intuitive for non-expert users. Since the ultimate 
objective of analyzing COVID-19 prediction ensembles is to enable 
timely and accurate insights, and decision supports for preventing the 
further spread of the disease, it is vital to have ensemble visualization 
platforms which are intuitive and informative. In this regard, a single 
innovative visual representation, which can reveal multiple facets of the 
ensemble data at the same time, is preferred than multiple visualizations 
that require a moderate amount of users’ effort for interaction and 
interpretation. 

3. Overview 

This section will provide an overview of EPIsembleVis at the example 
of weekly forecasts at the state level. However, these concepts translate 
well to other spatiotemporal granularities. We will discuss any required 

modifications in the corresponding subsections. At the temporal level, 
we focus on weekly forecasts as this allows us to bypass the stark daily 
variations (especially in ground truth data), and it is consistent with 
outputs from a large number of forecasting models, as we will discuss in 
Section 4. At a spatial level, we focus on states because counts are less 
susceptible to noise than county level, and many regulations are 
implemented for specific states, which provides a more consistent basis 
of comparison. In addition, we also aggregate to geographic regions to 
provide relevant geospatial visualizations at a coarser level of detail. The 
individual visualizations as well as their results are discussed in Section 
5. 

3.1. Framework and visual workflow 

This subsection presents the technical details that are related to the 
implementation of the EPIsembleVis. The developmental efforts of the 
visual analysis tool can be divided into two parts: (1) data compilation 
and indexing on the server-side, and (2) the visual interface design on 
the client-side. 

The data compilation and indexing are achieved through a big-data 
cyberinfrastructure that is powered through the combination of Elas-
ticsearch and Kibana. The Elasticsearch is a distributed, multitenant- 
capable full-text search engine that is able to conduct the web mining, 
ingestion, and archiving of large-scale data in an automated manner. To 
facilitate the data retrieval from and log management of the Elas-
ticsearch, the Kibana online data visualization platform is designed to 
serve as an API end-point for querying and access the tremendous 
amount of web-mined data gathered through the Elasticsearch. Taking 
advantage of this cyberinfrastructure, we developed our EPIsembleVis 
application as a Kibana visualization plug-in. This implementation 
provides an automated data provision pipeline that seamlessly connects 
the EPIsembleVis with the Elasticsearch, rending the visual interface 
flexible and generalizable. Through this connection, the visual interface 
is able to access and analyze the latest COVID-19-related data resources 
(e.g., model projections and ground truth information) from any online 
repositories in near-real-time [44]. 

The novel and customized spatiotemporal visualizations presented in 
this paper are implemented using D3JS JavaScript libraries that utilize 
both HTML5 Canvas graphics and Scalable Vector Graphics (SVG) ele-
ments to render interactive visual representations both in the interface 
and on the web map. The interaction between the user controls that 
enable the selection of variables and models and the coordination of 
various linked visualizations is created through the direct manipulation 
of the HTML Document Object Model (DOM) elements using both D3JS 
and JQuery JavaScript libraries. 

The visual interface is developed using adaptive and interoperative 
web technologies and design patterns, and therefore is generalizable and 
scalable for conducting comparative visual analysis for prediction 
datasets that contain predictions from more models or in other coun-
tries. The visual interface can be readily integrated into major big-data 
analytical platforms, such as Grafana and Kibana, as a plugin. 

3.2. Data acquisition 

Our main data source is the COVID-19 Forecast Hub data [47] which 
is provided through the Center for Disease Control’s forecasting hub [4]. 
The forecast hub collects data from a large number of different models 
which provide forecasts of cases, hospitalizations, or deaths at national 
level (for the United States), by state, or by county. 

During the initial development of this work, we created preliminary 
analyses and visualizations for a mixture of public and non-public model 
forecasts: EpiGrid and EpiCast [11], LANL COVID-19 Cases and Deaths 
Forecasts [27], and IHME [19], to test the concept of the EPIsembleVis. 
We will focus this paper on the forecast hub data selection, since two of 
these models (IHME and LANL) are part of the forecast hub data, access 
to EpiGrid and EpiCast is manual, and EpiGrid is not routinely run for a 
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large number of states. 
As ground truth data, we use the Johns Hopkins COVID-19 Data 

Repository [10,23], as well as the New York Times Data [31]. Both 
datasets are also available through the forecast hub [47]. 

As the first step of our data workflow, we pull an automatic update 
from the forecast GitHub [47], and optionally, other model or ground 
truth sources. 

4. Ontology-driven data compilation 

The COVID-19 Forecast Hub dataset [47] contains predictions from 
70 different models at the time of writing. Each of the datasets in the 
collection contains predictions for weeks (58 models), days (1 model), or 
both (11 models). The predictions can be for cases (30 models), hospi-
talizations (12 models), or deaths (65 models), and each of these vari-
ables can be provided as incident data (daily new incidents of each 
variable), cumulative data, or both. All 70 models provide a point esti-
mate, while some models provide additional ensembles of different 
quantiles. 

The data is available at the following geographic levels  

• National (53 models): For this subset of data, it is not clear which 
states and/or territories are included.  

• State (63 models): The number of states included varies between 1 
and 56 states. 24 models include all 50 states with or without the 
District of Columbia, 19 models include some or all U.S. Territories, 

and 18 models include less than 50 states (12 of these models include 
less than half of all states).  

• County (19 models): Again, there is some variation in how many 
counties are included. 11 models include more than 3,000 counties 
(50 states with D.C. have 3,141 counties), and 4 models include less 
than 1,000 counties. 

Most model data are updated daily or weekly, with a new set of 
predictions for the following days/weeks. However, this does not always 
happen consistently that the temporal resolution of these models may 
change during different time periods. 

To create a better understanding of data availability, we created an 
overview, which combines model updates and variable of COVID-19 
data (cases, hospitalizations, deaths). The data availability map in 
Fig. 1 shows an overview of when models were updated, aggregated to a 
weekly level. Weeks are represented as columns, and models are rep-
resented as one row. For weeks in which the model was updated, the 
corresponding cell is colored to represent which data types are available. 
With this representation, it is easy to see at a glance how regularly 
models update and how long they have been part of this dataset. We will 
discuss this visualization in more detail in Section 5.1. 

4.1. Data preparation and fusion 

The format for model outputs in this dataset is consistent across all 
models, which enables us to use a single pipeline for data compilation. 

Fig. 1. The overview and general user Workflow of the visual interface.  
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However, due to the many options provided to accommodate different 
prediction parameters, it is rather complex and requires several pro-
cessing steps to produce easily ingestible data for visualizations. 

As the first step in data preparation, we prepare a data dictionary 
that holds all relevant model properties, file paths, and the number of 
days or weeks the models project. 

We are particularly interested in comparing different models, rather 
than different projections by the same model. Therefore, in the next step, 
we filter the model outputs to contain only point estimate data, which is 
available from all models, instead of using the quantile data that is only 
provided from a few models. 

Finally, we filter each model output to contain only outputs at the 
state level. As we are considering data for the United States and its 
territories, one single geographic entity is too coarse, and it can be 
aggregated on-the-fly. Most models that provide county data also pro-
vide state data. For the few exceptions, the county data can be aggre-
gated up to states very easily. 

4.2. Spatial and temporal aggregation 

The next step of our data workflow is to develop data aggregation for 
each model. As the models in this dataset update on different days of the 
week, it produces a temporal heterogeneity in the ensemble dataset that 
prevents the comparison between models. To facilitate comparisons, we 
summarize them by week. The majority (70%) of updates happen on 
Sundays or Mondays. To ensure the integrity of the datasets and remain 
close to the conventions that are adopted by disease control pro-
fessionals [7], we choose to start weeks on Sundays. As for week 
numbers, we assign ISO week numbers that apply to all days except 
Sunday, which are part of the prior week under the ISO definition but 
assigned to the following week for this aggregation. The data availbility 
map in Fig. 1 uses this aggregation to represent the frequency and time 
of model updates in an intuitive format, which makes it easy to compare 
models. It also serves as a basis for data selection for ensemble 
comparisons. 

As part of the aggregation process, we also lay the foundation for 
spatial aggregations (county-to-state and state-to-region) by adding la-
bels for regions and states to all data. The aggregation itself will be done 
through ElasticSearch and Kibana queries based on user interactions. 

4.3. Data enrichment 

Each model has a specific set of predictions. These predictions can 
have different combinations of aggregation type and a variable. Aggre-
gation types are either cumulative or incident (daily update), and vari-
ables are the case, hospitalization, or death. However, none of the 
models has each possible combination. 

To increase the comparability of models, we add missing aggregation 
types for each variable. To get incident data i(t) from cumulative data 
c(t) for each location, we use a simple subtraction of the previous date 
(t − 1). 

i(t) = c(t) − c(t − 1)

For cases in which we only have predicted incident data (i(t)) and 
want to get the cumulative data, we use the number of reported cases 
(g(0)): 

c(t) = i(t) + g(0)

The resulting datasets with matching cumulative and incident data 
for each available variable are ingested into the ElasticSearch database. 

Through a series of aggregation processes, we are able to uniform the 
variable type (e.g., death, case, and hospitalization), as well as spatial 
and temporal enumeration units of COVID-19 projections (e.g., new 
cases for each state and in each week) from various epidemiological 
models. By grouping these aggregated projections based on the same 
type, state, and week, we can readily construct COVID-19 model 

prediction ensembles, in which individual model predictions are serving 
as an ensemble member. 

4.4. Ensemble metrics 

Statistical aggregation is often used to create metrics for character-
izing the ensemble data in many past studies. In this study, we use two 
metrics to quantify the consistency of multiple models, which include 
(a) the uncertainty among multiple ensemble members within a model 
prediction ensemble and (b) the accuracy of the prediction of an indi-
vidual ensemble member compared to recorded case numbers. For the 
purpose of metric definitions, we use xi to denote recorded case data, 
and x̂i to denote predicted data, where xi and x̂i can be cumulative or 
incident data for any of the variables (case, hospitalization, death). 

4.4.1. Ensemble uncertainty 
Given the multivariate nature of each model prediction ensemble, we 

utilize two statistical aggregates to quantify the prediction uncertainty 
within each ensemble. These statistical aggregates include (1) the 
Standard Deviation (STD) and the (2) Coefficient of Variation (CV) of 
each ensemble, and are calculated using the predictions produced from 
individual ensemble members. The STD is able to characterize the ab-
solute variations among the predictions x̂i from multiple ensemble 
members, therefore is suitable for quantifying the uncertainty of en-
sembles with a similar magnitude of predictions. For an ensemble with N 
models for a model run date τ and a prediction date t, we get: 

STD(τ, t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
(x̂i(τ, t) − mean(x̂(τ, t)) )2

√
√
√
√

In contrast, the CV is calculated by dividing the ensemble’s STD by its 
mean, thus provides a normalized characterization of the relative vari-
ation (in percentage) among multiple ensemble members. In this regard, 
the CV allows the comparison of the uncertainty between two ensembles 
with different magnitude of predictions, such as comparing the death 
prediction for Illinois (with the magnitude of ten thousand) with that for 
West Virginia (with the magnitude of hundreds). 

CV(τ, t) =
STD(τ, t)

1
N

∑N

i=1
x̂i(τ, t)

In essence, consistent model ensembles are expected to have 
consensus projections from its members, therefore they should have 
relatively low STD and CV. 

4.4.2. Prediction error 
To determine the accuracy of individual models, we compute the 

relative error E between model prediction (x̂) and recorded cases (x), i.e. 

E(τ, t) =
x̂(τ,t)− x(τ,t)

x(τ,t) . This metric provides us a sense of how accurate each 
model predicts, meanwhile quantifies the accuracy using an easy-to- 
interpret numeric parameter with linear scaling. For example, if there 
are 100 recorded cases and the model predicts 80 cases, E = 0.2. For a 
prediction of 200, E = − 2. 

5. Visualization 

In this section, we discuss visualizations of different aspects of the 
data, including the range of model run dates (dates on which models 
were updated), forecast dates (created in a model run), and forecast data 
itself. We present visualizations which compare different model outputs 
within an ensemble with each other, and with recorded case data. 

5.1. Data availability map 

The data availability map represents the dates of model runs (τ) for 
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all models, as well as the type(s) of predictions each model contributes, 
as introduced in Section 4. Its name is inspired by heatmaps, which are a 
common visualization tool for matrix-like data. As seen in Fig. 1, it is 
easy to see at a glance which data have gaps in their updates, and how 
consistently they have been updated. For easier navigation, we offer 
options that allow users to sort the list of models by model name and 
prediction type. As a colormap, we have chosen a trivariate color 
scheme, which can be represented as a Venn diagram. Colors of models 
which only provide one type of prediction is kept light (yellow, pink, 
cyan), colors for models with two types of predictions are darker (blue, 
green, red), and models with all three predictions are darkest (gray). 

In addition to serving as an overview visualization, the data avail-
ability map is also a key element to navigating the data. Users can sort 
the list of models by dataset name or by the combination of variables in 
the model. This helps to find a specific model by name, and it enables the 
identification of models with similar variables (e.g., case, death, hospi-
talization). On the right side of the data availability map, an array of 
checkboxes serve as the model selection tool. Similarly, the checkboxes 
that are placed below the data availability map serve as date selection 
for the model run. 

5.2. Model selection 

For the purpose of this paper, we compare four models. Unless noted 
otherwise, all Figures display data from these models. The choice of 
model is based on their long predictive windows, the large overlap be-
tween the different models’ prediction dates, and diversity in approach 
(both mechanistic and statistical models are represented in this sample). 
The selected models are listed below by the name provided in the 
Forecast hub [4].  

• Covid19Sim-Simulator Chhatwal et al. [6]: This is a compartment 
model that uses the SEIR compartments [15] with continuous-time 
progression. It uses state-specific inputs from JHU [23] and The 
COVID Tracking Project [45]. 

• IHME-CurveFit [30,19]: This model utilized non-linear mixed-ef-
fects curve-fitting to predict death rates [23] based on the ratio of 
reported COVID-19 deaths (compared to a baseline death rate, and 
models health service utilization as a function of deaths (based on 
hospital capacity and utilization data)). 

• IowaStateLW-STEM [50,51]: This is a non-parametric spatiotem-
poral model for disease transmission to study COVID-19 spread at the 
county level. It uses the New York Times COVID-19 dataset [31] as 
well as information from health department webpages about county- 
level infections and deaths to predict cases and deaths. 

• YYG-ParamSearch [14]: This model uses a hyperparameter opti-
mization approach, which minimizes the error between reported 
deaths and model predictions. It includes some fixed variables based 
on literature (e.g., latency and infectious period), as well as opti-
mized variables (e.g., mortality rate, initial and post-lockdown R0). 

In addition to reported deaths from JHU [23], YYG-ParamSearch 
includes data about individual state-by-state reopenings. 

5.3. Spatiotemporal variability tiles 

The purpose of spatiotemporal variability tiles is to show a high-level 
overview of how model predictions and ensemble metrics (color) evolve 
over time (tiles) for different states (sub-tiles). This visualization had its 
inception as a calendar view for ensembles of daily prediction data for 
EpiGrid [11], IHME [30], and LANL Growth Rate Model [34], seen in 
Fig. 2a. Each day is represented as a textured tile that displays data for 
each state. The tiles are arranged in a calendar shape to provide an 
intuitive yet compact representation of variation over time. To reflect 
the predominant model prediction resolution (weekly) in this ensemble 
of models, we modified this calendar view to display a truncated view 
that contains one tile for each week of data. This is demonstrated in 
Fig. 2b for an ensemble of the Covid19Sim-Simulator [6] and 
IowaStateLW-STEM [50,51] data provided in the Forecast Hub 
collection. 

When a user clicks on a tile in the calendar view, a detailed version of 
the tile is displayed, as depicted in Fig. 2c. This selection is also used to 
choose the date for rose charts (Section 5.5). Each tile is a 7 × 8 matrix, 
which contains one sub-tile per state, including the District of Columbia 
and United States Territories. While the small version only uses color to 
represent each state, the large version is labeled with each entity’s postal 
abbreviation. If a single model is selected, the color reflects the values of 
the chosen model and variable (e.g., cumulative cases). However, if 
multiple models are selected, it shows the selected ensemble metric for 
the ensemble of chosen models. We use a colormap with a scale from 
light yellow to dark red, with missing data displayed in gray. 

To learn more about the exact numbers for each state, a user can click 
its sub-tile. This will display the exact value for each model on the 
selected date, as well as the ensemble metric that overviews each 
selected model. The user can also highlight the corresponding rose chart 
or leaflet glyph on the map by hovering over a state. 

5.4. Leaflet glyph 

The purpose of this visualization is to allow users to simultaneously 
compare the predictions from multiple models (shown in different 
colors) in an ensemble with the recorded data as a time-series (vertical 
axis). Through an interactive user workflow that is developed using the 
level of detail technique, the user is able to view both an overview of the 
model consistency across a large geographic area, as well as detailed 
deviations between individual models and the recorded data. The details 
of the workflow are as the flowing: 

Step 1: select models for ensemble comparison; Step 2: present 
overview of the spatiotemporal comparisons between individual 
ensemble members (case predictions) against recorded data in the web- 
map using leaflet-glyph visual representation; Step 3: present detailed 
leaflet-glyph representation when the user select a specific state. The 

Fig. 2. Spatiotemporal tiles in a calendar view for daily predictions (a), a weekly view for weekly predictions (b), and a detailed view of a single tile (c).  
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layout for leaflet glyphs mirrors that of the rose charts: we display each 
state’s leaflet glyph of the selected models on the map, and we provide a 
close-up, more detailed version of the glyph next to the map when the 
user hovers over one of the glyphs. 

Each leaflet glyph is built up as follows: The vertical axis displays 
weekly predictions, labeled with the week number of the model pre-
diction date. For the data presented here, there are 8 weeks of overlap 
between model predictions and recorded data. On the horizontal axis, 
we display the prediction error of all model predictions. In these 
graphics, we display abs(E), however, a modification which applies a 
texture to columns with negative values is under development. Models 
are aligned in pairs to the left and right of a central axis, and each model 
is shown in a different color. The user can choose one of several color-
maps to differentiate between models. 

Fig. 5 displays some examples of the glyphs at full level-of-detail, 
which will be discussed in Section 6. 

We provide two different views of these glyphs: a local view and a 
global view. With the local view (Fig. 3a), users can compare different 
model predictions of deaths for a single state. The axes for all sections of 
a single leaflet glyph are scaled to be identical, but each state has in-
dependent axes. In this example, one can see that Covid19Sim (green) 
and IHME (purple) have very little difference from the recorded deaths, 
whereas the Iowa model has the biggest difference within this ensemble. 
With the global view (Fig. 3b), the leaflet glyphs for all states share the 
same axis. This enables users to compare how accurate model pre-
dictions are for different states. The leaflets for some states, such as most 
states in the Northeast, vanish to almost a line. The states which stand 
out with much higher discrepancies are predominantly sparsely popu-
lated states. 

5.5. Rose charts 

The purpose of this visualization is to compare different models in an 
ensemble with each other, both in a quantitative way (size of petals 
representing model predicted values) and a qualitative view (color 
representing disagreement). Rose charts are a well-known glyph-based 
visualization technique for comparing different data, in which each 
variable (here: model prediction) is displayed as a petal in a polar co-
ordinate view. For each state, we display a rose chart of the selected 
models on the map. When the user hovers over one of the charts, a close- 
up, more detailed version of the chart is displayed next to the map. The 
user can choose one of the metrics (coefficient of variation or standard 
deviation) as a display option. The date for this step is selected using the 
temporal variability tiles. 

Each rose chart is built up as follows: Each model is represented as a 
section of a circle (or petal), and the abbreviated model name is dis-
played around the perimeter of the close-up version. The radius of the 
petal represents the model’s predicted value. Concentric circles aid in 
reading the numbers. An example of this can be seen in Fig. 4 The color 
of the slices represents the agreement between models. Light yellow 
indicates agreement (low coefficient of variation or standard deviation), 
and red indicates disagreement between models (high coefficient of 
variation or standard deviation). When rendered on the map, we reduce 
the level of detail to just petals, crosshairs, and one concentric circle to 
minimize visual clutter. 

For example, a set of models with high agreements will look like a 
light yellow circle (e.g., Pennsylvania in both projections). A set of 
models with strong disagreement will have distinctly differently-sized, 
red slices (e.g., West Virginia in the 4 week projection). In between 
these extremes lies a range of darker yellows and oranges (e.g., West 
Virginia in the 8 week projection) with increasingly mismatched slices 
the closer the color gets to red. 

5.6. Limitations 

The limitations that are associated with the rose chart and leaflet 

glyph include (1) resulting visual clutter that may hinder the overview 
and visual exploration of the pattern when visualizing sub-county level 
COVID-19 predictions, and (2) providing a limited capability for visu-
alizing a large number of model projections, which exceed the maximum 
number of screen pixels. 

6. Case study and results 

The following case study aims to demonstrate the capabilities and 
effectiveness of our visual analysis for (a) revealing the spatiotemporal 
variability in the consistency of COVID-19 multi-model prediction en-
sembles, and (b) providing data-driven insights that enable users to 
explore potential contributing factors that may affect the performance of 
model prediction ensembles. 

In this case study, we analyze and compare the weekly predictions 
from four COVID-19 prediction models across the contiguous United 
States. These models include COVID-19 Simulator [9], IHME-CurveFit 
[13], IowaStateLW-STEM [43], and YYG-ParamSearch [42], and their 
prediction results are aggregated to state level. We justify our selection 
of models using the following reasons that (a) all 4 models provide 
weekly death predictions, and (b) their prediction availability (spatial 
and temporal coverage) has the maximum overlap (13 weeks in total 
across the contiguous United States). 

From an ensemble uncertainty perspective, we can observe empirical 
relationships between the prediction ensemble’s uncertainty and the 
geographic distribution and density of the population (detailed in Fig. 4) 
from the rose chart that visualizes the dispersion in each ensemble 
prediction. We chose the NASA night-light map as a base layer for this 
visualization as it gives a good indication of population density (i.e., 
densely populated areas are lit up, whereas sparsely populated areas 
remain dark). As one can see in this Figure, most of the states with high 
disagreements between models (high uncertainty) are sparsely popu-
lated. Furthermore, one can see that between the earlier prediction 
(Fig. 4a) and the later prediction (Fig. 4b), the uncertainty rises, as 
indicated by the darker coloring of most rose charts. This effect is 
particularly strong in West Virginia (circled blue). More spatial data 
layers (e.g., regional mobility and the implementation of mitigation 
strategy) can be readily integrated into the web map (developed using 
the Leaflet map engine) to provide additional data-driven insights that 
are associated with other social-economic aspects. 

From a model consistency perspective, we visualize the time-series of 
model prediction error by comparing each prediction against the 
recorded data from corresponding calendar weeks using the leaflet 
glyph (as depicted in Fig. 5). This time range is determined by the 
availability in both the model prediction and recorded data. Another 
interesting observation is that the leaflet pattern for Texas (triangles 
pointing up) is very different from its surrounding states. This pattern 
indicates the prediction errors of all 4 models are highest at the begin-
ning of the time range (week 31) and gradually decrease as weeks 
elapse. On the contrary, the patterns of Missouri and Arkansas are in the 
shape of a downward-pointing triangle, indicating that the model pre-
diction errors in these states gradually increase over time (from week 31 
to 38). 

To enable comparisons between different states, we set the leaflet 
glyph to visualize global differences, the maximum in the x-axis of each 
glyph is the same. In this setting, we can observe that the 4-model 
predictions have a very small error in Louisiana, as seen by the leaf-
let’s almost linear shape. Oklahoma and Missouri have relatively low 
errors, as indicated by their slim leaflets, whereas the errors are high for 
most models in Arkansas, Kansas, and Texas. 

There is no model that performs outstandingly in all states, but on the 
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selected model run2, YYG performs well in most states, with the 
exception of Texas (where its predictions are off by an almost identical 
factor each week), and Arkansas, where Covid19Sim is the only model 
that performs well. The Iowa and IHME models both perform well in 
Kansas, Oklahoma, and Louisiana, and worst in Missouri, Arkansas, and 
Texas. 

Our selection of models aims to provide a showcase of potential in-
sights that can be generated through our visual analysis. As the GIS- 
based visual interface allows users to select a different combination of 
models that provide predictions for other variables (e.g., cases and 
hospitalizations) and have different levels of spatial (e.g., county and 
city) and temporal (e.g., daily and monthly) aggregations, more data- 
driven inferences can be generated during user interaction with the 
interface. 

7. Conclusion 

In this paper, we presented an innovative web-based tool, debuted as 
the EPIsembleVis, for conducting a comparative visual analysis on the 
consistency of COVID-19 ensemble predictions. By analyzing individual 
model projections as ensemble members, the EPIsembleVis is devised to 
(a) quantify the consistency of the prediction ensemble using metrics 
based on statistical aggregates, which include the coefficient of variation 
in individual ensembles (the dispersion in the predictions from different 

ensemble members) and the prediction error (by comparing the model 
predictions against the recorded data), and (b) allows users to overview 
and explore in details the spatiotemporal variability of the ensemble 
predictions (e.g., similarities and dissimilarities of the ensemble mem-
bers) at each spatial and temporal aggregation (e.g., weekly predictions 
in each state across the contiguous United States) using a suite of novel 
visualization techniques. EPIsembleVis was developed based on an 
automated data provisioning workflow powered through a 
ElasticSearch-Kibana stack, and it can automate the compilation of an 
ensemble dataset using public-available COVID-19 predictions from a 
variety of epidemiological models in a near-real-time fashion. This 
setting also makes our approach generalizable and scalable to analyze 
COVID-19 predictions produced from more models and in other 
geographic areas (e.g., country and continent). The tool was developed 
with open-source web technologies and adaptive system designs that 
make the system light-weight, low-cost, and interoperable with major 
online data analytical platforms, such as Kibana. 

The visual analysis approach presented in this paper aims to enable 
heuristic explorations of the complex patterns in COVID-19 prediction 
ensemble datasets and serves as a pilot study to guide future investiga-
tive efforts through data-driven insights, which can help epidemiologists 
improve the performance and consistency of COVID-19 prediction 
models, as well as identifying the best performing models for certain 
scenarios (e.g., geographic areas and outbreak stages). 

We summarize our experiences and findings from the approach as 
the following: 

Fig. 3. Through the visual interface, we compare the local (a) and global (b) views of leaflet glyphs for visualizing the accuracy of different models across the states.  

2 Please note that all statements are made for this particular selection of 
model runs, and these statements are not universally true for the different 
models. 
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• For a comparative study, metadata visualizations, such as the data 
availability matrix presented in this paper, can help users identify 
applicable data for comparisons.  

• Our approach provides a visual workflow that aims to foster a better 
understanding of the ensemble data itself and its associated data 
operations (e.g., data enrichment and different types of aggrega-
tions). The interactive workflow serves as a medium for users to 
interact with the data directly to extract useful information along 
with all steps of the workflow.  

• Data-driven insights derived through the visual analysis, such as the 
empirical relationship between the COVID-19 prediction uncertainty 
and population density, can be used to generate new hypotheses for 
guiding future modeling and investigation efforts. Based on the 
spatiotemporal patterns acquired from our case study, we would 
propose a multivariate analysis to further quantify the relationship 
between the ensemble prediction performance and state-level de-
mographic characteristics. 

The visual interface was presented and well-received at the Centers 
for Disease Control and Prevention (CDC) headquarters. During the 
presentation, we prepared a user survey for the presentation audiences 
to evaluate the usefulness of our visual interface. The survey was not 
designed to assess the usability and utility of the visual interface using 
formal protocols and cognitive walk-through defined by the visualiza-
tion and visual analytics communities. Instead, we used the survey to 
collect qualitative feedback on the usefulness of the visual interface and 
user-friendliness of the visual representation from the perspective of 
healthcare professionals. Most audiences of the presentation commented 

positively on the usefulness of the visual interface and offered new vi-
sions and use cases for exploring the consistency of COVID-19 model 
predictions. Based on the feedback, we have identified our future work 
as the following: (1) applying more advanced metrics to provide a more 
in-depth and comprehensive characterization of each prediction en-
semble’s uncertainty and error. Examples of these metrics include the 
root mean squared error (RMSE) and the coefficient of variance of the 
root mean square error (RMSE CV), which are often used to evaluate the 
deviation of model prediction from reality. Different quantiles of each 
ensemble can also be incorporated into the analysis to provide a more 
detailed characterization of the variability in the individual model 
predictions; (2) adapting the leaflet glyph to visualize negative values 
when visualization the ensemble error through different shades of color- 
coding within the same hue; (3) conducting a case study using weekly 
projections that are produced at the county level across the United 
States. With higher spatial resolution, the county-level evaluation on 
modeling performances can provide more practical insights for sup-
porting COVID-19 mitigation strategies, and (4) developing a heuristic 
data analysis using a combination of unsupervised machine learning and 
multivariate visualization techniques to explore potential factors (e.g., 
state, demographic, land-use/land-cover and mobility attributes) that 
can affect the uncertainty of prediction ensemble, as well as the pre-
diction accuracy of individual models. We also plan to conduct a formal 
usability and utility test of the visual interface by inviting professionals 
from both the visualization and epidemiology communities. Ultimately, 
the future work aims to supplement the existing evaluation of the 
ensemble prediction uncertainty and model prediction accuracy, with 
the additional capabilities to provide a more straightforward (semi- 

Fig. 4. Through the overlay of the NASA night-light map, the rose chart reveals that the overall disagreement between models is less for the 4-week-into-future 
projection. Prediction ensembles in populated areas usually have a lower coefficient of variation (indicated by light yellow colors and well-balanced petals) 
compared with the ensembles in sparsely populated areas. Examples of these sparsely populated areas include (a) Montana, Idaho, and Wyoming (highlighted by the 
green dashed ellipsoid), and (b) West Virginia (circled in blue) in the Eastern area (highlighted with the blue dashed square). Ensemble predictions in these states 
present high dispersion as indicated by their rose charts through the dark red color-coding and unbalanced petal sizes. Close-ups of the rose charts for Pennsylvania 
(orange) and West Virginia (blue) are shown on the right-hand side. 
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automated) answer questions, such as which predictive model is best for 
a given scenario, and under which conditions (mitigation strategies, 
growth rate, population density, total population, etc). 
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