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Human cognition is organized in distributed networks in the brain. Although distinct specialized networks have been identified
for different cognitive functions, previous work also emphasizes the overlap of key cognitive domains in higher level association
areas. The majority of previous studies focused on network overlap and dissociation during resting states whereas task-related
network interactions across cognitive domains remain largely unexplored. A better understanding of network overlap and dissociation
during different cognitive tasks may elucidate flexible (re-)distribution of resources during human cognition. The present study
addresses this issue by providing a broad characterization of large-scale network dynamics in three key cognitive domains.
Combining prototypical tasks of the larger domains of attention, language, and social cognition with whole-brain multivariate
activity and connectivity approaches, we provide a spatiotemporal characterization of multiple large-scale, overlapping networks that
differentially interact across cognitive domains. We show that network activity and interactions increase with increased cognitive
complexity across domains. Interaction patterns reveal a common core structure across domains as well as dissociable domain-
specific network activity. The observed patterns of activation and deactivation of overlapping and strongly coupled networks provide
insight beyond region-specific activity within a particular cognitive domain toward a network perspective approach across diverse
key cognitive functions.
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Introduction
Cognitive functions are organized in large-scale networks
in the human brain that strongly interact and partially
overlap for some functions. Numerous neuroimaging
experiments have elucidated such network interactions,
most extensively with task-based functional magnetic
resonance imaging (fMRI) (Corbetta et al. 2008; Binder
and Desai 2011; Cole et al. 2013; Laird et al. 2013). Among
these functions, attention, language, and social cognition
represent three key human-defining facets that are
central for interaction and successful communication.
These cognitive faculties enable humans to adapt to ever-
changing environmental conditions by flexibly allocating
and reallocating cognitive resources. For instance, the
ability to interactively reorient attention is essential for
visuospatial navigation in a complex world and crucial
for survival (Corbetta et al. 2008). Although attentional
processes are shared across different species, under-
standing and communicating thoughts and inferring
the thoughts, beliefs, and communicative intentions of
others is a unique human feature. Language and social
cognitive functions are closely intertwined, and some

researchers have argued that, from an evolutionary
perspective, language might have evolved to facilitate
social exchange between larger groups (Dunbar 2004;
Tomasello 2005). In particular, the ability to understand
words and sentences, that is, semantic processing, is
key to social interactions, planning, and problem solving
(Binder and Desai 2011).

At the neural level, as measured with task-based fMRI,
attention, language, and social cognition are organized
in several specialized networks in the human brain
(Corbetta et al. 2008; Lambon Ralph and Patterson 2008;
Spreng et al. 2008; Binder et al. 2009; Schurz et al. 2020).
Aside from this neural specialization, recent work also
demonstrates some overlap among these processes in
higher association areas (Bzdok, Hartwigsen, et al. 2016).
In particular, overlap between all three domains has been
demonstrated in posterior areas of the default mode
network (DMN) (Numssen et al. 2021), a major brain
network that was initially observed to be more active
during rest and associated with mind wandering and
semantic memory (Mason et al. 2007; Shehzad et al.
2009; Binder and Desai 2011; Seghier and Price 2012). The
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DMN consists of distributed heteromodal association
areas. Tasks that elicit positive activations in the
DMN involve introspective processes that are generally
separated from external sensory input, for example,
autobiographical memory, spontaneous thought, and
social and self-referential inferences (Buckner and
DiNicola 2019). More intricate task-based experimental
designs and analysis methods, such as meta-analyses
and activation likelihood estimation, have dissociated
the larger DMN into multiple networks that fractionate
across cognitive domains (Laird et al. 2009; Peer et al.
2015) and, with sufficiently large resting-state data sets,
within individuals (Braga and Buckner 2017; Buckner and
DiNicola 2019).

Indeed, evidence for distinct fractionating subsystems
is mounting for many of the canonical resting-state
networks, such as the frontoparietal control network
(FPCN) (Dixon et al. 2018), and prefrontal cortical
networks, including the cingulo-opercular network and
salience networks (Seeley et al. 2007; Menon and Uddin
2010; Han et al. 2019). Several studies have demonstrated
preferential coupling of different subnetworks during
periods of continuous cognitive states, such as FPCN sub-
networks to DMN or the dorsal attention network (DAN)
(Dixon et al. 2017), or DMN subnetworks to language or
control networks (Gordon et al. 2020). Additionally, more
studies exploring whole-brain intrinsic connectivity
by employing methods beyond resting-state or simple
correlational techniques reveal coherent networks that
are explicitly task evoked, such as the ventral attention
(Corbetta et al. 2008), multiple demand (Dosenbach
et al. 2006; Fedorenko et al. 2013), and semantic
networks (Lambon Ralph and Patterson 2008; Binder
et al. 2009; Noonan et al. 2013). More recently, it has been
demonstrated that task-evoked networks of the brain
are primarily shaped by intrinsic connectivity and that
a stable, core architecture changes in task-general and
task-specific aspects (Cole et al. 2014). Collectively, cur-
rent research has expanded the original, simplistic view
of a cohesive large-scale, task-negative default network
that is consistently anticorrelated with task-positive
networks. In essence, these studies support a more
complex consideration of all of the brain’s networks,
including default mode subnetworks, as spatially and
temporally dynamic systems that flexibly synchronize
and reorganize to accomplish cognitive functions.

Such large-scale network interactions are often missed
by standard univariate analysis approaches that fail to
capture concurrent activation and deactivation in brain
areas (Xu et al. 2013, 2016; Xu 2015). One way to overcome
this limitation is the application of spatial independent
component analysis (sICA), which offers the possibility
of gaining insights into whole-brain activity that simul-
taneously synchronizes as multiple sources to accom-
plish cognitive functions. However, most of the previ-
ous work employing such analytical techniques either
focused on network dynamics and interactions at rest
or in an isolated cognitive domain of interest. Therefore,

comparisons of whole-brain network interactions across
cognitive domains remain largely unexplored.

The present study was designed to address this issue
and provide a more comprehensive characterization of
large-scale network function in human cognition. To this
end, we employed a cognitive neuroimaging experiment
that taps on multiple key domains in a range of func-
tional complexities, all known to elicit activity from het-
eromodal inferior parietal lobe regions (Numssen et al.
2021). Specifically, we combined prototypical tasks that
exemplify the three domains of attention, semantic cog-
nition, and social cognition with multivariate activity and
connectivity analysis approaches (sICA paired with tem-
poral regression and correlational psychophysiological
interaction, cPPI) to provide a spatiotemporal characteri-
zation of multiple large-scale, overlapping networks that
differentially interact across cognitive domains.

A strength of our study design, along with the combi-
nation of tasks from three domains into a single experi-
mental run, is the incorporation of different samples of
cognitive complexity. Although it remains an open ques-
tion how to best measure task complexity (Shine and Pol-
drack 2018), in our experiment, we consider the attention
task to be the most simple one, followed by the semantic
task, and finally social cognition. This notion is based
on the increasing number of cognitive steps necessary to
make the task decision for each of these domains. That is,
for the invalid condition of interest in the attention task,
the participant redirects attention to the unexpected
side after the asterisk appears. In the semantic task, the
participant must access prior knowledge of vocabulary
to make the lexical decision after presentation of a word
or pseudoword. In the social cognition task, in order to
make a decision, the participant must assume the per-
spective of a character while following a narrative series
of images. For task performance, we consider response
time to be a behavioral proxy for domain complexity. For
brain function, we employ a recently introduced measure
called “functional complexity,” which has been used to
quantify the collective dynamics of networks using fMRI
connectivity (Zamora-López et al. 2016; Luppi et al. 2021).

Considering whole-brain network overlap, activity,
and interactions across these domains should give
new insights into how local and distributed resources
are flexibly redesignated throughout the cortex during
human cognition.

Materials and Methods
Participants
We present data from 22 healthy, native German speak-
ers (11 female, mean age 27.9 ± 3.28 years), who took
part in the fMRI experiment reported in Numssen et al.
(2021). All participants were right handed according to
the Edinburgh Handedness Inventory (Oldfield 1971) (lat-
erality quotient > 80%), had normal hearing and normal
or corrected-to-normal vision, and no history of neuro-
logical or psychiatric disorders or any contraindications
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against MRI. Participants were recruited from the in-
house database at the Max Planck Institute for Human
Cognitive and Brain Sciences. All participants gave writ-
ten informed consent to participate in the experiment
approved by the Ethics Committee of the Medical Faculty
of the University of Leipzig, Germany (282/16-ek).

Experimental Design
The fMRI experiment consisted of three sessions in the
same healthy volunteers that were performed on sepa-
rate days, scheduled at least seven days apart to avoid
repetition effects. Each session was divided into four
runs during which three tasks were administered con-
secutively in blocks. Within task blocks, trials were pre-
sented in an event-related fashion. This design provided
us with a large data set that should have sufficient power
to detect task-specific activity and connectivity profiles
within and between large-scale networks for cognition.

To probe the spatial and temporal characteristics of
large-scale task-evoked neural networks, we relied on
three tasks that exemplify the larger cognitive domains
of attention, semantic cognition, and social cognition. To
this end, healthy human volunteers performed a Posner-
like attentional reorienting task, a lexical decision task,
and a perspective-taking task during fMRI. In previous
studies, these tasks have been demonstrated to rely on
intact inferior parietal lobe (IPL) function (Rushworth
et al. 2001; Binder et al. 2003, 2005). All three tasks
followed the rationale of contrasting a target condition
that recruits attentional reorienting, semantic process-
ing, or social cognition with one well-matched control
condition.

In short, during the attentional reorienting task, a
directional arrow appeared at the center of the screen in
each trial to indicate, correctly or incorrectly, the position
of a visual target presented on the following screen,
thereby directing the participant’s attention to the left
or right. In the invalid condition, the arrow pointed
incorrectly and the target appeared on the opposite side,
forcing participants to reorient their attention in the task
target condition. Correctly pointed arrows represented
the valid control condition. In the lexical decision
task, participants performed lexical decisions (word or
pseudoword?) about a visually presented word (target
condition) or pseudoword (control condition) based on
concrete German nouns or well-matched pseudowords.
The perspective-taking task required the participant
to assume the perspective of one character in a two-
character story, presented visually as a three-image
comic series consisting of false belief (target condition)
and true belief (control condition) scenarios (see Fig. 1,
main text). For a detailed description of the tasks, see
Numssen et al. (2021). Responses were made via a two-
finger button box. Before entering the MRI scanner, the
participants underwent task training.

fMRI Procedure
Data acquisition was performed on a 3 Tesla Siemens
Prisma system (Siemens). A whole-brain gradient echo

planar (GE-EPI) T2
∗-sensitive sequence (3 × 3 × 3.2 mm,

0.32 mm gap, 0.5 s TR, 36 slices, 24 ms TE, 45◦ flip
angle) with multiband acceleration was used (Feinberg
et al. 2010). Additionally, a high-resolution (1 × 1 × 1 mm
voxel size) structural MR image (T1-weighted) was
acquired for each participant using a standard 3D
magnetization-prepared rapid acquisition with gradient
echo sequence.

Data Analysis
Preprocessing and Univariate Analyses

All fMRI data were preprocessed with a standard
pipeline and analyzed with a standard mass-univariate
approach as described previously (Numssen et al. 2021).
For preprocessing, the raw fMRI data were despiked
with 3dDespike from the AFNI toolbox through Nipype
v1.5.0 (Gorgolewski et al. 2011). Then, the preprocessing
was implemented in a Nipype-based tool, fMRIPrep
v1.4.1 (Esteban et al. 2019). The individual T1 image
was intensity-corrected using N4BiasFieldCorrection
v2.1.0 (Tustison et al. 2010) and skull-stripped using
antsBrainExtraction.sh v2.1.0 with the OASIS (Marcus
et al. 2007) template. Brain surfaces were reconstructed
using recon-all from FreeSurfer v6.0.1 (Dale et al. 1999).
A brain mask was refined to reconcile ANTs-derived
and FreeSurfer-derived segmentations of the cortical
gray matter in Mindboggle (Klein et al. 2017). Spatial
normalization to the ICBM 152 nonlinear asymmetrical
template version 2009c (Fonov et al. 2009) was performed
through nonlinear registration with the antsRegistration
tool 2.1.0 (Avants et al. 2008). Brain tissue segmentation
of cerebrospinal fluid, white matter, and gray matter
was performed on the brain-extracted T1 with the FAST
tool (FSL v5.0.9 (Zhang et al. 2001)). Functional data were
slice–time-corrected with 3dTshift from AFNI v16.2.07
(Cox 1996) and motion-corrected using mcflirt (FSL
v5.0.9 (Jenkinson et al. 2002)). Distortion correction was
performed with the TOPUP technique (Andersson et al.
2003) using 3dQwarp from the AFNI toolbox. This was
followed by coregistration to the T1 using boundary-
based registration (bbregister from FSL v6.0.1; Greve
and Fischl 2009) with nine degrees of freedom. Motion
correction transformations, field distortion correcting
warp, functional-to-anatomical transformation, and T1-
to-MNI warp were concatenated and applied in a single
step using antsApplyTransforms (ANTs v2.1.0) with
Lanczos interpolation. To account for motion-induced
artifacts, physiological noise regressors were extracted
with the anatomical version of CompCor (Behzadi et al.
2007) (aCompCor). Six components were calculated
within the intersection of the subcortical mask and
the union of corticospinal fluid and white matter
masks. Frame-wise displacement (Power et al. 2014)
was calculated using the implementation of Nipype.
Statistical Parametric Mapping 12 (SPM 12, Wellcome
Department of Imaging Neuroscience) was used to
spatially smooth the functional data with a 4-mm full-
width half-maximum Gaussian kernel.
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Figure 1. Experimental design and tasks. (A) Experimental design. Each of the three sessions consisted of four fMRI runs. In each run, all three tasks
were presented in a pseudo-randomized order. All tasks followed the rationale of contrasting a target condition that recruits attentional reorienting,
semantic processing, or social cognition with one well-matched control condition. The tasks were presented in an event-related fashion and included
rest conditions (16 s) at the end. (B–D) The tasks on the left, and, on the right of each panel, correct response times are plotted by participant, averaged
across trials, for each session and each condition. (B) Lexical decision task. Participants performed lexical decisions (word or pseudoword?) on words
(target condition) and pseudowords (control condition) based on concrete German nouns and well-matched pseudowords. (C) Attentional reorienting
task. In each trial, a directional arrow appeared at the center of the screen to direct the subject’s attention to the left or right. In 75% of the trials, the
arrow correctly predicted the position of an asterisk (“valid,” control condition); in 20% of the trials, the asterisk appeared on the opposite side and
subjects had to reorient their attention (“invalid,” target condition). In 5% of the trials, no response was prompted (catch condition). Subjects indicated
the side of the asterisk’s appearance via button press. (D) Perspective taking task. In each trial, character A places an object in a container. Thereafter,
character B changes the location of the object. Character A has left the room (“false belief,” target condition) or watches the relocation of the object (“true
belief,” control condition). Character A then searches for the object at the location congruent with her/his knowledge (expected) or at the contradicting
location (unexpected). Participants had to indicate via button press whether character A searched at the expected location or not.
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Spatial Independent Component Analysis

To characterize spatially independent task-active net-
works in a data-driven manner, a soft parcellation was
performed using group spatial independent component
analysis (ICA; Calhoun et al. 2004). Preprocessed data
were analyzed using the Group ICA for fMRI toolbox
(GroupICAT v4.0d), which implements the procedure in
four major steps. As a preprocessing step within GIFT,
all the time series were intensity-normalized before ICA.
First, data dimensions were reduced with a two-step
principal component analysis (PCA) procedure, with PCA
performed initially at the session level, then concate-
nated for group-level dimensionality reduction. In the
first step in data reduction, the dimensions were reduced
from the full time course length (1319 ± 22.5 timepoints,
varying across subjects) to 49 per participant and ses-
sion, which was determined using minimum description
length criteria. The second PCA step further reduced the
data dimensions from 10 032 total to 49 for the group.
The final size in this dimension determined the number
of independent components (ICs) extracted using the
Infomax algorithm in ICA (Calhoun et al. 2002). To deter-
mine the stability of the components, Icasso repeated
ICA 50 times (Himberg and Hyvarinen 2003). In a final
step, the group-level ICs were back-reconstructed to each
session using the GICA method in GIFT. Components
were initially scaled to Z-scores within each component
for the remaining analyses.

Network Identification

From the resulting 49 ICs, 30 noise components were
identified using visual inspection. In this step, the loca-
tion of the voxels with the highest Z-scores in the compo-
nent identify the regions with the greatest contribution
to the component time course, so components with Z-
score peaks located outside the cortex, for instance, in
the ventricles or on the edge of the brain, were labeled as
artifacts (Xu et al. 2015). Of the remaining 19 non-noise
components, 11 components of interest were selected.
The excluded network components comprised low-level
domain-specific networks that are also found during
scans without explicit task performance, including
ventral visual, medial visual, auditory, motor, and
somatosensory networks. The cerebellar and subcortical
components were also excluded, leaving the remainder
of the analysis to focus on cortical components that
perform high-level tasks or contribute to domain-general
functions. To characterize the spatial extent of the
components at the group level, for each of the 11 selected
components, all participant session-level spatial maps
were averaged within participant, then submitted to
a one-sided t-test using a mask of the cerebrum and
thresholded at FDR-corrected P <0.05, with a minimum
of 20 voxels per cluster (AFNI 3dttest++) (Cox et al.
2017). The Eickhoff–Zilles macro label template was used
for anatomical labeling (AFNI whereami, CA_N27_ML
template). To label the selected components as cortical
networks recognized in the literature, the Jaccard

similarity coefficients were quantified between pairs
from the 11 components and templates of brain networks
reported in prior literature (Jackson et al. 2019). The
Jaccard index quantifies the similarity of a result and
a template through assessing spatial overlap of the
two binarized maps (Maitra 2010; Jackson et al. 2019).
Template maps were chosen due to their relevance in
analytical technique or experimental design. Intensity-
based result template maps included 10 ICA-derived
networks whose maps were well matched with cognitive
profiles in the BrainMap database (Smith et al. 2009),
the ALE-derived general semantic cognition network
described by Jackson and colleagues (Jackson 2021), and
the so-called multiple demand cortex derived from an
average of task-based results and reported by Fedorenko
and colleagues (Fedorenko et al. 2013; “MDsystem -
MRC CBU Imaging Wiki” 2021). Result templates were
thresholded to positive voxels with a value of at least
20% of the maximum value in the volume. Additionally,
the template battery included binary masks of each
network from the 17-network parcellation reported by
Yeo and colleagues (Yeo et al. 2011). All template maps
were resampled to the resolution of the ICA results before
calculating Jaccard similarity indices.

Network Activity

Multiple regression analysis was used to assess each
IC’s activity during the three tasks. Using SPM12 model
setup functions, a GLM design matrix was constructed for
each participant’s 12 runs using the FAST(1) algorithm to
account for temporal autocorrelation in fMRI data with
short repetition times (Corbin et al. 2018). The model
included a regressor for the onset and duration of every
stimulus in an fMRI run, with six regressors for each
task’s target and control conditions, as well as regressors
for task instructions, rest periods, attention cues, catch
trials, social cognition comics, and wrong trials. Time
and dispersion derivatives were included in the model,
yielding a total of approximately 759 regressors (varying
due to the number of wrong trial regressors per task) for
12 sessions in each subject-specific design matrix. With
the three basis functions for each task’s target condition,
control condition, and rest period (27 regressors: atten-
tion invalid/valid/rest, semantics word/pseudoword/rest,
social cognition false belief/true belief/rest, and time
and dispersion derivatives of each), the temporal sorting
utility in GIFT was used to perform multiple regression
analyses between the component time courses and the
GLM design matrix at the subject level. The regression
step yielded session-specific beta values for each com-
ponent and each condition that reflect the component’s
activity for a given task predictor (11 ICs × 9 conditions
× 22 subjects × 12 sessions).

To determine how network activity loaded during each
task, pair-wise comparisons of activity estimates were
made for all tasks. For each network, primary beta values
were averaged across sessions, and GIFT’s “Stats on Beta
Weights” utility was used to perform participant-level
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two-sided t-tests. For a general overview of the brain state
giving rise to task-relevant network activity, comparisons
were made between the target condition and the rest
condition for each task (i.e., attention: invalid vs. rest,
semantics: word vs. rest, social cognition: false belief vs.
rest), and for assessing network activity more specifically,
a second set of paired t-tests was conducted between
each task’s target and control conditions (i.e., atten-
tion: invalid vs. valid, semantics: word vs. pseudoword,
social cognition: false belief vs. true belief). A significance
threshold of P <0.05, Bonferroni-corrected for 66 tests (11
ICs × 6 contrasts) was applied.

Network Overlap

For each task, components with significant activity dur-
ing the target condition relative to rest or relative to the
control condition were combined to visualize domain-
specific network overlap. Thresholded component maps
were binarized and added voxel-wise to generate a net-
work participation map reflecting the number of active
networks in any given voxel for a task’s target condi-
tion. For every task’s target-versus-rest or target-versus-
control comparison, the components that loaded posi-
tively, or activated, during the tasks were added sepa-
rately from the components that loaded negatively, or
deactivated, during the tasks. To show that the resolved
networks are spatially distinct despite their overlap, a
spatial correlation of thresholded maps was performed
between all network pairs (AFNI 3ddot).

Network Interaction

Task-related network interaction was isolated from the
component time courses by applying a modified PPI anal-
ysis. The correlational PPI analysis followed the pro-
cedure described previously by Fornito and colleagues
(Fornito et al. 2012). With cPPI analysis, rather than mak-
ing parameter estimates from a single PPI term derived
from a hypothesis-driven selected region of interest, pair-
wise interactions are assessed between all regions, or
networks, using partial correlations. In the same manner
as a traditional PPI analysis, contrasts from conditions
of interest are combined with the fMRI time series of
regions of interest while controlling for activity of the
remaining regions, other stimuli in the task, as well as
motion and nonbrain noise. The contrast between the
two analyses is that traditional PPI models show effective
connectivity based on a hypothesized predictor function
whereas cPPI reveals task-specific functional connectiv-
ity between all of the networks of interest.

The session-concatenated GLM design matrices, as
well as session-concatenated confound matrices con-
structed from the mean CSF and white matter signals,
the global mean, six CompCor, and six motion regressors,
were used to carry out cPPI analyses for each participant.
On the task level, for every pairwise interaction, two PPI
terms were generated with the contrast of interest and
the ICA output time series from each of two networks
of interest. A partial correlation was performed between

the two PPI terms, while controlling for all remaining
regressors in the GLM, all noise regressors, and the
activity of the nine remaining networks. For assessing
task-specific network interaction, contrasts of interest
were designed as comparisons between the target and
control conditions of each task. Explicitly, that is, invalid
versus valid for attention, word versus pseudoword for
semantics, and false belief versus true belief for social
cognition. Network interaction matrices were computed
using all sessions concatenated, resulting in a single
symmetric 11 × 11 correlation matrix for each subject,
which were then statistically tested at the group level.
Interactions were considered significant at P < 0.05,
Bonferroni-corrected for three tests.

For identifying significant network interactions that
occur particular to task performance, partial correlation
values were statistically tested as a factor of domain
(attention, semantics, social cognition) with analysis of
variance (ANOVA) performed at the network interaction
level (i.e., between networks, e.g., DMN-to-CON connec-
tivity). For every significant pair-wise network interaction
(P <0.05, Bonferroni-corrected for 55 tests), three post-
hoc t-tests were performed pair-wise between all tasks.
Significant results from the post-hoc t-tests (P < 0.05)
were visualized in circular graphs plotting the differences
between correlation values for each network interaction
pair (attention > semantic, attention > social cognition,
semantic > attention, semantic > social cognition, social
cognition > attention, social cognition > semantic; Fig. 6).
To compare overall network interaction across tasks,
functional complexity, C, was quantified at the partici-
pant level, as defined by Zamora-López and colleagues
(Zamora-López et al. 2016)

C = 1 − 1
Cm

∑m

μ=1

∣∣∣∣pm
(
rij

) − 1
m

∣∣∣∣ , (1)

using only the positive cPPI correlations, rij, between net-
work pairs (i, j = 1,2,...,11) across a range of bin numbers,
m (10, 15, 20, 25, 30, 35, 40), where |.| is the absolute
value, and pm is the observed distribution of pairwise
correlations for a given bin number. Paired t-tests of com-
plexity values, averaged over bin numbers for each par-
ticipant, were performed between tasks. Task response
times were used as a behavioral proxy for domain com-
plexity, so paired t-tests were also performed between
tasks using subject response times, averaged over correct
trials within the condition of interest in each task. In
this interpretation, slower response time would indi-
cate a more cognitively complex task. Complexity was
calculated in MATLAB (The MathWorks, Inc.) and sta-
tistical tests were performed in R (R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.
R-project.org/).

https://www.R-project.org/
https://www.R-project.org/


5056 | Cerebral Cortex, 2022, Vol. 32, No. 22

Results
Independent Components and Network
Identification
The 11 selected networks of interest, displayed in
Figure 2, have spatial topographies that either closely
resemble typical high-order intrinsic connectivity net-
works resolved from resting-state experiments, or
they are task-positive networks assumed to emerge
specifically for task processes. For this reason, a mix of
templates originating from resting-state as well as task-
based fMRI studies was used in a labeling procedure
based on Jaccard similarity indices between network and
template maps. Components were labeled in accordance
with the template, or templates, with the highest Jaccard
similarity for each network. Networks that are reliably
detected most typically in resting-state fMRI experi-
ments, hereafter referenced as named include IC19 as the
right frontoparietal control network (rFPCN), IC41 as the
left frontoparietal control network (lFPCN), IC44 as the
dorsal attention network (DAN), and IC49 as the cingulo-
opercular (CON) (Beckmann et al. 2005; Damoiseaux
et al. 2006; Smith et al. 2009). In the case of the DMN,
four networks were resolved, three of which have been
identified previously in resting-state experiments as pos-
terior cingulate/precuneus (pDMN), temporal lobe, and
medial-prefrontal (labeled here anterior; aDMN) default
mode subnetworks (Zuo et al. 2010), represented by IC14,
IC18, and IC37, respectively. The fourth component, IC28,
encompasses the major nodes of the classical DMN,
such as bilateral angular gyri and anterior and posterior
midline structures, and so was assigned the basic DMN
label. Supplementary Table 1 includes a descriptive list
of the most strongly connected cortical regions in the
networks of interest, as well as their highest-matching
templates and Jaccard similarity indices.

Given the fMRI data were not acquired when the par-
ticipants were at rest but when actively participating
in three distinct tasks, we also identified task-evoked
functional networks that would not emerge merely as
resting-state intrinsic connectivity networks (Yeo et al.
2011; Long et al. 2013). The remaining three components
(IC32, IC35, and IC47) reflect relatively well-characterized
networks that coalesce specifically in particular task-
based fMRI experiments. The spatial topography of IC35
matched most closely with Yeo’s 17–network-based tem-
plate of the ventral attention/salience network A. Thus,
IC35 was labeled as the ventral attention network (VAN),
which has been characterized using top-down atten-
tional selection tasks as well as seed-based connectivity
maps of resting-state data (Fox et al. 2006; Vossel et al.
2014). Covering parts of bilateral ventral frontal cortices
and temporoparietal junctions, the VAN is closely sit-
uated to, and sometimes overlapping with, the DAN,
theoretically allowing an efficient synergy between the
two attention systems for fast, successful performance
of goal-directed tasks (Spreng et al. 2010; Vossel et al.
2014). Component 47 has the greatest similarity to the
template representing the multiple demand network,

which is known to aggregate during tasks with multiple
cognitive demands (Dosenbach et al. 2006; Duncan 2010;
Fedorenko et al. 2013). In most descriptions, the MDN
includes bilateral inferior frontal sulci, bilateral anterior
insula, and the dorsal anterior cingulate/presupplemen-
tary motor area. As it includes additional, stronger contri-
butions in the inferior parietal sulcus to accompany parts
of the core MDN regions listed above, IC47 was labeled as
the extended multiple demand network (eMDN) (Camil-
leri et al. 2018). Finally, comprising bilateral regions of
inferior frontal gyri (IFG), pars opercularis and pars tri-
angularis, large parts of the inferior parietal lobes (IPL),
including angular gyri (AG), and supramarginal gyri, as
well as superior parietal lobes (SPL), middle occipital gyri,
precuneus, and, notably, left middle temporal gyrus, and
bilateral temporal poles, the overall left-lateralized IC32
is identified additionally through Jaccard similarity and
labeled as the semantic network. This task-evoked sys-
tem has an evolving description that has been elucidated
by a number of research groups employing different fMRI
tasks, lesion studies, and other methods (Binder et al.
2009; Visser et al. 2009; Noonan et al. 2013; Xu et al. 2017;
Jackson 2021). For reference, all 49 ICs resulting from
the sICA decomposition are displayed in Supplementary
Information (Supplementary Fig. 1). For the networks of
interest, Supplementary Figure 2 displays the spatial cor-
relations between each network pair, confirming that the
networks labeled and used in further analysis are, in fact,
spatially distinct from one another.

Task-Specific Network Activity and Overlap
The task-specific differences between target and rest
or control condition betas are plotted by network in
Figure 3A,B, respectively. Supplementary Table 2 reports
network-wise task statistics on the beta weights. For
each task, networks with significant activity in the rest
comparison were combined to identify regions in which
multiple task-specific networks overlap (Fig. 4).

Beginning with the attention paradigm, four networks,
pDMN, rFPCN, eMDN, and CON, significantly deactivated
during the target invalid condition in comparison to
rest. Interestingly, the invalid versus valid comparison
showed the semantic network, along with DAN and VAN
to activate significantly for the more specific condition
contrast. The attention overlap map in Figure 4A shows
that three deactivating networks share space in three
large clusters in right AG and SPL, left AG and IPL, and
bilateral middle and posterior cingulate cortex. Numer-
ous additional regions have two overlapping deactivated
networks, specifically in bilateral parietal, right-biased
ventral prefrontal, posterior inferior temporal lobe, and
midline cingulate cortices, as illustrated in Figure 4A.
Supplementary Figure 3A displays overlapping regions
from the three networks shown to significantly deacti-
vate for the attention target-versus-control comparison,
which maximize at two and distribute bilaterally in small
clusters in IFG, temporoparietal cortices, and SMA.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
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Figure 2. Selected spatial ICA-derived networks. Selected high-order connectivity networks are displayed (one-sided t-test results, voxel-level FDR
threshold P <0.05, 20-voxel cluster minimum). pDMN (IC14, cyan): posterior default mode network, temporal lobe network (IC18, yellow), rFPCN (IC19,
lavender): right fronto-parietal control network, DMN (IC28, red): default mode network, semantic network (IC32, blue), VAN (IC35, orange): ventral
attention network, aDMN (IC37, yellow-green): anterior default mode network, lFPCN (IC41, purple): left fronto-parietal control network, DAN (IC44,
gray-blue): dorsal attention network, eMDN (IC47, green): extended multiple demand network, and CON (IC49, magenta): cingulo-opercular network.

For the semantic target-versus-rest comparison,
six networks, including all default mode networks
(temporal, aDMN, pDMN, and DMN) as well as left and
right FPCNs, deactivated during word decisions, while
the eMDN activated. When comparing word versus
pseudoword conditions, anterior and posterior DMN
subsystems activated, while the semantic network
significantly deactivated in tandem with the eMDN.
Figure 4B shows the semantic domain network overlap
map for the multiple deactivating networks in the
word-versus-rest comparison. A maximum of four
deactivating networks overlap in bilateral precuneus
and in a small cluster in the right AG. Stepping down
to a threshold of three networks extends the posterior
medial region of overlap to include a greater portion of
bilateral precuneus to middle and posterior cingulate
cortices. Three of the six deactivating networks also
overlap in five other areas, including bilateral AG, left
middle temporal gyrus, and, anteriorly, bilateral middle
frontal gyri. When considering regions with at least
two overlapping networks with negative activity, the
topography includes medial posterior and prefrontal
regions, as well as bilateral ventral prefrontal, temporal,
and posterior parietal cortices, which together strongly
reflect the core topography of the DMN. Notably, in
addition to the six deactivating networks that overlap
as described, the eMDN significantly activates during

the word condition. Supplementary Figure 3B,C show two
networks and their overlapping regions for those found
to significantly activate or deactivate, respectively, in
the word-versus-pseudoword beta comparison. Overlap
of the two activating networks occurs in the bilateral
precuneus, posterior and middle cingulate cortices, and
angular gyri. The two deactivating networks overlap
mostly in large clusters in the left hemisphere that
include IFG, superior medial gyrus, precentral gyrus,
middle temporal gyrus, temporal pole, SMA, and insula
lobe, however overlap also occurs in small clusters in the
right IFG, superior medial gyrus, temporal pole, SMA, and
insula lobe.

Among the significantly involved networks in the
social cognition target-versus-rest comparison were
four active ones, including the DMN, semantic network,
lFPCN, and DAN, and three deactivating networks, includ-
ing the aDMN, eMDN, and CON. Perhaps surprisingly,
in the more specific task comparison, no network’s
activity was significantly different between false belief
and true belief conditions. The overlap maps for social
cognition-specific activating and deactivating networks
are separately displayed in Figure 4C,D, respectively.
Three of the four positively engaged networks overlap
in small left hemisphere clusters in AG and middle
frontal gyrus, and middle occipital gyrus. Areas in
which two social-cognition–positive networks overlap

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
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Figure 3. Connectivity networks exhibit domain-specific activity. Plots of the differences between mean beta weights for each target condition against
rest (A) or control (B) baseline from the regression analysis performed on each of the 11 components displayed in Figure 2. White, black, and gray bars
represent attention, semantic, and social cognition tasks, respectively. Red line indicates overall mean difference, darker shading within bars indicates
standard error of the mean, and the large area of each bar indicates the standard deviation. Individual data points represent the subject-wise difference
between the session-averaged betas. Asterisks indicate significance for a given network’s task-wise target versus baseline t-test (Bonferroni-corrected
P <0.05). Error bars show standard error of the mean across subjects. Panel colors correspond to network colors displayed in Figure 2. Attention task:
INV = invalid, VAL = valid; semantic task: W = word, PW = pseudoword; social cognition task: FB = false belief condition, TB = true belief condition.

are dispersed throughout the cortex but occur mostly
in the left hemisphere, in the middle frontal gyrus,
superior medial gyrus, IFG, superior frontal gyrus,
precentral gyrus, middle temporal gyrus, AG, IPL, cuneus,
and precuneus. Right hemisphere regions where two
positive networks overlap include middle temporal gyrus,
middle frontal gyrus, middle occipital gyrus, and AG. For
negatively active networks in the false belief-versus-rest
comparison, all three overlap anteriorly in bilateral rectal
and orbital gyri. Two networks deactivated in the task in
regions of the brain carrying an anterior bias, touching in
the bilateral superior medial gyri, superior frontal gyri,
IFG, and anterior cingulate cortices but also including
parts of bilateral middle temporal gyri, precentral gyri,
SPL, precuneus, and posterior cingulate cortices.

Network Interaction
The cPPI analysis was applied to the data to determine
how the networks of interest interact across cognitive
domains, and it resulted in correlation matrices for each
cognitive domain, with interactions quantified between
each network pair. Figure 5 displays domain-specific
network interaction as matrices (left column), providing
insight into interaction strength, and circular graphs
(right column), allowing an easy view of positive and
negative interactions between the spatially distributed
networks. Interaction values and statistics are detailed
by network in Table 1. The network interaction plots por-
tray a considerable number of significant task-specific
interactions between the queried networks. In fact, all
11 networks had at least two significant interactions
in each task. First, we consider network interaction

by cognitive domain. Thereafter, we present network
interaction compared across domains. Supplementary
Figure 4 plots participant-level network interactions by
task to give an impression of variability across subjects
and network pairs for each domain.

For attention, network interaction is depicted in the
top row of Figure 5A,B. In total, 30 pair-wise interactions
were significant in the cPPI calculations, 11 of which
were negative, with notable characteristics described as
follows. Strong positive interactions occurred between
the two lateralized FPCNs. Of all the networks included
in the cPPI analysis, the lFPCN showed the most (eight)
significant interactions for attention. The dorsal atten-
tion, ventral attention, and default mode networks also
showed their strong roles in the attention task with
six significant interactions each. The dorsal and ventral
attention networks were correlated in the attention task,
even while each had negative and positive interactions,
respectively, with CON. Both DAN and VAN were anticor-
related with the aDMN subnetwork, and there was also
negative interaction between the eMDN and the pDMN,
reflecting typical interactions between networks consid-
ered task positive and task negative in the literature (Fox
et al. 2005).

Network interaction is plotted for the semantic
domain in the second row of Figure 5, and 33 pair-wise
interactions, including 12 negative interactions, were
significant in the cPPI calculations as thresholded in
Figure 5D. Some network features that persisted from
attention to semantics were the significant positive
interaction between the two lateralized frontoparietal
control networks, as well as anticorrelations between the
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Figure 4. Domain-specific network overlap. Networks with significant domain-specific activity exhibit overlap throughout the cortex, increasing from
attention to semantic to social cognition domains. Voxel-wise participation maps are displayed, computed by adding binary masks of all significantly
activating or deactivating networks in the target condition versus rest beta comparisons displayed in Figure 3A. Overlap maps of deactivating
networks are displayed for attention (A) and semantic (B) domains, whereas social cognition evokes multiple activating (C) and deactivating (D)
networks. Voxel colors indicate the number of overlapping networks in that voxel considered to be active during a specific task, beginning with two.
Supplementary Figure 3 shows network overlap for target versus control comparisons.

eMDN and pDMN, and between both attention networks
and the aDMN. Also like in attention, while correlated
with each other, the DAN and VAN had negative and
positive interactions, respectively, with the CON. With
eight significant interactions, the DAN appears to be
a prominent network for lexical decision making. The
lFPCN again showed prominence in the task with seven
significant interactions. Perhaps demonstrating the
increased complexity of the semantic domain over
attention, four networks had six significant interactions
in the task, including the semantic, ventral attention,
cingulo-opercular, and anterior default mode networks.

The bottom row in Figure 5 displays the network inter-
action for social cognition, and Figure 5F shows the 34
significant interactions, according to cPPI calculations.
Overall, social cognition had more significant interac-
tions compared to attention and semantics, however,

relatively more of these interactions were comparably
weak, and only seven were negative. Despite having a
greater number of weak interactions between networks
than in the other two tasks, social cognition maintained
strong positive coupling between the two frontoparietal
control networks, as well as anticorrelations between
the DAN and aDMN. Another set of network interactions
stayed similar across domains, that is, the DAN anticorre-
lated with the CON, VAN correlated with the CON, and the
two attention networks positively interacted with each
other. For social cognition, the lFPCN once again appears
to be a critical network, along with the aDMN, each
with eight significant interactions in the task. The eMDN
plays a prominent role, as well, with seven significant
interactions in the domain. Notably for social cognition,
the DAN has a strong interaction with the DMN, as well
as the pDMN.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab531#supplementary-data
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Figure 5. Network interaction by cognitive domain. Partial correlations (r) from the cPPI analyses for task-specific contrasts (target vs. control condition)
are plotted as matrices and circular graphs for attention (A and B, respectively), semantic (C and D, respectively), and social cognition (E and F,
respectively) domains. Results are scaled in the lower triangles of the matrices as –sign (r) ∗ log10 (P-value), which displays the strength of the correlation
in combination with the statistical significance, thus emphasizing the most stable interactions. The circular graphs are thresholded using mean P-values
across participants at P < 0.05, Bonferroni-corrected for three tests. In the circular graphs, line colors indicate whether the interaction is positive (red)
or negative (blue), whereas line thickness indicates the strength of the interaction. Line thickness is scaled within each plot. Network colors and labels
correspond to Figure 2. cPPI correlation values and statistics are detailed in Table 1.

Network Interaction across Tasks
Comparing interactions across the complexity-varied
tasks gives insight into potentially critical domain-
specific network characteristics. Figure 6 depicts the
differences in interaction between task pairs, allowing

to infer which network pairs were more synchronized
in one task relative to another. The ANOVA performed
on the cPPI correlation values determined whether
each interaction was significant in the analysis (see
Table 1). Figure 6 is arranged such that the rows, top
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to bottom, display domain-specific results in order of
the tasks’ progressively increasing cognitive complexity.
The first row in Figure 6 shows interactions that were
significantly greater in the attention task than in the
semantic (Fig. 6A) and social cognition (Fig. 6B) tasks.
The middle row features plots with interactions that
were stronger in the semantic task than in the attention
(Fig. 6C) and social cognition (Fig. 6D) tasks. Finally, the
third row shows interactions that were stronger for social
cognition than attention (Fig. 6E) and semantics (Fig. 6F).
Already, it appears that the number of significantly
stronger network interactions increases correspondingly
with domain complexity. The attention comparison
against semantics showed two interactions to be greater,
between the eMDN and DMN and between the DAN
and rFPCN. Against social cognition, three interactions
appeared stronger for attention, including the DAN with
VAN, and aDMN with both DMN and lFPCN. Reversing the
comparisons, semantics and social cognition both had
four interactions that were significantly stronger than
in attention, two of which were common differences,
that is, the VAN’s interaction with the temporal lobe
and anterior default mode networks. The remaining two
pairs of networks that interacted more in semantics than
attention were the eMDN with the semantic network, and
aDMN with lFPCN. The remaining two pairs of networks
that interacted more in social cognition than attention
were the DAN with the left and right FPCNs. Compared
to social cognition, semantics showed four more strongly
coupled networks, most notably the eMDN to the
semantic network. The additional stronger network
pairings are the same as those found significant in the
comparison of attention against social cognition, namely
the DAN with VAN, and the aDMN with DMN and lFPCN.
Finally, social cognition showed five stronger network
interactions compared with semantics, including the
DAN with the left and right FPCNs, and the VAN with
temporal lobe and anterior default mode networks, four
stronger interactions in common with the comparison
against attention, as well as the eMDN with the DMN.
An immediately visible pattern of network connectivity
common across tasks is the persistent inclusion of at
least one of the two FPCNs, which had significantly
greater domain-specific interaction with at least one
other network. Other prominent networks across tasks
include the eMDN, DAN, VAN, aDMN, and DMN whereas
the temporal lobe and semantic networks appear to have
more task-specific coupling.

Network interactions were summarized for each
domain using calculations of complexity derived from
each subject’s cPPI matrix. Figure 7 shows the mean
complexity for each subject plotted by domain. Paired
t-tests between attention and semantics showed seman-
tics to be significantly more complex than attention
(t = −2.3715, df = 21, P = 0.01368), and, whereas the
mean complexity of social cognition (0.459 ± 0.0662) was
greater than that of semantics (0.4409 ± 0.0759), the dif-
ference was not significant (t = −1.208, df = 21, P = 0.1202).

On the other hand, social cognition was, logically,
significantly more complex than attention (t = −3.2098,
df = 21, P = 0.002103). Paired t-tests performed on mean
response times as a behavioral proxy for task complexity
showed social cognition to be significantly slower
than attention (t = −10.202, df = 21, P = 6.819e−10), and
semantics (t = −3.39, df = 21, P = 0.001381), and semantics
to be significantly slower than attention (t = −20.587, df
= 21, P = 1.051e−15).

Discussion
Efficient human cognition requires flexible interaction
between distributed networks in the brain for different
specialized functions. Although classical approaches
to understand brain function supporting cognition are
generally segregated into isolated studies within key
domains like attention, language, and social cognition
(Shine and Poldrack 2018), we bridged these domains
in a comprehensive fMRI study and characterized
11 large-scale, overlapping spatiotemporal networks
across tasks. As a key finding, we demonstrate that
higher-order functional network connectivity increases
with increasing cognitive complexity across the three
domains. In line with recent multitask fMRI studies (Cole
et al. 2014; Krienen et al. 2014), we show a common
functional structure across tasks. Extending previous
work, we further present specific network activity and
interactions that dissociate each domain. Additionally,
by employing three tasks known to activate regions
within the commonly designated task-negative default
mode network, we demonstrate that canonical intrinsic
connectivity networks fractionate into subsystems as
well as aggregate as task-evoked networks that interact
distinctly to perform tasks (Andrews-Hanna et al. 2010;
Vatansever et al. 2015a; Buckner and DiNicola 2019). By
elucidating domain-specific activity and interactions of
multiple spatially overlapping and interdigitated cortical
networks, our results support a holistic and dynamic
perspective of flexible network reconfiguration and
integration for diverse interactive cognitive functions.

Network Activity and Interaction Increase in
Complexity with Cognitive Domain
We demonstrate that increasing complexity in cognitive
domains is paralleled by increased complexity in brain
function. This was achieved by resolving spatially inde-
pendent networks, inspecting their temporal behavior
in the context of each task, and ultimately, quantifying
the complexity of network interaction for each domain.
In previous work, graph analyses have revealed that
global brain modularity decreases during tasks. More
specifically, as tasks become more complex, patterns
of connectivity between networks show less segregation
and whole-brain integration increases (Mattar et al. 2015;
Vatansever et al. 2015b; Cohen and D’Esposito 2016;
Hearne et al. 2017). Our results transfer this observation
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Figure 6. Between domain network interaction differences. Differences between cPPI correlations across cognitive domains for (A) attention > semantic,
(B) attention > social cognition, (C) semantic > attention, (D) semantic > social cognition, (E) social cognition > attention, and (F) social cognition
> semantic. Line thickness indicates the network interaction difference between the compared tasks and is scaled within each plot. Network colors
correspond to the assignments in Figure 2. Interactions found significant in the ANOVA are plotted (one-factor ANOVA, Bonferroni-corrected P <0.05;
P <0.05 for post-hoc t-tests). cPPI correlation values and statistics are detailed in Table 1.

across highly complex cognitive domains, including
semantic processing and social cognition.

We identified 11 cohesive high-order large-scale net-
works and used multiple regression and cPPI analyses to
quantify their domain-specific activity and interactions.
Our results show that network involvement and connec-
tivity increased across cognitive domains, from attention

to semantics to social cognition. Likewise, using response
times as a behavioral measure of task complexity, trial
performance was significantly slower from attention to
semantics to social cognition. Statistics on network activ-
ity in the target-versus-rest and target-versus-control
comparisons showed significant contributions from four
deactivating and three activating networks, respectively,
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Figure 7. Network complexity across domains. Complexity values are
plotted by cognitive domain, with each data point representing average
complexity within each subject. Red lines are the mean complexity
across subjects for each domain. Light red regions show 95% confidence
intervals and blue regions indicate one standard deviation of the mean.
∗P <0.05, ∗∗P <0.01, n.s.: Not significant.

for attention. Semantic target comparisons showed one
activating and six deactivating networks as significant
against rest, and two of each activating and deactivat-
ing networks significant against the control. Finally, the
target-versus-rest activity comparison for social cogni-
tion had the highest number of significantly active net-
works, four positive and three negative, relative to the
other two tasks. Nonetheless, the more specific target-
control comparison showed only small differences in
activity across all networks. This may seem paradoxical,
but although no whole network’s activity is significant,
regions, or nodes, within a network may also be activat-
ing and deactivating, thus masking subtle or granular
activity changes on the whole network level while still
affecting network connectivity and interactions. Further-
more, when evaluating the comparisons between target
and control conditions for all tasks, one may consider
that the false-belief and true-belief conditions present
the most similar trials within a task. As a contrasting
example, the control condition for the lexical decision
task is a pseudoword, so a relevant network like the
semantic network is not expected to activate in control
trials.

Examining task-modulated connectivity across domains,
recent work by Di and Biswal emphasizes the value of
taking into account whole-brain connectivity in task
experiments in addition to the attention given to regions
of task-evoked activity (Di and Biswal 2019). In our
results, when considering interaction between networks
(Fig. 6), there is a net number of one significantly
greater interaction for social cognition compared to each
attention (social cognition > attention: 4, attention >

social cognition: 3) and semantics (social cognition >

semantics: 5, semantics > social cognition: 4). Despite
the fact that many of the internetwork connections
were weaker for social cognition, this result possibly

reflects the aforementioned potential within-network
heterogeneity. Meanwhile, the semantic domain showed
two more interactions that were significantly stronger
against attention (semantics > attention: 4, attention
> semantics: 2). Following suit, comparing complex-
ity across tasks showed network interaction during
semantics and social cognition to be significantly more
complex than for the attention domain. Although mean
complexity for social cognition was greater than that of
semantics, the lack of significant difference is perhaps
more specifically untangled in the network interaction
comparisons between tasks, with semantics having
two interactions greater than in attention versus one
for social cognition against attention. This result may
also speak to the similarities between semantic and
social cognition domains and the fact that the social
cognition task might call upon some semantic functions
(Binder and Desai 2011; see also Bzdok, Varoquaux, et al.
2016). The complex network interaction results for social
cognition corroborate Theory of Mind meta-analyses
that show adaptations of a core network with specific
cross-network integration patterns that depend on the
aspect of social cognition being probed (Schurz et al.
2014, 2020). Thus, overall, the quantified complexity of
each cognitive domain is reflected in the network activity
as well as interactions between multiple brain networks
during task performance.

A Common Core Network Structure across
Domains Differentially Reconfigures for Task
Performance within Each Domain
Prior neuroimaging studies have demonstrated high
similarity in the functional architecture of the brain
during rest and task states; nevertheless, the subtle
task-dependent reconfigurations that emerge from
the basic functional scaffold are critical (Cole et al.
2014; Krienen et al. 2014; Cohen and D’Esposito 2016).
Furthermore, task-specific adaptations to connectivity
are more likely to occur on the basis of functional
communities, that is, cohesive network couplings or
coactivations, rather than recruitment of independent
brain regions (Krienen et al. 2014; Mattar et al. 2015).
In line with this research, temporal analyses of the 11
high-order networks revealed motifs of shared structure
across tasks, as well as distinct features that dissociated
the cognitive domains. The common cross-domain
structure is perhaps most apparent from the network
interaction differences between tasks (Fig. 6). Overall,
the aDMN, lFPCN, DAN, and VAN played prominent
roles across domains. Each of these four networks
had a significantly greater interaction with another
network in five of the six between-domain interaction
comparisons. In addition, the eMDN and DMN each had
a significantly stronger correlation with another network
in four of the six comparisons. Because it is likely to
play a crucial role in executive function across tasks,
the eMDN highlights domain-specific contributions
of networks through its significant interactions. For
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instance, compared with attention and social cognition,
network interaction for semantics showed significantly
higher correlation between the eMDN and the semantic
network. For the most part, previous studies comparing
task- and rest-associated network architectures do not
explicitly investigate the role of MDN as a core network,
perhaps historically because it does not appear as a
canonical intrinsic connectivity network. However, there
is growing attention to the role of the eMDN as part
of the brain’s “functional core” (Dosenbach et al. 2006;
Duncan 2010; Fedorenko et al. 2013; Camilleri et al.
2018; Diachek et al. 2020), to which the findings of
this study contribute support. Evidence from recent
studies dissociate contributions of the MDN from those
of domain-specific networks such as the language
network or theory of mind network in naturalistic
stimulus conditions, emphasizing the domain-general
nature of the MDN and its role in overall cognitive
control (Paunov et al. 2019; Wehbe et al. 2021). Likewise,
the results of this study show contributions from the
eMDN to accompany activity of task-specific networks
as captured most clearly through the cross-domain
interaction comparisons. Together with the lFPCN, DAN,
and VAN, the eMDN includes regions demonstrated as
hubs that actively switch between networks across tasks
(Cole et al. 2013; Cocuzza et al. 2020), which is in line with
our findings showing high cross-network interactions
and spatial overlap among the networks.

In addition to domain-specific eMDN coupling, our
results further align with the concept of an overarching
set of network coactivation patterns that specifically
modify during cognition (Krienen et al. 2014; Bzdok,
Varoquaux, et al. 2016). In all three domains, the
two bilaterally mirrored FPCNs consistently correlated
with each other and widely interacted with other
networks. Moreover, at least one of the two FPCNs had
a significantly stronger task-specific interaction with
another network for all cross-task comparisons. Amidst
an increasing understanding of the topography and
function of various large-scale networks that include
frontal and parietal regions (Dosenbach et al. 2008;
Duncan 2010; Menon and Uddin 2010; Fedorenko et al.
2013; Crittenden et al. 2016; Camilleri et al. 2018), the
laterally situated FPCNs distinguish themselves in their
roles as functional hubs and integrators between other
networks. Therefore, both FPCNs are often considered
together as a single dynamic FPCN (Crittenden et al. 2016;
Dixon et al. 2018; Marek and Dosenbach 2018; Cocuzza
et al. 2020). This comparative uniformity is reflected
in their tight coupling and similar, but not identical,
interactions across tasks.

In concert with the FPCN coupling, the common
functional motif is evident from other consistently
correlated or anticorrelated pairs of networks across
domains. Across domains, the task-positive DAN was
anticorrelated with the aDMN, but also correlated with
the pDMN. Additionally, CON sustained negative and
positive interactions with the DAN and VAN, respectively,

whereas the two networks remained correlated with
each other throughout the tasks. Although classical
functional connectivity literature emphasizes a gener-
ally persistent anticorrelation between the DMN and
putative task-positive networks (Fox et al. 2005), deeper
investigations into relationships between networks
show that network coupling, as well as anticoupling,
is not so straightforward (Chen et al. 2013; Cocchi
et al. 2013; Dixon et al. 2017; Gordon et al. 2020). In
fact, recent work measuring regional brain metabolism
in relation to positive and negative fMRI responses
through contrasts of working memory and rest periods
demonstrated that regions exhibiting decreases in fMRI
signal do not necessarily show a drop in glucose energy
consumption (Stiernman et al. 2021). This was most
prominently the case for the temporal lobes and anterior
medial prefrontal cortex, which may capture functional
specificity that separates these regions into default
mode subnetworks, which will further be addressed in
the Fractionating and Aggregating Networks section.
Overall, the results of the study showed heterogenous
metabolism throughout the DMN, highlighting the error
in assuming that “task-negative” networks actually
reduce their activity when the fMRI response is measured
to decrease in an experiment.

Upon this scaffold of supportive networks, specific
between-network interactions dissociate each cognitive
domain in our data. Attentional reorientation is known
to engage both ventral and dorsal attention networks,
whose interactions are posited to facilitate a combi-
nation of top-down and bottom-up processes (Corbetta
et al. 2008). Attention-demanding tasks have been used
to demonstrate strong anticorrelation between task-
negative DMN and task-positive networks (Fox et al.
2005). Our results are in agreement with these findings,
showing correlation between the DAN and VAN and
anticorrelation between DAN and aDMN in the attention
domain. The cross-domain comparisons highlight some
of these relationships. In particular, compared with
social cognition, attention shows greater interaction
between the DAN and VAN. Also, a stronger relationship
between the DAN and the rFPCN for attention relative
to semantics likely reflects increased attentional and
general cognitive control demands during the attentional
reorienting condition. Likewise, against attention, both
social cognition and semantics have greater connectivity
between VAN and the temporal lobe and anterior default
mode subnetworks, which, from the perspective of
attention, would mean a greater anticorrelation between
that domain’s task-positive and task-negative networks.

For the semantic domain, the most explicit network-
based dissociation from the other two domains is the
activity and interaction of the semantic network. The
specific target-versus-control test on activity betas
showed significant deactivation in that network only
in the semantic task. Accompanying the semantic
network was significant eMDN deactivation, which
translates in the network interaction computations
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to strong interaction between the two networks that
is significantly greater in the semantic domain than
attention and social cognition. This result is supported
by a recent study specifically examining the distinction
and relationship between the language network and
the multiple demand system that claims the MDN’s
role during sentence comprehension is not specific
to language demands but merely serves to facilitate
task function (Diachek et al. 2020). The semantic
network has been extensively characterized in the
literature, and its distinct spatial coherence, as well as
its characteristic deactivation, agrees with our results
(Binder et al. 2009; Binder and Desai 2011). As previously
mentioned, network deactivation does not necessarily
mean a decrease in energy consumption, and it is
noteworthy that we find domain-specific deactivation
of the semantic network with eMDN in the target-
versus-control comparison (Stiernman et al. 2021). In
our study, the observed deactivation likely reflects less
task demands for word relative to pseudoword decisions
(e.g., Jefferies 2013; Humphreys et al. 2015; Kuhnke
et al. 2021). The cross-domain interaction comparisons
show that, aside from the eMDN-semantic network
coupling, interactions between the lFPCN and aDMN
and between the DAN and VAN are greater for both
attention and semantics relative to social cognition. If
the aDMN is to be considered as one of the core func-
tional networks in these domains, then the increased
interaction between lFPCN and aDMN, a correlation
that was also significantly greater in semantics than
attention, may reflect the specific processes of lFPCN
supporting language function in the task. This notion
would be consistent with an fMRI experiment contrasting
speech production against counting or simple decision-
making (Geranmayeh et al. 2014). The other significant
increases for aDMN interactions in semantics compared
to attention are in common with social cognition over
both attention and semantics, that is, the increased
coordination of the task-positive VAN with aDMN and
temporal lobe networks, likely reflecting the support of
general semantic processes, which may overlap to some
degree for both domains (Bzdok, Hartwigsen, et al. 2016).

As discussed here, one distinctive network feature of
social cognition is an overall greater number of signifi-
cant comparisons for network activity and interaction
than attention and semantics. Examining the cross-
domain comparisons of network interaction, greater
connectivity occurs between the DAN and the left
and right FPCNs for social cognition than the other
two domains, a relationship that appears specific
to this domain. That is, social cognition additionally
exhibits closer coupling of the VAN with temporal
lobe and anterior default mode networks compared to
attention and semantics, although this motif is also
demonstrated in the semantics greater than attention
comparison. While the FPCNs and DAN show a particular
interrelationship for social cognition, another interesting
feature highlighted in the cross-domain comparisons is

the stronger interaction between the eMDN and DMN
for social cognition relative to semantics. Although we
labeled no specific Theory of Mind network, considering
its previously mentioned overlap with DMN (Schurz
et al. 2014), the relatively increased interaction between
eMDN and the DMN perhaps reflects the core task-
supporting network’s context-specific coupling for the
social cognition domain. Accordingly, Schurz et al. (2020)
also suggest an increase in network integration with
increasing amounts of effort and control in cognition,
which may be reflected in the greater number of
significant interactions found for social cognition in
our study, a smaller proportion of which were negative.
Our results complement and extend these findings
by showing that such network interactions may also
distinguish social cognition from other key cognitive
domains such as language and attention.

These results, together with the FPCN interactions,
align with a recent study that explicitly examined DMN
and DAN correlation and showed that networks tempo-
rally coevolve with dependence on cognitive states, time,
and subnetwork distinctions, including a strong role of
FPCNs (Dixon et al. 2017).

Fractionating and Aggregating Networks
Challenge a Simple Dichotomy of Task-Positive
and Task-Negative Networks
In our study, analyzing a single time series from one
experiment consisting of three tasks provides a unique
opportunity to identify spatiotemporal networks that
emerged across all three cognitive domains and directly
compare their domain-specific activity and interactions.
In particular, we selected tasks that are known to evoke
activity from lateral parietal nodes in the DMN. There-
fore, relative to canonical resting-state networks, the
11 high-order cognitive networks we identified appear
both familiar, like the bilaterally-mirrored FPCNs, DAN,
and CON, and unfamiliar, because of task-driven frac-
tionation or recruitment of specialized networks. The
most prominent example of network segregation is the
DMN, which was resolved into four subnetworks, labeled
here as the aDMN, pDMN, temporal lobe network, and
DMN. Although observations of plural DMN networks
in neuroimaging experiments were initially interpreted
as an artifact of analysis procedures, more recent stud-
ies investigating the functional nuances of this network
support the idea of specialized subnetworks within the
larger DMN (Andrews-Hanna et al. 2010; Zuo et al. 2010;
Buckner and DiNicola 2019; Gordon et al. 2020). Fur-
thermore, previous research suggests that these special-
ized subsystems distinctly reconfigure their interactions
with other intrinsic connectivity networks across cog-
nitive states and throughout the lifespan (Leech et al.
2011; Vatansever et al. 2015a; Davey et al. 2019; Chiou
et al. 2020; Gordon et al. 2020). Extending these previ-
ous observations, we found different coupling of sub-
networks across our key cognitive domains. A distinc-
tive example includes the aDMN, whose domain-specific
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interactions have already been described. Another net-
work is the semantic network, whose highest-matching
network template was the Yeo 17-network parcellation’s
Default B mask, followed by the general semantic cog-
nition template from Jackson and colleagues (Yeo et al.
2011; Jackson 2021). Choosing a typical lexical decision
task, we expected that ICA would specifically resolve the
characteristic semantic network, so, supported by tem-
poral behaviors characterized in our analyses, such as
domain-specific deactivation and interaction with con-
trol networks, and the lack of an explicit language or
semantic network in the Yeo parcellation, we labeled the
component accordingly. In fact, a recent study employ-
ing procedures optimized to accomplish detailed spa-
tial mapping in individuals characterized the language
network and showed it was very closely situated to the
Yeo 17-network Default B in multiple distributed regions
across the cortex (Braga et al. 2020). It is well known
that fMRI data analyzed at the group level loses some
detail in respect to network boundaries and regions with
heterogenous functions, but it is also accepted that brain
function organizes in a universal structure (Biswal et al.
2010). Thus, a strength of our study is the character-
ization of large-scale networks and their task-specific
interactions for three cognitive domains that are impor-
tant in daily life. In this context, one should bear in
mind that the semantic network encompasses regions
of both multiple demand and default mode networks,
which may reorganize differently for function in other
domains (Mineroff et al. 2018; Gordon et al. 2020; Wang
et al. 2021).

Notably, some of the networks we identified synchro-
nized into cohesive units, and such spatial connectivity
profiles would not have arisen in the absence of cogni-
tive probes. For example, the ventral attention, multiple
demand, and semantic networks are known to coalesce
during tasks, and thorough temporal and spatial charac-
terization of these networks is ongoing (Corbetta et al.
2008; Binder et al. 2009; Camilleri et al. 2018; Assem et al.
2020). The experimental design of this study allowed the
data-driven ICA technique to explicitly resolve each of
these networks, thereby substantially extending typical
intrinsic connectivity results derived from resting-state
experiments, and the temporal behavior of the networks
reinforces distinct reorganization and coupling that arise
for function across domains.

Examining the spatial topography of the individual
networks in relation to one another, the networks appear
closely situated and juxtaposed in a parallel arrange-
ment in distributed regions across the cortex, which
would be congruent with earlier observations in resting-
state data (Yeo et al. 2014; Braga and Buckner 2017). This
is most obvious for the DMN subnetworks in bilateral
IPL. Moreover, there are also regions of overlap for all
networks, such as the aDMN, pDMN, and DMN in the pre-
cuneus and posterior cingulate cortex. The task-active
networks also exhibit parallel distribution throughout
the cortex accompanied by some regions of explicit

overlap. The DAN and VAN overlap in both hemispheres
in posterior IPL whereas eMDN overlaps with the DAN
most prominently in SPL and with the VAN more anteri-
orly in frontal opercula and insula cortices. Interestingly,
regions in which all three networks overlap are not read-
ily visible, and the three networks present interdigitated
topologies in parietal and occipital cortices. Such overlap
may be explained by intermixed neuronal populations
that facilitate diverse attentional processes (Corbetta
et al. 2008; Xu 2015). In particular, functional segregation
of the two attention networks in the absence of a
task may allow their flexible recruitment during active
behavior (Corbetta et al. 2008). Another possibility that
has been suggested specifically regarding the topology of
eMDN is that the multiple demand system is comprised
of a tightly self-connected core that universally serves
domain-general purposes and a penumbra that overlaps
with other networks, to facilitate information transfer
between network pairs during tasks (Assem et al. 2020).
In general, the overlap maps demonstrate that multiple
networks simultaneously activate and deactivate within
single brain regions. However, they also indicate dis-
tributed parallel mapping of cognitive function across
the cortex.

In conclusion, our data provide insight into large-scale
network interactions across different human-defining
cognitive domains. In particular, our data show increased
complexity of network interaction patterns with increas-
ing cognitive complexity across domains. Moreover, we
identified common overlapping networks that contribute
to all tasks, as well as specialized configurations of net-
work interactions, which may functionally define a par-
ticular cognitive operation. Together, these results sup-
port the flexible allocation and reallocation of different
neural resources across cognitive domains distinctively
facilitated through a core task-evoked architecture.
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