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Simple Summary: The main aim of this study was to investigate whether all-glass Lab-on-a-Chip
(LOC) platforms can be applied to cancer cell research performed under simulated microgravity. For
this purpose, we designed and constructed a 3D-clinostat—a device that allows us to investigate the
effect of simulated microgravity (sµg) in biological studies. We used human keratinocytes HaCaT
and skin melanoma A375 cells cultured on LOCs as a research model. Preliminary analyses included
optimization of LOCs structure and evaluation of their biocompatibility. For both cell lines, we
demonstrated that LOCs can be successfully implemented in microgravity research. These results
are a good base to conduct further research on the possible application of LOCs systems in cancer
research in space, especially for microgravity studies.

Abstract: The dynamic development of the space industry makes space flights more accessible and
opens up new opportunities for biological research to better understand cell physiology under real
microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments
can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a
3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and
melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included
viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to
determine the effect of sµg on human cells. By comparing the results concerning cells cultured on
LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs
and their potential application in microgravity research on selected human cell lines. Our studies
revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed
an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in
comparison to standard cell cultures. These results are an excellent basis to conduct further research
on the possible application of LOCs systems in cancer research in space.

Keywords: microgravity; multidrug resistance; cisplatin; melanoma; cell death; LOC

1. Introduction
1.1. Description of Lab-on-Chips

The term “Lab-on-a-Chip” (LOC) is generally understood as an autonomic or semi-
autonomic experimental platform providing lab-scale research capabilities within miniatur-
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ized devices. With a size fitting within a few square centimeters combined with microfluidic
systems capable of handling pico- to microliters of fluid volume, the use of LOCs dras-
tically reduces the volume of samples, consumption of reagents, and time of analysis,
thus lowering research costs. In the past decade, LOCs have found numerous biomedical
applications, including integrated bioanalyses [1,2], metabolomics [3], drug discovery
and delivery systems [4–7], cell analysis [8,9], tissue and organ physiology and disease
modeling [10–12], and personalized medicine [11,13,14].

Typically, most LOC devices are disposable, fabricated using polydimethylsiloxane
(PDMS) replica molding techniques [15–17]. These methods are considered fast, relatively
simple, with moderate biocompatibility and acceptable transparency of the obtained struc-
tures. Nevertheless, according to the latest literature reports [18–20], some unfavorable
influence of this material on biological samples—concerning contamination and/or deple-
tion of cell culturing medium—has been observed, which can be especially critical in the
case of long-term, cellular-based experimentation.

1.2. Advantages of LOC Technology

LOC instrumentation is usually used for pioneering “first-time” investigations; thus,
uncertain biocompatibility is undesirable. For this reason, other materials (e.g., polystyrene
or glass) are becoming increasingly popular with microfluidics because of their well-known
and verified interactions with biological samples [20–23]. These and other matters (no
time degradation, absolute chemical and biological compatibility, and excellent optical
properties in visible spectrum range) can be essential in the context of the novel scientific
approaches aiming at sophisticated biomedical research. Lately, LOCs have been gaining
more attention as a promising tool in astrobiological experiments, with an emphasis on
those performed in space aboard the International Space Station (ISS) [24–26] or launched
on satellites [27]. Several studies proposed implementing LOCs in other research systems,
including ground-based facilities designed for altered gravity investigations [28–30] or
parabolic flight experiments [31]. One of the main issues of that kind of research lies in the
limited feasibility of manual handling within the experimental unit, which is why remotely
controlled hardware is strongly preferred. Another crucial feature is the compact size of the
experiment. While sounding rockets and parabolic flights allow to conduct quite sizeable
experiments exceeding the size of 10 cm × 10 cm × 10 cm cubic units, it remains a basic
unit of the research nanosatellites CubeSat [32,33], as well as the ICE Cubes Service-cubic
experiments placed on the ISS to carry our investigations in real microgravity [34].

1.3. Skin Melanoma and Space Research

Gravity variations have been shown to remarkably influence growth and biological
processes of malignant cancer cells related to cell death and cell cycle arrest, drug resistance,
angiogenesis, and cytokine secretion [35–40]. Due to the relationship between harmful
irradiation (especially presented in space) and skin malignancies, melanoma represents a
valuable experimental model for space research. However, the effect of microgravity on
human melanoma cells has been barely investigated. Thorough studies may provide us
with a brand-new information concerning the interactions between radiation-triggered
cancers and microgravity exposure. Although the effectiveness of systemic therapy of
melanoma is increasing, innovative adjuvant therapies are not free of side effects. More
importantly, an increase of the number of melanoma patients and deaths caused by this
malignancy has been observed. The occurrence of multidrug resistance and high metastatic
potential make melanoma serious medical problem. Complete remissions are rare and the
5-year survival rate is still relatively low [41]. Taking into consideration abovementioned
findings, we believe that gravity-related experiments concerning melanoma cells may
improve our understanding of cancer biology and be useful in detecting interesting target
pathways and proteins for future cancer treatment [42].
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1.4. Microgravity Experiments

Although ground-based facilities for altered gravity research are generally less de-
manding in terms of size and handling, there is still a great need to establish new, optimized
solutions. The most popular devices for microgravity simulation enable us to change the
position of an accommodated biological samples in two- or three-dimensional space (clinos-
tats) [43] with an option to be randomly altered by dedicated software (random positioning
machine, RPM) [44]. Ideally, cell culture dishes in those facilities should be completely filled
with medium devoid of air bubbles to avoid unspecific results generated by shear stress
during the microgravity simulation [45,46]. Dealing with shear stress is time-consuming
and impractical due to the troublesome procedure of sealing the dishes and it generates
considerable costs resulting from volumes of medium required for filling the dish com-
pletely. A well-optimized system utilizing LOCs stands a chance to eliminate those issues.
More importantly, there is a market discrepancy between reported cell response to altered
gravity when referred to various research systems, including differences between real
and simulated microgravity [47]. With that in mind, further comparative studies are ur-
gently required, and LOCs seem to be a promising consensual solution suitable for most
research systems.

Here, we investigated the technological and material biocompatibility of newly de-
signed all-glass LOCs for culturing human cancer and normal cells in vitro during the
experiments in simulated microgravity conditions. This paper is a preliminary attempt to
establish new experimental system based on LOC technology and optimize of its use in
3D-clinostats.

2. Results
2.1. Biocompatibility of LOCs

We performed viability and morphology analyses to determine the optimal LOCs for
the selected cancer cell lines. Our studies revealed a decreased viability of HaCaT and
A375 cells cultured on LOC1 (Figure 1A, 77.18%, and 65.14%, respectively). On the other
hand, the viability of the cells remained unchanged both for LOC2 and LOC3. Moreover,
we noted perfect agreement between PrestoBlue assay and High Content Screening (HCS)
CellMask, indicating the presence of cells with a proper morphology on LOC2 and LOC3
(Figure 1B). Based on these findings, only LOC2 and LOC3 were recommended for the
described research, and LOC1 was excluded from further experiments; in microgravity
studies, we used only LOC3.

2.2. Simulated Microgravity Experiments.
2.2.1. Viability and Mitochondrial Activity

Following the clinorotation, we observed a slight increase of HaCaT and A375 cell
viability exposed to simulated microgravity (Figure 2A). The increase was more prominent
for cancer cells (130% in 72 h). However, both HaCaT and A375 cells cultured on LOCs
displayed a decreased viability compared to the cells cultured on Petri dishes during
the clinorotation.

The mitochondrial activity of the cells cultured on Petri dishes remained unchanged
(~100%) for 1 g and sµm groups in 24 and 72 h. At the same time, the mitochondrial
functioning considerably decreased when the clinorotated cells were cultured on LOCs
(Figure 2B, approx. 85–90% in 72 h). As for viability, the mitochondrial functioning
intensified after the exposure to simulated microgravity.



Cancers 2021, 13, 402 4 of 14Cancers 2021, 13, x  4 of 15 
 

 

 
Figure 1. Evaluation of HaCaT and A375 cells viability (A) and morphology (B) after 24 h culturing on various Lab-on-a-
Chip (LOC) (ILM: inverted light microscope); scale bars: 50 μm. * Statistically significant differences in comparison to 
control cells (p ≤ 0.05). 
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2.2.2. Caspase Activity

According to our research, the exposure to simulated microgravity significantly in-
creased the caspase 3/7 activity of the A375 melanoma cells 24 h after the clinorotation
(Figure 3). Interestingly, we did not detect this phenomenon in HaCaT cells. Conversely,
we observed an increased caspase activity 24 h after the clinorotation in the cells previ-
ously cultured on LOCs-especially HaCaT cells. That tendency was most evident in the
HaCaT cells.
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2.2.3. Proliferation

The clonogenic assay confirmed the inhibitory impact of simulated microgravity on
cell proliferation (Figure 4). The reduced number of colonies between the 1 g and sµm
cells indicates the slight cytotoxic properties of sµg. Moreover, this assay demonstrated the
decreased proliferation in cells cultured on LOCs and seeded on Petri dishes during the
clinorotation. On the contrary, we observed fewer colonies when A375 cells were subjected
to sµg and cultured on LOCs; however, the tendency was the same in control samples
seeded on Petri dishes.
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2.2.4. Morphology

Fluorescence staining revealed considerable differences in the cell morphology after
the clinorotation for 2 h (Figure 5). After sµg, the cells were shrunken and round shaped.
Inverted light microscopy and HCS CellMask staining revealed the altered cell shape,
presence of membrane blebbing and lamellipodia, lack of filopodia, and the presence of
stress fibers. Cytoskeleton staining revealed distinct reorganization of F-actin fibers, which
were disrupted and accumulated in peripheral parts of cells-both in HaCaT and A375 cells.
One of the technical issues we had to deal with during the experiments with LOCs was
photographing cells under high magnification. Because of LOCs thickness and technical
limitations of camera, we could not obtain photographs with sharp outlines of the cells.
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3. Discussion

In this paper we described the possible application of novel all-glass LOCs in short-
term sµg experiments on human cells in vitro, investigating the potential shortcomings
and advantages compared to the classical approach. The morphology of clinoratated
cells cultured on LOCs resembled the morphology of similarly treated cells cultured in
standard conditions, demonstrating alterations well-described in the literature: the al-
tered, rounded cells, peripheral cytoskeleton accumulation, or membrane blebbing [48,49]
caused by cytoskeletal rearrangements [50–54]. Going further, we observed the specific
influence of clinorotation on the cells cultured on LOCs, consistent with literature reports
concerning the impact of sµg and µg on the cell death regulation [55,56] and reduced prolif-
eration [40,56–61]. In our other microgravity research concerning short-time clinorotation,
we noticed the altered functioning of cancer cells 72 h after sµg exposure, especially in
the case of cell death and cell cycle. However, we did not observe such phenomenon for
HaCaT and A375 cells. Well-maintained cell viability observed within the control group
subjected to sµg has been previously reported for short-term exposure to real µg during
the parabolic flights [62]. Analogous tendencies were observed within LOC groups as well,
but lowered accordingly compared to controls, suggesting an unresolved issue related
to the cellular stress or assay methodology. The observed alterations are consistent with
the initially increased caspase activity in cells cultured on LOCs. On the other hand, no
signs of apoptosis within the control group corresponds well with altered gravity cellular
response reported in other studies [63]. Further data collection is needed to eliminate
those shortcomings. One possible explanation may be associated with a slightly disrupted
ratio of nutrients and metabolites related to the limited volume of the culture medium.
While not visible in normal conditions during the biocompatibility tests, the additive effect
of sµg stress response might enhance its cytotoxic effect. Designing a culture chamber
in LOCs requires the perfect balance between the largest possible culturing surface and
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optimal width facilitating diffusion. Thus, the amount of accessible supplies is limited by
the volume of the culture areas [64]. Furthermore, these preliminary results have their
limitations due to the restricted volume of medium available during the experiment. When
the growth medium is not being replaced inside the culture chamber, cells consume glucose
and oxygen leading to their decreased concentration [65]. Moreover, limited diffusion of
oxygen causes the increased production of lactate, which lowers the pH of the medium [66].
Summing up, if cells are not provided with fresh nutrients, the metabolic processes are
inhibited as observed for LOC1 [67,68]. Because we did not observe significant metabolic
stress in cells cultured on LOC2 and LOC3 for 2 h during the clinorotation, we claim
that constant administration of fresh medium is not necessary in short-time investigations.
Research into solving this issue is already underway, since our all-glass LOCs are ultimately
dedicated to the automated microfluidic flow of the medium.

Our study encourages the use of LOCs in examining the cellular response to simulated
microgravity conditions. Looking forward, the presented LOCs could be placed in a
portable bioreactor with a microfluidic system and automated administration of reagents
while the all-glass transparent structure of our LOCs facilitates the use of cameras and
microsensors [1,69]. Overall, the size of that kind of assembly would not exceed 1 U.
The advantage of this solution is the possibility that any further development of this
technology may find applications in remotely controlled experiments in real microgravity,
e.g., parabolic flights, sounding rockets or nanosatellites, which could be a promising
solution for the comparative analyses of the experiments in ground-based facilities.

4. Materials and Methods
4.1. Cell Culture Maintenance

All experiments were performed on two human cell lines: immortal keratinocytes, Ha-
CaT, and malignant melanoma, A375 (ATCC, Manassas, VA, USA). Cell cultures were main-
tained in a CO2 incubator at 37 ◦C in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 2 mM ultraglutamine (Lonza, Basel, Switzerland),
10% fetal bovine serum (Atlanta Biologicals, Norcross, GA, USA), 1% MEM vitamin solu-
tion (100×, Sigma), and antibiotics: 100 IU/mL penicillin, and 0.1 mg/mL streptomycin
(Gibco, Gaithersburgh, MD, USA).

4.2. LOCs Specification

All-glass LOCs were fabricated utilizing standard glass micromachining processes, i.e.,
xurography, wet chemical etching and high temperature fusion bonding, Figure 6A [70,71].
Firstly, two laboratory autoclaved borosilicate glass substrates were covered with special
hydrogen fluoride (HF)-resistive foil (Avery Dennison Graphics Solutions, USA) containing
micropatterns of microchannels with CNC laser-cut holes. Next, the substrates were
chemically etched in the solution of 40% HF: 69% HNO3 (10:1 v/v) for a specified time
(etching rate: 3 µm/min). After this step, the activation cleaning of the substrates was
employed prior to bonding. This procedure encompassed washing with trichloroethylene,
acetone, IPA, and submersion in Piranha solution (98% H2SO4: 30% H2O2, 3:1 v/v) for
approximately 10 min. As a final fabrication step, the substrates were carefully cleaned with
deionized water, positioned and bonded thermally in a furnace (650 ◦C). Three different
LOCs were developed for the experiments: one the size of 16.8 mm × 3.5 mm with 500 µm
microchannel depth (LOC1), as well as two 25 mm × 3.5 mm containing microchannel
of 500 µm (LOC2) and 800 µm (LOC3) depth. Our all-glass LOCs are reusable and, after
careful cleaning and disinfection, they can be used for cell cultivation analyses many times.
All LOCs were investigated for their biocompatibility to select the most optimal chips for
HaCaT and A375 cells, as described below.
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4.3. Cultures On-Chip

For experiments, the cells were detached with TrypLE™ Express Enzyme (Ther-
moFisher Scientific, Waltham, MA, USA), centrifuged and resuspended in a CO2 indepen-
dent medium (Thermo Fisher Scientific). Then, the cells were seeded in a chip chamber at
~1 × 106 cells/mL. Cultures were observed and photographed daily using a DMi1 inverted
microscope (Leica, Wetzlar, Germany) equipped with LAS X imaging software (Leica).

Prior to the microgravity studies we performed pilot experiments assessing biocom-
patibility of the LOCs differing in structure (Figure 6B), which included: (i) evaluation of
the viability of cells cultured on LOCs with PrestoBlue assay (described below), and (ii)
analysis of the morphology of the cells seeded on LOCs using inverted light and fluores-
cence microscopes (HCS CellMask™ Green Stain staining-described below)-both assays
were evaluated 24 h after culturing the HaCaT/A375 cells on LOCs.

4.4. Simulated Microgravity Experiments

To examine the effect of simulated microgravity (sµm) on HaCaT and A375 cells, a
3D-clinostat (3D-C) was developed by engineers from Wroclaw University of Science and
Technology. To provide microgravity conditions, the biological samples were placed in the
3D-clinostat and rotated along two independent axes at constant speeds and directions
relative to the gravity vector, eliminating the effect of gravity [43]. The base, outer, and
inner parts are made of aluminum rectangular profiles perforated with a Computerized
Numerical Control (CNC) machine. The main frame is made of stainless steel plate with
laser-cut perforation. The frame, outer, and inner parts are connected with aluminum pipes
in which the electrical wires are routed. The outer and inner parts rotate independently.
Two step motors provide the rotational movement with speed from 0.1 rpm to 60 rpm. The
motors are controlled by a step motor controller DRV8835 build on a microcontroller. The
user can switch rotational speed with a knob. Rotating elements were balanced to avoid
vibrations. The rotation speed was set at 10 rpm (60◦/sec; 1.05 rad/sec, Figure 7).
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For sµm experiments, cells were seeded in the selected LOCs. After an hour, the LOCs
with cells were put in Petri dishes filled with growth medium to provide diffusion of
nutrients etc. After 24 h, the growth medium was replaced and the chips were carefully
covered with parafilm without leaving any air bubbles beneath it. In our research we
decided to use the smallest growth dishes with rounded-shaped walls to reduce the
shear stress accompanying the clinorotation. The cells cultured on 35 mm Petri dishes
(3 × 104 cells/cm2) and 35 mm imaging dishes (µ-Dish 35 mm, Ibidi, Germany) were used
as control samples (ctrl) prepared in the same way as LOCs. The exposure time in sµm
was 2 h. Taking into consideration the fact that we used in the sµm experiment 35 mm
dishes for culturing the cells, we can estimate the rotation radius approximately 18 mm
and 12.5 mm for LOCs. Based on the study of Eiermann et al. (2013), the maximal residual
accelerations varied between 0.024–0.036 g [72]. The samples were fixed on the clinostat
in an incubator at 37 ◦C. The static control group (ctrl) was prepared the same way and
located close to the 3D-C during the clinorotation to distinguish the effect of mechanical
stress caused by vibrations of the 3D-C. After the experiment, all cells were rinsed with PBS
three times, detached using TrypLE™ Express Enzyme and processed for further analyses.
For viability, mitochondrial and caspase activity assays of the cells were seeded on 96-well
plates (1.5 × 104 cells/cm2) and incubated for 24 or 72 h. Additionally, the cells were plated
on 6-well plates and incubated for 7 days to carry out the clonogenic assay (cell density
seeding 15 cells/cm2). Part of the samples prepared for morphology and cytoskeleton
analyses was fixed immediately after the experiment.

4.5. Viability

Cell viability was examined with a PrestoBlue™ Cell Viability Reagent (ThermoFisher,
cat. No. A13262). For the viability testing of cells seeded on-chip, the growth medium
was removed from the chip. The reagent was diluted 1:9 with a culture medium, and the
solution was added to each chip channel. After 40 min of incubation at 37 ◦C, the solution
was gently mixed with a pipette. Then 60 µL of the mixture was collected twice from
each channel and disposed into the bottom of two wells of the black, 96-well plate with a
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transparent bottom. The cells were detached from the LOCs using TrypLE™ Express En-
zyme and then seeded on a black, 96-well plate with a transparent bottom for microgravity
experiments. After incubation, the growth medium was removed from the wells, and the
reagent was diluted 1:9 with a culture medium, and 150 µL of the solution was added to
each well. After 40 min of incubation at 37 ◦C, the solution was gently mixed with a pipette.
The fluorescence was measured using a GloMax® Discover Microplate Reader (Promega)
with Green 520 nm excitation filter and 580–640 nm emission filter.

4.6. Mitochondrial Activity

MTS assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay; Promega,
Madison, WI, USA) was performed to analyze mitochondrial function. Following the
clinorotation, 20 µL of CellTiter 96® AQueous One Solution Reagent was added to each
well and the cells were incubated with the reagent for 2 h at 37 ◦C. The absorbance was
measured at 490 nm using a microplate reader (GloMax Discovery, Promega). The results
were expressed as the percentage of cells mitochondrial activity relative to untreated control
cells (ctrl).

4.7. Measurements of Caspase 3/7 Activity

The Caspase-Glo® 3/7 Assay System (Promega) was used to measure the activity
of caspases 3 and 7 in cells treated with the use of simulated microgravity. Following
the sµg exposure, cells were seeded on white-walled 96-well plates. After an appropriate
incubation time, 100 µL of Caspase-Glo® 3/7 Reagent was added to each well and the cells
were incubated for an hour at room temperature with the reagent. Next, the luminescent
signal was collected with the GloMax® Discover Microplate Reader (Promega). The results
were expressed as the percentage of cells caspase 3/7 activity relative to untreated control
cells (ctrl).

4.8. Clonogenic Assay

The clonogenic assay was performed according to the procedure described previ-
ously [73]. Following the exposure to simulated microgravity, the cells were harvested
from the chip using the TrypLE™ Express Enzyme, counted and then 15 cells/cm2 were
seeded on 6-well culture plates. After 7 days of incubation, the cells were washed with
Phosphate Buffered Saline (Sigma-Aldrich), fixed with 0.5% crystal violet (Sigma-Aldrich)
in 4% paraformaldehyde (Sigma-Aldrich), then rinsed with tap water and left to dry.
The colonies were photographed with a DMi1 inverted microscope (Leica) and then ana-
lyzed with the ImageJ software. The number of colonies was presented as percentage of
non-treated control cells (ctrl).

4.9. Fluorescence Imaging

Some of the experiments were followed by fluorescence staining applied to the cells
seeded on LOCs and the cells seeded on control glass according to producers’ protocols. The
cell’s morphology was demonstrated using a HCS CellMask™ Green Stain (Thermo Fisher,
cat. No. H32714). F-actin was visualized with an Alexa Fluor™ 546 Phalloidin (1:100 in PBS,
Thermo Fisher; cat. No. A22283). The imaging was performed with an inverted microscope
IX53 (Olympus, Tokyo, Japan) using the following excitation/emission filters: U-FBN
(Narrow band blue excitation, 470-495/510 nm) for HCS CellMask and U-FGW (Wideband
green excitation, 530-550 /575 nm) for Alexa Fluor™ 546 Phalloidin, respectively. Images
were captured with the CellSens Imaging Software (Olympus). Cell morphology was
assessed by two experimenters who independently analyzed and evaluated all collected
samples from the particular groups (app. 100 cell from every slide) and compared them
with “ctrl” group.
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4.10. Statistics

Two-way ANOVA determined statistical significance with Tukey’s post-hoc test within
groups following a normal distribution. Samples were analyzed in four replications in
three independent experiments. Differences within p values ≤ 0.05 were assumed to be
statistically significant. The results were analyzed with the Microsoft Office Excel 2017
and GraphPad Prism 7.0 software (GraphPad Software, San Diego, California USA). The
error bars presented on the graphs stand from the standard deviation calculated from three
experiment replicates. For morphology analyses, approximately 100 cells were assessed.

5. Conclusions

In summary, this is the first in vitro study considering the investigation of the effect
of simulated microgravity on human keratinocytes and skin melanoma cells cultured on
all-glass LOCs. We devised a strategy for imaging living and fixed cells on the LOCs and
successfully performed simple cellular assays to assess the cells’ response. Our experiments
confirmed typical alterations in human cell physiology after a short-time exposure to
simulated microgravity, namely the decrease of cell viability and mitochondrial activity,
the increased activity of caspase activity, and reduced proliferation. These observations
were also accompanied by altered cell morphology: the presence of stress fibers, membrane
blebbing, and lamellipodia, as well as a lack of filopodia. On that basis, the described
LOCs can be applied to various cell culturing experiments and supplemented with diverse
sensors allowing for indirect analysis of biological properties of cells or microfluidic systems
for real-time investigations and administration of reagents. Moreover, all-glass LOCs can
be used for fluorescence microscopy; however, observations performed under higher
magnification may be challenging, and the use of thinner chips may be necessary. Further
research is needed to verify whether all-glass LOCs can be used in microgravity studies
performed in space aboard the ISS or the CubeSat satellites.
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Kasperkiewicz, P.; Górski, J.; et al. The Cytoprotective Role of Antioxidants in Mammalian Cells under Rapidly Varying
UV Conditions during Stratospheric Balloon Campaign. Front. Pharmacol. 2019, 10, 1–19. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-017-06416-4
http://doi.org/10.1038/s41598-018-20459-1
http://www.ncbi.nlm.nih.gov/pubmed/29491429
http://doi.org/10.3357/AMHP.4647.2017
http://doi.org/10.1007/s11626-013-9581-9
http://doi.org/10.1155/2014/470253
http://doi.org/10.1186/s12938-017-0337-8
http://www.ncbi.nlm.nih.gov/pubmed/28427408
http://doi.org/10.1186/s12964-015-0095-9
http://doi.org/10.3390/ijms20225730
http://www.ncbi.nlm.nih.gov/pubmed/31731625
http://doi.org/10.3390/s17071603
http://www.ncbi.nlm.nih.gov/pubmed/28698531
http://doi.org/10.1016/j.biocel.2016.08.029
http://www.ncbi.nlm.nih.gov/pubmed/27590850
http://doi.org/10.1016/j.freeradbiomed.2011.05.024
http://www.ncbi.nlm.nih.gov/pubmed/21664270
http://doi.org/10.2225/vol16-issue3-fulltext-2
http://doi.org/10.1021/bp0702673
http://www.ncbi.nlm.nih.gov/pubmed/18215054
http://doi.org/10.1039/C7LC00815E
http://www.ncbi.nlm.nih.gov/pubmed/29143053
http://doi.org/10.3390/mi11020196
http://www.ncbi.nlm.nih.gov/pubmed/32074950
http://doi.org/10.1007/s10544-017-0205-0
http://doi.org/10.1007/s12217-013-9341-1
http://doi.org/10.3389/fphar.2019.00851
http://www.ncbi.nlm.nih.gov/pubmed/31427965

	Introduction 
	Description of Lab-on-Chips 
	Advantages of LOC Technology 
	Skin Melanoma and Space Research 
	Microgravity Experiments 

	Results 
	Biocompatibility of LOCs 
	Simulated Microgravity Experiments. 
	Viability and Mitochondrial Activity 
	Caspase Activity 
	Proliferation 
	Morphology 


	Discussion 
	Materials and Methods 
	Cell Culture Maintenance 
	LOCs Specification 
	Cultures On-Chip 
	Simulated Microgravity Experiments 
	Viability 
	Mitochondrial Activity 
	Measurements of Caspase 3/7 Activity 
	Clonogenic Assay 
	Fluorescence Imaging 
	Statistics 

	Conclusions 
	References

