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Abstract

Motivation: It has been proposed that clustering clinical markers, such as blood test results, can be used to stratify patients.
However, the robustness of clusters formed with this approach to data pre-processing and clustering algorithm choices has not
been evaluated, nor has clustering reproducibility. Here, we made use of the NHANES survey to compare clusters generated with
various combinations of pre-processing and clustering algorithms, and tested their reproducibility in two separate samples.

Method: Values of 44 biomarkers and 19 health/life style traits were extracted from the National Health and Nutrition
Examination Survey (NHANES). The 1999–2002 survey was used for training, while data from the 2003–2006 survey was
tested as a validation set. Twelve combinations of pre-processing and clustering algorithms were applied to the training set.
The quality of the resulting clusters was evaluated both by considering their properties and by comparative enrichment
analysis. Cluster assignments were projected to the validation set (using an artificial neural network) and enrichment in
health/life style traits in the resulting clusters was compared to the clusters generated from the original training set.

Results: The clusters obtained with different pre-processing and clustering combinations differed both in terms of cluster
quality measures and in terms of reproducibility of enrichment with health/life style properties. Z-score normalization, for
example, dramatically improved cluster quality and enrichments, as compared to unprocessed data, regardless of the
clustering algorithm used. Clustering diabetes patients revealed a group of patients enriched with retinopathies. This could
indicate that routine laboratory tests can be used to detect patients suffering from complications of diabetes, although
other explanations for this observation should also be considered.

Conclusions: Clustering according to classical clinical biomarkers is a robust process, which may help in patient
stratification. However, optimization of the pre-processing and clustering process may be still required.
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Introduction

Advances in medical informatics, in bioinformatics and in

machine-learning are opening up new venues in biomedical

research. Data is becoming ever more accessible as information

from large populations of patients is now electronically captured,

especially in countries with centralized healthcare. A general move

toward lifelong Electronic Health Records (EHRs), aimed at

integrating available clinical information for an individual, has

been suggested [1,2]. In parallel, the computational tools required

for analyzing complex, biased and error-ridden datasets are

constantly improving.

One possible role for computational analysis of clinical data lays

in improving our ability to understand disease sub-classes, or

stratification. Medical research, as required for use by treating

physicians, often attempts to define disease sub-classes that are

more homogenous in terms of optimal intervention and prognosis.

More refined classifications can, however, help physicians in

achieving ‘personalized medicine’, in which intervention is tailored

to specific patients [3,4]. While great emphasis is currently being

given to identifying biomarkers that will allow adequate stratifica-

tion of patients, it has been shown [5,6] that existing clinical data,

when analyzed with unsupervised learning methods (i.e. clustering),

can be used to uncover classification patterns. According to this

approach, patients are grouped based on a combination of clinical

observations (e.g., laboratory test results, symptoms, complaints,

etc.) and the resulting clusters are tested for enrichment with

patients with similar outcomes or responses to a given treatment.

Claycamp et al. (2001) [6] grouped patients suspected of having

chronic radiation sickness based on blood count values. Using

competitive artificial neural network clustering, they found a cluster

enriched with true chronic radiation sickness patients. Chen et al.
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extended this idea to develop a ‘clinarray’, in which the entire

spectrum of clinical laboratory tests results was used to cluster

children with similar profiles. Using agglomerative hierarchical

clustering, these authors were able to sub-classify Crohn’s disease

and cystic fibrosis patients in a manner that correlated with the

severity of their disease [5].

While these works demonstrate the potential of utilizing

machine-learning methods commonly used in bioinformatics

(namely, clustering), little is known about the robustness of this

approach. In both studies mentioned, the ability to classify patients

was not repeated with additional datasets, and the sensitivity of the

process to methodological decisions was not assessed.

In this study, we demonstrate the power of unsupervised

learning in clinical data analysis, while evaluating the robustness of

this approach. To achieve these goals, we designed a training-

validation experiment in which the quality of the clusters resulting

from biomarker-based clustering are evaluated in a second dataset.

Two large datasets derived from the National Health and

Nutrition Environmental Study (NHANES; NHANES website.

Available: http://www.cdc.gov/nchs/nhanes.htm Accessed 2011

Dec 4.) were used. The NHANES is a prospective cross-sectional

study in which health state, lifestyle parameters, and a compre-

hensive set of laboratory tests have been recorded for thousands of

random, non-hospitalized USA residents. The quality of clusters

generated with various pre-processing and clustering methods was

compared to evaluate the robustness of a given clustering

approach to methodological decisions. In addition, the robustness

of the clusters to sample choice was evaluated by projecting the

resulting clustering scheme from a training to a validation dataset,

and comparing the enrichment of the resulting clusters from both

datasets with clinical and lifestyle properties. Our results indicate

that the methodology chosen affects the quality of the resulting

clusters, and suggest that clusters are indeed robust across datasets.

We further demonstrate the potential value of clustering to disease

stratification, showing that clustering diabetic patient by their

classical biomarker values reveals biomedically interesting and

non-trivial sub-classes.

Results

To evaluate the robustness of patient clustering by classical

marker values, we derived two datasets (i.e. training and

validation) from the NHANES Study, each comprising data

collected in different years from a random sample of non-

hospitalized individuals. The training dataset was processed with

12 different analysis pipelines (Figure 1), each involving one of

four pre-processing methods and one of three clustering

algorithms. For each pipeline, an artificial neural network (ANN)

was used to cluster the validation set into the same clusters as

defined based on the training set. Enrichment analysis with a set of

known diseases and complaints was then performed on the clusters

both in the training and validation sets, and their consistency was

compared.

2.1 The impact of different pre-processing and clustering
algorithms on the properties of the resulting clusters

Initial comparison of the clusters obtained with the different

clustering pipelines was performed using the HA-SA measure. This

measure reflects the difference in variation between individuals in

different clusters (SA) and individuals in the same cluster (HA), with

high values indicating well defined clusters (i.e. distant and

compact) and low values indicating poorly separated clusters.

Only small differences were observed in the homogeneity of the

clusters obtained with the three different clustering algorithms

(Table 1), when the same pre-processing approach was used.

Clusters generated with Z-score-normalized data, for example,

Figure 1. Methodology overview. A test-validation approach was used to test the impact of methodological choices on the clustering of
individuals according to their classical blood biomedical marker values. The data from the NHANES 1999–2002 surveys was used as a training set,
while the 2003–2006 dataset was used for validation. Various combinations of pre-processing and clustering algorithms were used to define clusters
from the training set (black). For pre-processing (top row), transformation to normal of otherwise non-normal variables, Z-score normalized and Z-
score normalized-with age adjustment using linear regression, were considered (top block). Each resulting dataset was clustered with three different
clustering algorithms (second row): CLICK [18], K-means [21] and self-organizing maps [22]. The resulting clusters were used for enrichment analysis
with health/lifestyle traits and for training an artificial neural network (third row). The artificial neural network was subsequently used to assign
individuals from the validation set to clusters (third row), using the same pre-processing procedure as used to generate the training set clusters
(bottom row). The resulting validation set clusters were also tested for enrichment with the same health/life-style traits as the training set.
Enrichments found in both sets were compared.
doi:10.1371/journal.pone.0029578.g001
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had mean HA-SA values of 0.55460.02, 0.64460.156 and

0.46760.06 with the CLICK, K-means and SOM algorithms,

respectively. All of these differences were found to be statistically

significant by Student’s t-test, using p,0.005. A much larger

impact was observed when different pre-processing methods were

used. Z-score normalization dramatically improved the quality of

the clusters. For example, with the CLICK algorithm, a 10-fold

increase was observed in the mean HA-SA value between scaled

and unprocessed data, growing from 0.03560.005 to 0.55460.02

(p,0.001, Student’s t-test; see Table 1).

The effect of age adjustment for this dataset is not as clear. On

the one hand, no striking improvement was observed in cluster

quality, as reflected in their highly similar HA-SA values with or

without age correction (e.g. 0.55460.02 vs. 0.54060.02 using Z-

score normalization with or without age correction, correspond-

ingly, applying the CLICK algorithm in both cases). On the other

hand, the number of clusters identified using the CLICK

algorithm with age-adjusted before-Z-score data was smaller than

the number of clusters identified with Z-score-normalized data

with equivalent HA-SA values. This could reflect some age-based

clustering in the non-adjusted data, where individuals that

otherwise very similar are assigned into different clusters based

on age alone. These results thus suggest that age normalization

may have improved the quality of the clusters identified using the

CLICK algorithm, as it generates fewer clusters without com-

promising cluster homogeneity.

2.2 The robustness of biomarker-based clustering across
datasets

To test whether clusters identified via unsupervised analysis are

robust across datasets, we projected the clusters generated with the

test set to the validation set using an ANN, and compared the

enrichment observed in the clusters from either set in terms of

health/lifestyle properties. We assumed that if the clusters resulting

from grouping individuals based on their biomarker values are

robust to dataset effects, then the resulting clusters should be

similar in terms of their enrichment patterns. To determine

whether this is indeed the case, we first tested whether the clusters

generated from the training dataset can be successfully identified

in the validation set. For most clusters, a cluster with similar

quality could be detected in the validation dataset, as reflected by

their HA-SA values (Table 1). For the CLICK algorithm, for

example, all 24 clusters generated from the training data were

successfully recovered in the validation set. We then tested

whether the clusters produced from the validation dataset had

the same biomedical meaning as did the training set clusters by

comparing their enrichment with health/lifestyle properties of the

individuals included. Nineteen health/lifestyle-related statements

were extracted from the NHANES datasets, choosing traits

pertinent to a sufficiently large subset (n$30; see Table S1b for

complete details). These include mostly diseases (e.g., diabetes,

coronary heart disease, etc.) but also some lifestyle traits (e.g.,

smoking). Three measures were used to evaluate the robustness of

clinical biomarker clustering: (i) The number of valid enrichments,

defined as significant enrichments of the same trait in equivalent

clusters from both training and validation datasets, (ii) the number

of distinct validated enrichments, defined as the number of distinct

terms that were successfully validated and (iii) validated clusters,

defined as the number of clusters in the validation set with one or

more validated enrichments (Table 2). A complete list of all

validated enrichments is provided in Table S3.

Analysis of the enrichment results suggest that use of the SOM

algorithm with Z-score normalization gives the most specific

enrichments. This pipeline produced eight validated clusters (as

compared to four-eight generated by the other pipelines) and an

average fold-enrichment of 7.7 (as compared to 1.9–7 for the other

pipelines). The SOM/Z-score normalization algorithm also had

the highest absolute number of validated enrichments (36, as

compared to 8–33 for the other pipelines). However, this

algorithm did not generate the highest number (or fraction) of

distinct validated enrichments. The SOM/Z-score normalization

algorithm yielded 13 distinct validated enrichments, as compared

to 15 using the CLICK algorithm with the Z-score normalization

pipeline. In fact, detailed analysis of the enrichment obtained with

the different algorithms using scaled data reveals that the CLICK

algorithm finds all the enriched validated terms that are found by

the two other algorithms (Table 3A). In terms of pre-processing,

scaled data yielded the highest number of validated enriched terms

when using the CLICK algorithm (15 compared to 11). However,

the use of age-adjusted pre-processing added one term (‘‘taking

treatment for anemia/past 3 month’’) that was not found with the

scaled data (Table 3B).

2.3. The nature of the resulting clusters
To test whether the observed clusters can define biomedically

homogenous sub-populations, we inspected other cluster charac-

teristics. We hypothesized that if individuals in the same cluster

share similar properties, then the enrichment we observed may

correspond to a specific pattern of biomarker values in that cluster.

To demonstrate that such correspondence can be observed, the

mean biomarker values of three clusters were analyzed in the

Table 1. The quality of clusters obtained with different pre-
processing-clustering pipelines.

Processing pipeline Training Validation

N HA-SA N HA-SA

All Patients CLICK Raw 7 0.035 (0.005) 6 0.05

NormTransf. 861 0.012 (0.003) 6 0.013

Z-Score 2463 0.554 (0.02) 24 0.556

AgeAdj 2163 0.54 (0.02) 17 0.532

K-mns Raw 7 0.022 (0.036) 7 0.031

NormTransf. 861 0.01 (0.0036) 6 0.011

Z-Score 2463 0.644 (0.156) 18 0.522

AgeAdj 2163 0.647 (0.174) 14 0.534

SOM Raw 8 0.026 (0.016) 7 0.032

NormTransf. 861 0.009 (0.003) 6 0.008

Z-Score 20630 0.467 (0.06) 19 0.451

AgeAdj 2063 0.44 (0.076) 17 0.43

Diabetes CLICK Raw 0 - - -

NormTransf. 3 0.033 (0.001) 4 0.033

Z-Score 561 0.64 (0.02) 6 0.622

AgeAdj 561 0.72 (0.04) 6 0.619

For each pre-processing/clustering pipeline, the number of clusters (N) and the
homogeneity-separation difference (HA-SA) are provided. The HA-SA measure
reflects the difference in variation between individuals in different clusters (SA)
and individuals in the same cluster (HA). For the validation set, the mean6SD of
the number of clusters and HA-SA were calculated for 10 re-sampled datasets.
See Materials and Methods for a complete description of the algorithms and
pre-processing methods. K-mns = K-means; NoramTranf = transformation to
normal; Z-score = Z-score normalization; AgeAdj = age adjustment followed by Z-
score normalization. The analysis was performed separately for the NHANES
training and validation sets, using all individuals (‘‘All Patients’’) or restricting
the analysis to diabetic patients (‘‘Diabetes’’).
doi:10.1371/journal.pone.0029578.t001
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context of their health/lifestyle traits enrichment (Figure 2).

Cluster 14 is highly enriched with diabetic individuals. As

expected, members of this cluster are characterized by high levels

of glucose, blood osmolarity and triglycerides, traits that are

indeed hallmarks of unbalanced diabetic patients [7]. Cluster 1 is

enriched with individuals suffering from kidney diseases. Cluster

members are characterized by a high level of creatinine, increased

osmolarity, and low hemoglobin and hematocrit values. While

such traits are found in patients with chronic diseases, they are

highly suggestive of patients with chronic kidney disease, in

particular [8,9]. Cluster 3 is enriched with smokers, and is

characterized by individuals with high hemoglobin, red blood cell

and hematorcrit levels, a pattern characteristic of sufferers of lung

diseases (e.g., smokers and individuals exposed to severely polluted

air [10]). We note that for other clusters, correspondence may be

missed if it involves health/lifestyle traits that were not recorded in

the NHANES dataset, or if careful inspection by an expert in the

appropriate medical field is required to note the correspondence.

2.4. Toward novel classification via biomarker-based
clustering

Some health/lifestyle states were found to be enriched in

multiple clusters (see Table S3). Both clusters 1 and 14, for

example, were enriched with diabetic individuals. These clusters,

however, greatly differ in terms of characteristic patterns (Figure 2).

Mean glucose levels, for example, were very high in cluster 14 but

not in cluster 1 (233695.8 vs. 106635.4 mg/dL, respectively,

p,0.001). This finding, coupled with the iron-related markers,

such as hemoglobin, hematorcrit and iron, that were found to be

relatively low in cluster 1 but not in cluster 14 (13.661.3,

40.463.8 and 78.6628, as compared to 15.161.1, 44.863.2 and

86.1632, p,0.001, p,0.001 and p,0.013 respectively) may

define a group of better-treated diabetics. A similar pattern is

observed for smokers, who are over-represented not only in cluster

3 (as described above) but also in clusters 6, 8 and 12, despite great

differences in their respective patterns. It is possible that the

stratification of smokers reflects some other conditions or

properties of the patients that have a greater impact on biomarker

levels. An intriguing possibility is that the unsupervised approach

reproducibly clusters sub-populations presenting unique clinical

conditions.

To further expand and test this hypothesis, we performed

unsupervised clustering to detect sub-populations of diabetic

individuals. A subset of diabetic individuals (i.e. males, 20 years

of age or more) was extracted from the training and the validation

sets described above (N = 299 for the training dataset and N = 229

for the validation dataset) by adding two biomarkers that are

routinely tested in diabetes patients, namely BMI (body mass

index) and glycosylated hemoglobin levels (A1C). The resulting

dataset was clustered using the same procedure as described above

(Figure 1) but this time using only the CLICK/Z-normalization

with age adjustment pipeline. This procedure yielded six clusters

involving 245 individuals, with 54 individuals remaining unclas-

sified. To avoid confusion with the clusters discussed above, these

clusters are named D1 through D6. The resulting clusters differ

from each other in terms of their mean patterns (Figure 3). Cluster

Table 2. Comparative enrichment analysis of biomarker-based patient clusters: A quantitative analysis.

Processing pipeline Valid enrichments Validated clusters Enrichment factor

Total Distinct

All Patients CLICK Raw 7/12 4/9 5/5 4.3

NormTransf. 12/16 8/12 4/5 4.3

Z-Score 22/40 15/20 8/13 5.9

AgeAdj 20/38 11/20 8/9 5.3

K-mns Raw 7/11 5/6 5/6 4.5

NormTransf. 11/17 9/14 5/5 4.2

Z-Score 18/37 11/16 7/17 6.4

AgeAdj 11/34 7/15 7/15 7.0

SOM Raw 8/20 4/12 5/7 2.9

NormTransf. 11/13 7/9 5/6 1.9

Z-Score 36/62 13/21 8/16 7.7

AgeAdj 14/28 8/15 8/10 3.8

Diabetes CLICK Raw 0/0 0/0 - -

NormTransf. 0/2 0/2 0 -

Z-Score 2/4 2/3 1/2 -

AgeAdj 4/7 4/6 1/2 1.8

The number of validated terms found to be enriched in clusters generated with the different pre-processing procedures and clustering algorithms tested in this study.
Validated enrichments and validated clusters are defined by the recurrence of statistically significant enrichment in the training and validation datasets. The clusters that
were generated from the test dataset using a particular pre-processing clustering combination were subjected to enrichment analysis with 19 health/lifestyle labels (i.e.
searching for statistically significant over-representation of patients with the trait in each cluster). An artificial neural network, trained with the cluster assignment of
each individual in the training dataset, was used to classify individuals from the validation dataset using the same clinical biomarkers subjected to the same pre-
processing algorithm as was the test dataset. The resulting clustering of the validation set was also subjected to enrichment analysis with the same terms as was the
training set. An enrichment was deemed to be a validated enrichment if the same label was enriched in the test and validation datasets. A validated cluster was defined
as a cluster sharing at least one enriched term between the test and validation sets (i.e. the number of clusters enriched in the training set). The enrichment factor for
each pipeline is the average enrichment factor of the three most significant enrichments. K-mns = K-means; NoramTranf = transformation to normal; Z-score = Z-score
normalization; AgeAdj = age adjustment followed by Z-score normalization.
doi:10.1371/journal.pone.0029578.t002
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D2 members, for instance, are characterized by only slightly elevated

glucose levels (with a mean of 111.9635 mg/dL), cluster D1

members are characterized by moderately increased mean glucose

levels (mean of 148.9656 mg/dL), while individuals in cluster D5

have very high glucose levels (mean of 277.46108 mg/dL).

Enrichment analysis relying on health/lifestyle traits described in

the NHANES diabetes questionnaire suggests that the observed

sub-classification of diabetic patients is indeed meaningful. Cluster

D1 was found to be enriched with insulin users and with patients

suffering from common vascular complications of diabetes, namely,

retinopathy (positive answer to the NHANES question ‘‘do you

have other vision troubles due to diabetes’’) and microvascular

complications (e.g., ‘‘vascular and foot ulcer conditions that

required significant time to heal’’). In addition, cluster D1 is

enriched with patients suffering from ‘‘weak or failing kidneys’’.

These enrichments have been successfully reproduced in the

validation dataset. In addition to the validated enrichment, an

intriguing enrichment was observed for cluster D6. This cluster is

enriched with individuals that complain of leg pain while walking

but not other complaints. The validity of this enrichment could not

be assessed, as this complaint was not recorded in those surveys from

which the validation dataset was derived.

Discussion

Unsupervised classification (i.e. clustering) of individuals based

on routine blood tests has been previously proposed to allow for

the uncovering of patient sub-populations that are seemingly

Table 3. Enrichment analysis of biomarker-based patient clusters: A qualitative view.

Scale

Code Enrichment name CLICK Kmns SOM

Z-score normalization DIQ010 Doctor told you have diabetes Y Y Y

KIQ020 Ever told you had weak/failing kidneys Y Y Y

MCQ160A Doctor ever said you had arthritis Y Y Y

MCQ160B Ever told had congestive heart failure Y Y Y

MCQ160C Ever told you had coronary heart disease Y Y Y

MCQ160E Ever told you had heart attack Y Y Y

MCQ160F Ever told you had a stroke Y Y Y

MCQ160G Ever told you had emphysema Y Y Y

MCQ190 Which type of arthritis Y Y Y

MCQ220 Ever told you had cancer or malignancy Y Y Y

MCQ160D Ever told you had angina/angina pectoris Y Y

MCQ140 Trouble seeing even with glass/contacts Y Y

MCQ160L Ever told you had any liver condition Y Y

SMQ040 Do you now smoke cigarettes Y Y

MCQ170L Do you still have a liver condition Y

Code Enrichment name Raw Norm Z-Scal. AgeAdj

CLICK Clustering DIQ010 Doctor told you have diabetes Y Y Y Y

KIQ020 Ever told you had weak/failing kidneys Y Y Y Y

MCQ140 Trouble seeing even with glass/contacts Y Y Y

MCQ160A Doctor ever said you had arthritis Y Y Y Y

MCQ160B Ever told had congestive heart failure Y Y Y Y

MCQ160C Ever told you had coronary heart disease Y Y Y

MCQ160D Ever told you had angina/angina pectoris Y

MCQ160E Ever told you had heart attack Y Y Y

MCQ160F Ever told you had a stroke Y

MCQ160G Ever told you had emphysema Y

MCQ160L Ever told you had any liver condition Y Y

MCQ170L Do you still have a liver condition Y Y

MCQ190 Which type of arthritis = 1 (Rheum. Arth.) Y

MCQ220 Ever told you had cancer or malignancy Y

SMQ040 Do you now smoke cigarettes Y Y Y

MCQ053 Taking treatment for anemia/past 3 mos Y

The NHANES code and description of validated terms found in clusters generated by pre-processing with the Z-score normalization method and clustering algorithm
with three algorithms (CLICK, K-means and SOM) (top) or using the CLICK clustering algorithm with four pre-processing procedures (bottom). Raw = no transformation;
Norm = transformation to normal; Z-score normalization or Z-score normalization with age-adjustment). All the marked terms were enriched significantly (hyper
geometric test, P value,0.05) in both the training and validation sets.
doi:10.1371/journal.pone.0029578.t003
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homogenous in terms of clinical and lifestyle traits [5,6]. In this

study, we have demonstrated, for the first time, which clusters

resulting from this type of analysis are reproducible across cohorts.

Such robustness is essential to allowing clustering to serve as the

basis for novel sub-classifying methods. We have demonstrated

that a classification scheme developed in one dataset can be used

for classifying a new dataset, and that the resulting clusters in the

new dataset are most enriched in terms of the same clinical and

lifestyle traits.

In addition to exploring the robustness of the clustering approach

in clinical applications, we further demonstrated the potential of

unsupervised learning to uncover non-trivial sub-classes. As some

conditions were found to be enriched in more than one cluster, we

believe that a more accurate stratification within a given disease

may be achieved with this approach. For example, routine lab tests

defined a sub-cluster of diabetic patients enriched with patients

complaining of leg pains while walking, a common early indicator of

peripheral artery disease (PAD). PAD is a frequent complication of

diabetes involving peripheral arterial dysfunction and is associated

with an elevated risk of cardiovascular events, amputations, and a

general decline in a patient’s quality of life. The early diagnosis and

treatment of PAD in patients with diabetes may have significant and

profound clinical implications [11]. Our results may provide an

early indication that PAD can be diagnosed from routine blood

tests, although this has yet to be validated with an independent

dataset. However, patients suffering from pains are more likely to

Figure 2. Selected clusters from the NHANES training set. (A) The mean and standard deviation of biomarker values are shown for three
selected clusters generated with 4152 males 20 years of age or older from the NHANES training set, using the Z-score normalized/CLICK pre-
processing/clustering combination. For each cluster, the total number of individuals (top, right) and selected health/lifestyle traits that are
significantly enriched in that cluster (top, left) are provided. For each enriched term, the enrichment factor (i.e. the frequency of the term in a cluster
divided by its frequency in the entire dataset) is also provided. (B) Comparison of the original values of selected biomarkers in clusters 1, 3 and 14. The
values for Hb are enlarged in the top middle section of the figure.
doi:10.1371/journal.pone.0029578.g002
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use analgesics, which, in turn, are known to alter normal values for

some clinical biomarkers (e.g., hemoglobin [12]). Moreover, leg

pains, as well other muscle pains, may be a side effect of the use of

statins [13]. Thus, the clinical value of such results should be best

investigated using data from longitudinal studies, after omitting

statins. Using the artificial neural network described above, diabetic

patients belonging to the same cluster can be identified. If the

pattern of blood test values is indeed predictive of PAD, this pattern

should precede the use of analgesics or complaints about leg pains.

Unfortunately, the datasets we have used throughout this study are

cross-sectional, and do not separate the disease from various

treatments. Another possible advantage of using longitudinal data is

the availability of multiple observations from the same individual.

This allows temporal patterns to be considered. Temporal patterns

have been successfully used in supervised machine-learning with

clinical data [14]. Our results, however, indicate that it may be also

useful to study temporal patterns in clinical data using unsupervised

learning. Unsupervised learning allows suggesting new stratification

schemes, rather than learning how to classify patients according to

known strata. We would thus propose that adding temporal analysis

into unsupervised learning may help detect new patient stratifica-

tion schemes.

Our results indicate that age adjustment has an inconsistent

effect on clusters quality. On the one hand, clustering the entire

population with age-correction decreased the number of clusters

without degrading their compactness (i.e. ,5% effect on HA-SA),

yet also decreased the number of distinct valid enrichments by

25% or more. On the other hand, in the diabetic population, age-

correction doubled the number of distinct valid enrichments (from

2 to 4) without changing the number of clusters and with little

impact on clusters compactness (i.e. ,5% change in HA-SA values).

This suggests that the clusters obtained with age-corrected marker

values are more biologically uniform for diabetic patients and less

uniform for the general population. These inconsistencies can be

explained, at least in part, by complex and non-linear interactions

between age and marker levels [15,16], which can interfere with

the relatively simple linear correction method we have used in this

study. In fact, we have shown that age effects are more linear in

advanced ages (.50), making linear age correction more

appropriate in generally older diabetic patients. Age may also

have indirect affects on marker levels via its association with

various diseases, co-morbidities and non-pathological conditions

that, in turn, effect marker levels. Further research is required to

better understand how and when age effects need to be corrected

for. Toward this goal, we have recently described a database for

recording age-disease interactions from biomedical publications

[17]. With this resource and others, more refined models for age

correction could be developed that will further enhance the power

of unsupervised learning in clinical data.

Another aspect of this work is the applicability of Expander, a

tool specifically designed for microarray analysis [18], to clinical

data analysis. It has been previously suggested that the

methodology used to analyze large, multi-dimensional datasets in

biological settings (e.g., transcription profiles) is perfectly suited to

the processing of clinical biomarkers data [10]. However, the

suitability of such tools for this task had not been directly

evaluated, and the effect of the parameter choice (e.g., clustering

algorithm) was not evaluated. Using a standard microarray

analysis tool with only minor adjustments to the pre-processing

pipeline, we were able to cluster thousands of individuals, to

visualize the results and to test the resulting clusters for

enrichment. This means that the arsenal of computational tools

available for analysis of biological data, which are characterized by

high noise tolerance and performance suitable for large datasets,

can be used for medical data analysis.

Studying large databases from medical records using bioinfor-

matics tools carries the hope of revitalizing efforts already in place

to implement a more personalized form of medicine. In all

likelihood, it will take some time before genetic, proteomics and

other novel markers that are being developed for this purpose

reach the cutting edge of medical practice. With the findings

reported here, we have demonstrated that some of the goals of

personalized medicine may have already been met using classical

clinical biomarkers. In the past, analysis of these classical markers

was limited to the methods of available linear and additive models.

Moving toward novel methodologies that make use of non-linear

and non-additive models to uncover cryptic sub-populations may

help identify groups of patients that are more likely to respond

optimally to a more tailored treatment. Bioinformatics tools are

most suitable for such analyses, as they incorporate computational

analysis methods specifically chosen for their ability to handle

noisy, error-ridden and often biased data.

Basic biological research might also benefit from the knowledge

generated by patient clustering based on clinical biomarkers. The

study of processes such as aging, for example, could benefit from

such analysis [15]. As one of the best sources of data for studying

inter-individual variation, clinical data offer the possibility to study

hundreds of phenotypic biomarkers recorded from many individ-

uals. The clusters we have described here can be used to dissect the

sources of variation in clinical markers, pointing to common

causes that result in similar differences in multiple individuals.

We believe that further research is required to explore the

approach introduced here, to optimize the process for clinical and

biological research applications, and to investigate its potential for

significant discoveries in clinical and biological research. The

results obtained suggest that this novel methodology may provide

biomedical researchers with insight not previously available.

Materials and Methods

Data sources
Data from the National Health and Nutrition Examination

Survey (NHANES), including the 1999–2002 datasets (the

‘training dataset’) and the 2003–2006 datasets (the ‘validation

dataset’), were used in this study. Biomarker values were extracted

from the relevant files in both sets, omitting markers not routinely

tested in clinical settings (e.g., serum vitamin C levels). To avoid

the gender differences that occur in many biomarkers and the non-

linear and complex changes associated with childhood [15], only

males 20 years of age or older were considered. After omitting

redundant variables (i.e. the same measurement provided with

different units), a matrix with 44 variables (Table S1a) over 4151

or 4225 individuals was extracted for the training and validation

datasets, correspondingly.

Figure 3. Selected clusters from the NHANES diabetic subset. (A) The mean and standard deviation of biomarker values are shown for four
selected clusters generated with 299 males 20 years of age or older from the NHANES training set with self-reported type 2 diabetes mellitus.
Clustering was performed using the Z-score normalized with age adjustment/CLICK pre-processing/clustering combination. For each cluster, the total
number of individuals (top, right) and selected health/lifestyle traits that are significantly enriched in that cluster (top, left) are provided. For each
enriched term, the enrichment factor (i.e. the frequency of the term in a cluster divided by its frequency in the entire dataset) is also provided. (B)
Comparison of the glucose levels in clusters 1, 2, 5 and 6.
doi:10.1371/journal.pone.0029578.g003
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Pre-processing
Three derived datasets were generated from the raw data,

applying increasingly rigorous pre-processing by aggregating the

following procedures: (a) Normal transform of markers with non-

normal distribution of values (see Table S1a). Normality was

estimated using the Skewness value for each blood marker,

Skewness values between 21 to 1 indicated normal distribution

[19], (b) scaling each marker to the standard normal distribution,

the so-called Z-score transformation, as implemented in R [20],

and (c) applying linear-regression-based age correction for those

variables found to significantly correlate with age (using the

Pearson correlation coefficient, p,0.05 and r.60.1), as illustrat-

ed in Figure 4 and described in full in Table S2.

Clustering and enrichment analysis
The K-means, SOM and CLICK algorithms, as implemented

in Expander (version 4.1), were used for clustering [18]. First, the

CLICK algorithm was used since it requires no prior knowledge of

the number of expected clusters. To facilitate the comparison

between clustering algorithms, the number of clusters detected by

CLICK was used as the expected number of clusters for K-means

clustering and as the total number of array cells in SOM. To

compare the performance of algorithms and pre-processing

methods, the mean and SD of the HA-SA measure were calculated

using a re-sampling approach (removing 3% of the data for each

run, N = 10). The statistical significance of differences in HA-SA

values was estimated using Student’s t- test. Enrichment analysis

was conducted using the General Enrichment Analysis option of

Expander.

Machine-learning
A neural network model was trained on the cluster assignment

of individuals from the training set, and was used to assign

individuals from the validation set into clusters. Implementation of

Figure 4. The correlation between selected blood markers and age. Linear regression was calculated for all biomarkers, and least square
regression lines (red) were fitted for each marker. r – Pearson correlation coefficient, P – p value, CI- confidence interval of the p-value. (A) Raw data
from the training set; (B) training set data after age adjustment. (C) diabetic males, raw data from the training set.
doi:10.1371/journal.pone.0029578.g004
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the ANN algorithm in the Clementain package (Clementine 10.0;

SPSS Inc., Chicago, IL, USA) was conducted, with the exhaustive

prune option selected.

Supporting Information

Table S1 Descriptive statistics. (A) Details of the biomarkers

used in this study. Several statistical properties of each biomarker

are provided, including the number of observations (N), minimal

(min) maximal (max) and mean (mean) values, as well as the

standard deviation (Std Dev). LBiomarker is natural-log trans-

formed in the appropriate pre-processing/clustering pipeline;
ABiomarker is linearly adjusted for age in the appropriate pre-

processing/clustering. (B) The statistical properties of Health/life

style variables used for enrichment analysis. For each variable, the

code, a short description and the number of subjects that answered

positively are recorded for both the training and the validation

sets.

(XLS)

Table S2 Details of the age adjustment process. For each

variable, the correlation coefficient and the parameters used for

age adjustment parameters are provided. Age adjustment is

performed using the equation V9 = V2(a*age+b)+m where V9 is the

adjusted value, V is the raw value and a, b and m are the

adjustment parameters.

(XLS)

Table S3 Complete results of the enrichment analysis.
Details of the enrichment analysis results for all health/life style

variables in the training and validation sets. Results are presented

with four methods of pre-processing and 3 clustering algorithms.

For each analysis pipeline, results are presented for the training set

(‘‘1999–2002’’) and for the validation set (‘‘2003–2006’’). For each

trait, information about the cluster (cluster number, size and the

number of individuals with the trait that are in the cluster) are

provided as well as information about the trait (NHANES code,

the actual question that was asked and the total number of

individuals who responded positively to the questions in the

dataset) and information about the enrichment (p-value and

enrichment factor). Enrichment is calculated as the frequency of

the term in a cluster divided by its frequency in the entire dataset.

(XLS)
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