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Abstract

Medical image analysis plays a pivotal role in the evaluation of diseases, including screening, surveillance, diagnosis, and
prognosis. Liver is one of the major organs responsible for key functions of metabolism, protein and hormone synthesis,
detoxification, and waste excretion. Patients with advanced liver disease and Hepatocellular Carcinoma (HCC) are often
asymptomatic in the early stages; however delays in diagnosis and treatment can lead to increased rates of decompensated
liver diseases, late-stage HCC, morbidity and mortality. Ultrasound (US) is commonly used imaging modality for diagnosis
of chronic liver diseases that includes fibrosis, cirrhosis and portal hypertension. In this paper, we first provide an overview
of various diagnostic methods for stages of liver diseases and discuss the role of Computer-Aided Diagnosis (CAD) systems
in diagnosing liver diseases. Second, we review the utility of machine learning and deep learning approaches as diagnostic
tools. Finally, we present the limitations of existing studies and outline future directions to further improve diagnostic accu-

racy, as well as reduce cost and subjectivity, while also improving workflow for the clinicians.
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Introduction

The delivery of quality healthcare is one of the primary agen-
das of every nation. Medical imaging includes techniques and
processes designed to visualise body parts, tissue or organs
for medical purposes, including both diagnostic and therapeu-
tic. With recent advances in Artificial Intelligence (Al) and
medical imaging technologies, biomedical image analysis has
transformed clinical practice by providing improved insights
into human anatomy and disease processes.

Liver disease progression can be characterised by histo-
pathological and haemodynamic changes within the hepatic
parenchyma, which correlates to signs found on imaging
modalities. Liver fibrosis is the most common outcome of
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chronic liver injury. Persistent hepatic parenchymal damage
results in activation of immune cells and synthesis of fibrotic
extracellular matrix components leading to scar formation,
which impairs cell function [1, 2]. Progressive liver fibrosis
can lead to liver cirrhosis and related complications such as
portal hypertension [3]. Portal hypertension in turn leads
to multiple complications including splenomegaly, ascites,
varices, hepatorenal syndrome and hepatic encephalopathy.
Further, the process of chronic liver injury eventually leads
to hepatocellular carcinoma (HCC), with cirrhosis being the
main precursor of HCC [4]. Overall, one-third of cirrhotic
patients will develop HCC during their lifetime. Risk fac-
tors for chronic liver disease and eventually liver cirrhosis
include chronic infection with HBV or HCV, heavy alcohol
intake, and metabolic liver disease [5].

According to World Health Organisation (WHO), HCC
is the fourth-leading cause of cancer-related deaths in the
world [6]. The prognosis of patients with this tumour remains
poor, with a 5-year survival rate of 19% at time of diagno-
sis [7]. Unfortunately, this is because HCC is often diagnosed
at its advanced stages due to the absence of symptoms in
patients with early disease, and the poor adherence to sur-
veillance in high-risk patients. The five-year survival rate for
patients whose tumours are detected at an early stage and who
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receive treatment exceeds 70% [8]. Therefore, early diagnosis
and staging of liver diseases plays a pivotal role in reducing
HCC-related deaths, as well as reducing healthcare costs.

Many computational methods have been developed for
the radiological diagnosis of chronic liver disease and HCC.
Among the various options, Machine Learning (ML) and
Deep Learning (DL) methods have received significant
attention due to their outstanding performance on disease
diagnosis and prognosis. In this review, we aim to perform a
comprehensive analysis of various ML and DL methods for
the diagnosis of chronic liver disease and HCC. We first pro-
vide an overview of methods in the ML pipeline including
pre-processing, feature extraction, and learning algorithms.
We then provide an overview of Convolutional Neural Net-
works (CNNs), which are specialised deep learning algo-
rithms for processing 2D or 3D data. We discuss in detail
the application of various methods for liver diseases such as
fibrosis, cirrhosis, and HCC. We further outline limitations
in current studies and provide research directions that need
attention from the scientific community.

Radiological diagnosis of fibrosis
and cirrhosis

Ultrasound (US) is typically the first-line radiological study
obtained in patients suspected of having cirrhosis because it
is readily available, non-invasive, well-tolerated, less expen-
sive than its CT or MRI counterparts, provides real-time
image acquisition and display, and does not expose patients
to the adverse effects of intravenous contrast or radiation.
Changes in tissue composition in a cirrhotic liver can be
detected on gray-scale US. The ultrasonographic hallmarks
of cirrhosis are a nodular or irregular surface, coarsened
liver edge and increased echogenicity; in advanced disease,
the gross liver appears atrophied and multi-nodular (with
typically atrophy of right lobe and hypertrophy of caudate
or left lobes) [9]. A prospective study of 100 patients with
suspected cirrhosis who underwent liver biopsy showed that
high-resolution US had 91% sensitivity and 94% specificity
in detecting cirrhosis [10]. In another similar study, hepatic
surface nodularity, especially detected by a linear probe,
was shown to be the most direct sign of advanced fibrosis,
with reported sensitivity and specificity of 54% and 95%
respectively [11, 12]. However, the disadvantages of US in
diagnosis of cirrhosis includes high operator dependency
and effect on resolution due to presence of speckle noise and
fat in obese patients [13].

Ultrasonography also detects portal hypertension, which
is a predictive marker of poor outcomes in cirrhosis, with
reverse portal flow in decompensated cirrhosis being a
poor prognostic marker [14]. Recent studies have shown
that HCC incidence increases in parallel to portal pressure.
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B-mode US signs suggestive of increased portal pressures
include increased portal vein diameter, splenomegaly,
ascites and presence of abnormal collateral route; US is
able to detect the onset of these complications early. Dop-
pler US has high specificity and moderate sensitivity for
the diagnosis of clinically significant portal hypertension,
but is limited in detecting slow blood flow and has reduced
frame rate [15, 16].

Ultrasound-based elastography is a radiological tech-
nique that is used as an alternative to liver biopsy to stage the
degree of liver fibrosis. Shear wave elastography and strain
elastography are the two main techniques used to evaluate
liver stiffness, by essentially measuring the hepatic tissue
response after mechanical excitation [17]. The accuracy of
elastography has primarily been investigated in patients with
chronic HCV and HBV. Overall, it has an estimated sensitiv-
ity of 70% and specificity of 85% in diagnosing significant
fibrosis (F greater than or equal to 2), and 87% and 91%
respectively in cirrhosis (F4). A meta-analysis of 17 studies
consisting of 7,058 patients has also shown that it can be used
to predict complications in chronic liver disease patients,
with baseline liver stiffness associated with risk of hepatic
decompensation (relative risk [RR] 1.07,95% CI 1.03—1.11),
HCC development (RR 1.11, 95% CI 1.05—1.18), and death
(RR 1.22,95% CI 1.05—1.43) [18]. Howeyver, it can be limited
in its use in some cases where other factors affect measured
liver stiffness, including elevated central venous pressures in
patients with severe cardio-respiratory disease, obesity and
anatomic distortion.

Given the high sensitivity of ultrasound diagnosis of cir-
rhosis, CT or MRI is not typically required for diagnosis.
However, [12] did show that early stages of liver parenchy-
mal abnormalities and morphological changes in the liver
on MRI and CT were predictive of cirrhosis by multivari-
ate analysis (the diagnostic accuracy being 66.0%, 71.9%
and 67.9% for US, CT and MRI respectively). Furthermore,
physiological parameters have been identified from meas-
urements on multiphase CT as markers of fibrosis - for
example, changes in liver perfusion, arterial fraction and
mean transit time of contrast do correlate well with severity
of cirrhosis (by Child-Pugh classification) [19, 20]. These
techniques are yet to be validated in multi-centre trials and
remain investigated at this stage.

Diffusion-weighted and contrast-enhanced MRI are able
to quantify fibrosis as MRI can detect restricted movement
of water that occurs in the expansion of extracellular fluid
space in liver fibrosis. [21] showed this had a sensitivity of
85% and specificity of 100% for diagnosis of cirrhosis; as
well as sensitivity of 89% and specificity of 80% to stage
the degree of cirrhosis [22]. However, despite its strengths,
the use of CT and MRI are limited in the clinical setting
because they subject patients to ionizing radiation and intra-
venous contrast material, can significantly increase the cost
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of the procedure, and MRI-based techniques in particular
are subject to limited availability and degree of technical
expertise [23].

Radiological diagnosis of HCC

Focal liver lesions seen on ultrasonography in both cirrhotic
and non-cirrhotic patients are concerning for HCC. As per
the European Association for the Study of the Liver (EASL)
Clinical Practice Guidelines, HCC surveillance in at-risk
patients consists of six-monthly abdominal ultrasounds. This
time interval is based on the expected tumour growth rate
supported by observational data, and therefore the interval
is not shortened for people at higher risk of HCC. This sur-
veillance has shown a reduction in disease-related mortality
with a meta-analysis including 19 studies showing that ultra-
sound surveillance detected the majority of HCC tumours
before they presented clinically, with a pooled sensitivity
of 94% [24].

The detection of nodules in cirrhotic patients always war-
rants further diagnostic contrast-enhanced imaging because
benign and malignant nodules are not able to be differenti-
ated based on ultrasonographic appearance alone, with cur-
rent guidelines recommending CT or MRI to further char-
acterise lesions 1 cm or greater identified on surveillance
US [25]. Also, US has a low sensitivity of 63% for detect-
ing early-stage HCC, particularly in the instance of very
coarse liver echotexture in advanced fibrosis; and therefore,
the performance of US in identification of small nodules in
these cases is highly dependent on operator expertise, patient
factors (for example, obesity) and the quality of equipment.
Reported specificity for detecting HCC with US at any stage
is uniformly high at > 90% [24-28]. Ultrasound-based elas-
tography has also been studied for the evaluation of focal
liver lesions, but because of its limitations with restricted
depth of penetration and inability to differentiate between
stiffness of benign and malignant tissue, it is not recom-
mended for this use.

Contrast-enhanced radiological diagnosis of HCC is
based on vascular phases (that is, lesion appearance in the
late arterial phase, portal venous phase, and the delayed
phase). The typical hallmark of HCC is the combination
of hypervascularity in the late arterial phase and washout
on portal venous and/or delayed phases, which reflects the
vascular derangement occurring during hepatocarcinogen-
esis [29]. Both CT and MRI are more sensitive than ultra-
sound for detecting HCC < 2 cm and thus more likely to
identify candidates for liver transplantation therapy [30]. As
expected, in most studies, MRI has higher sensitivity com-
pared to CT in HCC diagnosis which does vary according
to HCC size, with MRI performing better on smaller lesions
(sensitivity of 48% and 62% for CT and MRI, respectively,

in tumours smaller than 20 mm vs. 92% and 95% for CT
and MRI, respectively, in tumours equal or larger than
20 mm) [31, 32]. CT or MRI can be considered when patient
factors such as obesity, severe parenchymal heterogene-
ity from advanced cirrhosis, intestinal gas and chest wall
deformity prevent adequate US assessment [24].

There is a considerable false positive rate with CT or
MRI that triggers further cost-ineffective investigations [24].
These imaging modalities also involve the use of contrast
and repeated surveillance would result in accumulated
exposure to radiation; and incur higher costs. Therefore,
CT and MRI are not recommended for routine surveillance.
Contrast-enhanced ultrasound (CEUS) in the delayed phase
can be used to detect HCC. A recent meta-analysis showed
pooled sensitivity and specificity of CEUS for the diagno-
sis of HCC at 85% and 91% respectively, with these values
being almost comparable with MRI and CT for HCC nodules
larger than 2 cm. However its use in surveillance has not
been validated and is therefore, currently not recommended.
It is important to note that CEUS only allows for one or a
limited number of identified nodules as it cannot image the
entire liver during the multiple phases of contrast adminis-
tration [27, 33]. In Fig. 1, the diagnostic workflow of HCC
is shown.

Alfa faeto protein (AFP) as a tumour marker for HCC has
insufficient sensitivity and specificity for tumour detection
when used alone. This is because fluctuating levels of AFP
in cirrhotic patients can not only indicate HCC development
but may also reflect exacerbation of underlying liver disease
or flares of HBV or HCV infection. Also, only a small pro-
portion of tumours at an early stage (10-20%) present with
elevated AFP. However, when combined with US surveil-
lance, AFP serum levels’ sensitivity for diagnosing early-
stage HCC is significantly higher, 45% when using US alone
versus 63% when using US and AFP [34, 35]. The decision to
perform a liver biopsy is made on a case-by-case basis. Gen-
erally, biopsy is indicated when the imaging-based diagnosis
remains inconclusive, but the malignancy is considered prob-
able. As per the EASL Clinical Practice Guidelines, in non-
cirrhotic patients, imaging alone is not considered sufficient
and tissue assessment is required to establish diagnosis [25].
In Table 1, typical radiological findings of cirrhosis, portal
hypertension, and HCC are provided.

Artificial intelligence, machine learning,
and deep learning

The term Artificial Intelligence (Al) is an umbrella term and
refers to a suite of technologies in which computer systems
are programmed to exhibit complex behaviour that would
typically require intelligence in humans or animals [36].
The long overarching goal of Al is to enable machines to
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Fig. 1 HCC is most common
type of primary liver cancer.
Alpha-fetoprotein (AFP) is

one of the most widely used
biomarkers for HCC screening,
diagnosis, and prognosis of liver
diseases

Repeat liver ultrasound
+/- AFP in 3 months

Patient at high risk of HCC

HCC surveillance program

6-monthly liver ultrasound +/- AFP

Return to HCC
surveillance

perform intellectual tasks such as decision making, problem
solving, perception and understanding human communica-
tion, inspired by the human cognitive function.

Machine Learning (ML), a subset of Al, provides sys-
tems the ability to automatically learn and improve from
experience without being explicitly programmed [37].
The conventional ML pipeline includes the steps of pre-
processing, feature extraction, classification, and evalu-
ation. As medical imaging datasets often have variations
in characteristics such as contrast, resolution, orienta-
tion, side-markers, and noise, it is important to apply
pre-processing techniques to improve the dataset quality.
After data cleaning, a relevant region-of-interest (ROI)
is selected using either fully-automatic segmentation,
semi-automatic segmentation, or manual delineation by
experts. After this step, salient features specific to the
pattern of a particular medical condition are extracted,
in a feature extraction step. Once features are extracted,
ML algorithms are applied to map extracted features to
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<—— Likely benign

< 10mm New hepatic lesion = 10mm

Evaluate lesion with multiphase CT or MRI

Indeterminate Definite HCC

Liver biopsy
or
Alternative imaging
or
Repeat imaging

the target task, such as classification. Overall, ML allows
machines to learn from a set of data and subsequently
make predictions on a new test data. Applications of ML
in medical imaging date back to the early 1980 s when
computer-aided detection (CADe) and computer-aided
diagnosis (CADx) systems were developed [38]. These
CAD(e/x) systems were based on a pre-defined set of
explicit parameters, features, or rules developed from
expert knowledge. However, one of the major limitations
of classical ML systems is the need for handcrafted fea-
ture engineering, which is subjective, requires domain
expertise and is time-consuming and often brittle.

Deep Learning (DL) [39], a subset of ML, uses multiple
layers of neural networks to progressively extract higher-
level features from the raw input, overcoming the limita-
tions of hand-crafted feature engineering in classical ML
systems. In DL, layers of neural networks are stacked in
an hierarchy with increasing complexity and abstraction to
obtain high-level representation of the raw data. DL-based
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Table 1 Typical radiological findings of liver disease

Radiological findings of cirrhosis

e Nodular or irregular surface
e Coarsened liver edge

o Increased echogenicity

o Atrophy and multinodular (typically atrophy of right lobe and hypertrophy of carduate or left lobes) - in advanced disease

Radiological findings of portal hypertension

o Increased portal vein diameter

e Presence of porto-systematic collateral circulation
e Reversal of portal vein flow

o Splenomegaly

e Ascites

Radiological findings of HCC

Focal liver lesion with hypervascularity in the late arterial phase and washout on portal venous and/or delayed phases

models have demonstrated state-of-the-art performance on
variety of tasks in various fields such as computer vision,
natural language processing, speech, and medical imaging.
The success of deep learning is attributed to the availabil-
ity of large-scale annotated datasets, enhanced computing
power with the rise of graphics processing units (GPUs),
and novel algorithms and architectures.

In the following subsections, we provide an overview of
traditional CAD systems using machine learning and deep
learning for diagnosing liver diseases from US images.

Machine learning based CAD systems

Before the rise of deep learning, classical machine learn-
ing based Computer-Aided Detection and Diagnosis
(CAD(e/x)) systems involved a pipeline of handcrafted
feature extraction and a trainable classifier. The machine
learning enabled CAD(e/x) systems assist radiologists in
image interpretation, disease detection, segmentation of
regions-of-interest (ROI) such as tumours, and statistical
analysis of the extracted tumour. In addition to their use
in diagnostics, CAD systems are integrated in the clini-
cal workflow to triage and prioritise patients based on
urgency, in turn maximising operational performance. A
typical CAD system follows a standard pipeline consisting
of the following four steps:

1. Image pre-processing: Ultrasound (US) images are
often of poor quality due to low contrast and presence of
speckle noise during image acquisition. The goal of the
pre-processing step is to reduce noise, enhance image
quality, and standardise the data when it is acquired from
multiple sources. Various denoising algorithms such as
mean filter, median filter, bilateral filter, and Gaussian
filters are applied to remove noise. In order to delineate

certain regions, edges are also enhanced using unsharp
masking and in the frequency domain. In order to
improve contrast, methods such as histogram equalisa-
tion and more robust methods such as Contrast Limited
Adaptive Histogram Equalisation (CLAHE) are applied.
Finally, dataset is normalised using the mean and stand-
ard deviation of pixel values. In Table 2, an overview of
various pre-processing methods in the reviewed studies
to remove noise and improve the image quality is pro-
vided. The pre-processing is a critical step in obtaining
consistent features and robust model performance.
Image segmentation: The goal of segmentation is to
define the region of interest (ROI) or the volume of
interest (VOI) on medical images, that contain the area
or volume of the given lesion or structure. Given that
normal and abnormal anatomical structures alone do
not form the complete image, it is important to seg-
ment the image into foreground and background so that
ROI can be extracted. ROI selection helps to reduce
the computational cost as computing features from
ROI is more efficient compared to using the complete
image. In the studies reviewed, a variety of segmenta-
tion methods are applied, ranging from fully-automatic
segmentation algorithms, semi-automatic segmentation
algorithms with seed provided by an expert, and man-
ual segmentation for ROI selection. One of the popular
semi-automatic methods is seeded region growing, in
which an expert provides an initial seed point and the
algorithm automatically finds the contour by growing
over the ROI. Fully-automatic algorithms include active
contour or snakes.

Feature extraction and selection: The goal of the
feature extraction step is to analyse selected ROI for
special characteristics that can discriminate disease
patterns from normal patterns. It extracts certain char-

@ Springer



73 Page60f33

Journal of Medical Systems (2023) 47:73

Table 2 Brief overview of various pre-processing methods to remove noise and enhance the image quality

Image pre-processing method Description

Mean filter [40]
including itself

Median filter [40]
itself
Wiener filter [41]
signal
Bilateral filter [42]
without smoothing edges
Gaussian filter [43]
Gaussian function

Unsharp masking [44]

The mean filter replaces each pixel value in an image with the mean value of its neighbouring pixels,

The median filter replaces each pixel value in an image with the median of neighbouring pixels, including
The Wiener filter is based on statistical properties to filter out the noise that has corrupted the original

It is a non-linear, edge-preserving, and noise-reducing smoothing filter. It does the spatial averaging

It is linear smoothing filter where the filter (kernel) weights are chosen according to the shape of the

The unsharp masking technique sharpens an image by calculating the difference between orignal and its

blurred version. It increases the contrast of small details in the magnified texture

Histogram equalisation [44]

It is a technique of adjusting image intensities to enhance contrast. This is achieved by stretching out

the most frequent intensities, helping low contrast regions to achieve high contrast. The histogram
equalisation method helps to improve the global contrast of the image

Adaptive histogram equalisation [44] It is adaptive method that computes several histograms, each corresponding to a distinct region of the
image, and uses them to redistribute the intensity values of the image. Adaptive histogram equalisation
is suitable for improving local contrast in the image

CLAHE [45]

Compared to histogram equalisation and adaptive histogram equalisation that are global contrast

enhancement methods, the Contrast Limited Adaptive Histogram Equalisation (CLAHE) performs local
contrast enhancement. This has been widely adopted in improving lower contrast in ultrasound imaging

acteristic attributes and generates a set of meaningful
descriptors from an image. The feature extraction step
helps to obtain various quantitative measurements in
selected ROI images which helps in decision making
with respect to the pathology of a structure or tissue.
Common visual features include colour, shape, and tex-
ture. Since medical images have homogeneous regions
with little colour or intensity variations, shape and tex-
ture are more informative features. For US images, the
most common characteristics include morphological
features, gray-level features, and texture features. Fea-
ture extraction can be carried out in the spatial domain
or frequency domain. In Table 3, an overview of vari-
ous feature extraction algorithms used on most of the
articles reviewed in this study is provided. After rel-
evant features are extracted, a subset of the most relevant
features are selected using feature selection algorithms.
The feature selection step reduces the number of fea-
tures by removing irrelevant and redundant features, and
improves classification performance. The goal of feature
selection is to reduce the dimensionality by removing
less relevant features, in turn improving the classifica-
tion accuracy. Common feature selection algorithms
used in the reviewed studies include Principal Compo-
nent Analysis (PCA), Analysis of Variance (ANOVA),
and Locality Sensitive Discriminant Analysis (LSDA).
In Table 4, an overview of various feature selection algo-
rithms used in the reviewed studies is provided.
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4. Classification: Classification is the process of categoris-
ing items into pre-selected classes or categories of simi-
lar type. The items are categorised into classes based on
a similarity defined by some distance measure. Most of
the popular classification methods for CAD of liver dis-
eases include Naive Bayes (NB), K-Nearest Neighbour
(KNN), Support Vector Machine (SVM), Artificial Neu-
ral Network (ANN), and Discriminant Analysis. Ensem-
ble learning methods such as Random Forests (RF) are
also used to leverage the benefit of multiple classifiers
and improving classification performance. Table 5 pro-
vides an overview of various machine learning classi-
fiers used in the reviewed studies.

Deep learning

Deep learning (DL) [39] is a subset of machine learn-
ing where artificial neural networks, algorithms inspired
by the human brain, learn from large amounts of data.
DL uses multiple layers to represent data abstractions to
build computational models. DL has shown high levels
of performance on various complex tasks such as speech
recognition [46], machine translation [47], object detec-
tion [48], caption generation [49], and visual question
answering [50]. Some key deep learning algorithms
include convolutional neural networks [51], recur-
rent neural networks [52], and generative adversarial



Journal of Medical Systems (2023) 47:73

Page70f33 73

Table 3 Brief overview of various feature extraction methods

Method

Description

First Order Statistics (FOS)
Statistical feature matrix (SFM)

Law’s Texture Energy Measures

FPS

Fractal

Gray-Level Difference Statistics (GLDS)
Gray-level Co-occurrence Matrix (GLCM)
Moment Invariant (MI)

Gradient based features

Gray-level run-length matrix (GLRLM)

Gabor Wavelet Transform (GWT)

Geometric

Frequency-domain

Phase congruency

Gabor texture

Average gray level (Mean), standard deviation, variance, skewness, kurtosis, uniformity, energy, entropy
Coarseness, Contrast, Periodicity, and Roughness

Law’s texture energy measures based on five coefficient vectors to represent level (L), edge (E), spot (S), ripple
(R), and wave (W). In total 18 texture features can be extracted

Radial Sum and Angular Sum of the discrete Fourier transform
Hurst exponent, fractal dimension
Contrast, differential mean, difference entropy, inverse difference moment, angular second moment

Energy, Entropy, Dissimilarity, Contrast, Correlation, Homogeneity, Autocorrelation, Cluster shade, Cluster
prominence, Maximum probability, Sum of Squares, Sum Average, Sum Variance, Sum Entropy, Difference
Variance, Difference Entropy, Information measure of Correlation, Inverse Difference moment-Normalized

A set of moments invariant to rotation, scaling, and translation derived from second and third normalised central
moments

Mean, Variance, Kurtosis, Skewness, and percentage of pixels with non-zero gradient

Short run emphasis, Long run emphasis, Gray-Ivel non-uniformity, Run-length non-uniformity, Run percentage,
Low gray-level run emphasis, High gray-level run emphasis, Short run high gray-level emphasis, Long run low
gray-level emphasis, Long run high gray-level emphasis

Mean and standard deviation of Gabor output images obtained by using a set of Gabor wavelets at different scales
and orientations

Centre of gravity x, Centre of gravity j, Height, Width, Area, Perimeter, Roundness, Euler number, Major axis
length, Minor axis length, Orientation, Solidity, Extent, Eccentricity, Convex area, Danielsson factor, Filled
area

Discrete Cosine Transform (DCT) features, Discrete Wavelet Transform (DWT) features, Wavelet Packet
Transform (WPT) features, Curvelet Transform (CT) features, Stationary Wavelet Transform (SWT)

Variance, contrast, covariance

Multiple Gabor filters having different frequencies and orientation can be used to extract specific features from an
image

networks [53]. In the following subsection we provide

Convolutional neural networks

an overview of the building blocks of a typical convolu-

tional neural network, which is one of the de-facto deep
learning algorithms for processing 2D (images) or 3D

(volumetric) data.

Convolutional Neural Networks (CNNs) are a special type
of deep neural networks that are good at handling two-
dimensional data such as images or three-dimensional data

Table 4 Brief overview of various feature selection algorithms

Algorithm

Description

Principal Component Analysis (PCA)

Pearson’s Correlation Coefficient

Analysis of Variance (ANOVA)

Mutual Information

Fisher score

It is statistical technique that converts high-dimensional data to low-dimensional data by
selecting the most important features that capture maximum information about the dataset.
The top most relevant features are selected based on the variance that can explain in the
original dataset

It measures the correlation between features to find out which features are highly correlated
and which are not. Based on this analysis, the features that are redundant and do not add
value to the final prediction are dropped

The ANOVA is a statistical method that computes the differences and their variations among
the given classes in the data. Based on the statistical analysis, p-value and F-value are
computed, based on which significant features are selected

The mutual information (MI) quantifies the amount of information obtained from one
variable through the second variable. Using higher-order statistics calculated using MI, we
can select features which can maximise the MI between subset of selected features and the
target variable

The Fisher score selects each feature independently based on their scores under the Fisher
criterion, providing a subset of most representative features

Locality Sensitive Discriminant Analysis (LSDA) The LSDA is a feature reduction techniques based on the analysis of studying relationship

between data points. The LSDA is effective because it preserves both discriminant and
local geometrical structures in the data
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Table 5 Brief overview of various machine learning algorithms

Algorithm Description

Naive Bayes (NB) The Naive Bayes is a probabilistic classifier based on the Bayes’ Theorem. It predicts the class of a given
sample by computing the maximum posterior probability based on the prior probability and the observed

likelihood in the training set. The sample is assigned a class with the highest occurring probability

K-Nearest Neighbour (KNN) The K-Nearest Neighbour classifier is one of the lazy statistical learning algorithms. The training data in

KNN algorithm acts as a feature space and during testing, the test sample is compared to all the training

Logistic Regression (LR)

Decision Tree (DT)

Support Vector Machine (SVM)

Random Forest (RF)

Extreme Learning Machine (ELM)

samples using a distance metric and label of the training sample having least distance is assigned to the
test sample. To improve its robustness, the contributions of the K-neighbours is adopted to decide the

label of the test sample

The Logistic Regression is one of the powerful and baseline methods of supervised classification. The

ordinary regression is extended to give the probability of outcome between 0 and 1. To use logistic
regression as a binary classifier, a threshold is set based on which a sample is discriminated between two

classes

A decision tree is a tree-based classifier where an internal node represents feature, the branch represents

a decision rule, and each leaf node represents the outcome. The decision tree classifier provides the
benefits of easy interpretation and efficient handling of outliers

The SVM classifier aims to find the optimal hyperplane with the largest margin between positive

and negative samples in the high-dimensional feature space. Kernel functions such as Gaussian

and Radial Basis Function are used for non-linear mapping of the training data from input space to
higher-dimension feature space. The SVM classifier is suitable for complex datasets and shows good
generalisation ability on unseen test set

The RF classifier is an ensemble learning method in which multiple classifiers’ predictions are voted

to form the final prediction. In general, ensemble learning methods are robust and provide superior
performance given pros and cons of single classifier

The ELM is a single-layered feed-forward neural network which can be trained in a single pass, making

it faster than conventional machine learning algorithms. The ELM has three layers (input, hidden, and
output). The weights from input to hidden are randomly initialised and are fixed. During a single pass,
the weights from hidden to output layer are learnt by the classifier

such as videos. CNNs have been successfully applied in
medical imaging problems such as skin cancer, arrhyth-
mia detection, fundus image segmentation, thoracic disease
detection, and lung segmentation. CNNs consists of mul-
tiple layers stacked together which use local connections
known as local receptive field and weight-sharing for better
performance and efficiency. A typical CNN architecture
consists of the following layers:

Convolutional layer: The convolutional layer is the
core building block of a CNN which uses the convolu-
tion operation in place of general matrix multiplication.
Its parameters consist of a set of learnable filters, also
known as kernels. The main task of the convolutional
layer is to detect features within local regions of the
input image that are common throughout the dataset
and map their appearance to a feature map. The output
of each convolutional layer is fed to an activation func-
tion to introduce non-linearity. There are a number of
activation functions available such as Rectified Linear
Unit (ReLU), Sigmoid, etc.

Sub-sampling (Pooling) layer: In CNNss, the sequence
of convolutional layer is followed by pooling layer
which reduces the spatial size of the input and thus
reduce the number of parameters of the network. A

@ Springer

pooling layer takes each feature map output from the
convolutional layer and down samples it. In other
words, the pooling layer summarises a region of neu-
rons in the convolution layer. The most common pool-
ing techniques are max pooling and average pooling.
Max pooling takes the largest value from a patch of the
feature map, whereas average pooling takes the average
of each patch for the feature map.

Activation function: The activation function refers to
the features of activated neurons that can be retained and
mapped out by a non-linear function, which can be used to
solve non-linear problems. Common activation functions
include sigmoid, tanh, ReLU, and Softmax. ReLU is one
of the widely used activation function as it overcomes the
vanishing gradient problem in deep neural networks.
Batch normalisation: Batch normalisation is used to
address the issues related to internal covariance shift
within feature maps. Internal covariance shift is a change
in the distribution of hidden units’ values, which slows
down the convergence and requires careful initialisation
of parameters. Batch normalisation normalises the dis-
tribution of feature maps by setting them to zero mean
and unit variance. It also makes the flow of gradients
smooth and acts as a form of regularisation, helping the
generalisation power of the network.
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¢ Dropout: Dropout is a regularisation techniques heavily
used in convolutional neural networks. In dropout, some
units or connections are randomly dropped (skipped)
with a certain probability. Due to multiple connections,
a neural network co-adapts by learning non-linear rela-
tions. Dropout helps to overcome this co-adaptation by
randomly dropping some of the connections or units, pre-
venting the network from overfitting on the training data.

¢ Fully connected layer: In fully connected layers, each
neuron from the previous layer is connected to every
neuron in the next layer and every value contributes to
predicting the class of the test sample. The output of the
last fully connected layer is passed through an activa-
tion function, generally softmax, which outputs the class
scores. Fully connected layers are mostly used at the end
of the CNN for the classification task.

Representative convolutional neural networks

The history of convolutional neural networks dates back to
LeNet-5 [54] which was proposed for digit recognition. Due
to the lack of computational resources at that time, LeNet
usage was limited. The LeNet-5 model uses tanh as a non-
linear activation function followed by a pooling layer and
three fully connected layers. It was the AlexNet [51] model,
which made a major breakthrough by drastically reducing the
top-5 error rate on the ImageNet challenge compared to the
previous shallow networks. Since AlexNet, a series of CNN
models have been proposed that have advanced the state of
the art steadily on the ImageNet. In AlexNet, tanh is replaced
by rectified linear units (ReLU) and the dropout technique
is used to selectively ignore units to avoid overfitting of the
model. In order to boost predictive performance, Visual
Geometry Group at Oxford developed VGG-16 [55]. VGG
increased the requirements of memory and computational
power because of increased depth of the network with 16
layers combined with convolution and pooling layers. In
order to limit memory requirements, various structural or
topological decompositions were applied which led to more
powerful models such as GoogleNet [56], and Residual
Networks (ResNet) [57]. GoogleNet uses an Inception
module which computes 1 X 1 filters, 3 x 3 filters and 5 X 5
filters in parallel, but applies bottleneck 1 X 1 filters to reduce
the number of parameters. Further changes were made to the
original Inception module by removing the 5 x 5 filters and
replacing them with two successive layers of 3 x 3 filters,
which is called Inception v2. Szegedy et al. [56] released
the Inception v3 model where depth, width and number
of features are increased systematically by increasing the
feature maps before each pooling layer. ResNet was the first
network having more than 100 layers using an idea similar
to Inception v3. In ResNet, the output of two successive
convolutional layers and input bypassing the two layers

are combined, which act very similar to a Network-in-
Network. ResNet further increases predictive performance
by leveraging rich combinations of features, but keeping the
computation low. In Table 6, a summary of some of the most
common representative CNN models is provided.

CNN training strategies

In this section, we highlight various strategies which are
helpful in training deep convolution neural networks and
improving their performance.

e Transfer learning: Transfer learning [59] refers to the
ability to share and transfer knowledge from a source
task to the target task. Convolutional neural networks
learn features in an hierarchical manner, whereby early
layers learn generic image features such as edges and
corners, whereas later layers learn features specific to the
dataset. Given that it is challenging to obtain large-scale
annotated datasets in the medical domain due to cost and
time constraints, transfer learning helps to leverage the
learning of models trained on large-scale datasets such
as the ImageNet [60].

e Data augmentation: Current state-of-the-art CNNs
need large-scale annotated data to train in a supervised
manner. Given the complexity of CNN models, it is
easy for them to overfit on small size medical imaging
datasets. Data augmentation [61] is a technique to gen-
erate synthetic data, for example by applying different
affine transformations such as rotation, scaling, transla-
tion, flipping, and adding noise. Data augmentation not
only increases the dataset size during training, but also
adds diversity to the data, making the model robust on
unseen data.

Evaluation measures

For evaluating any model, precision, recall, F1-measure, and
accuracy scores are computed using the confusion matrix.

e True Positive (TP): If a person having Cirrhosis is
detected as Cirrhosis

e True Negative (TN): If a person not having Cirrhosis
is correctly detected as non having Cirrhosis

e False Positive (FP): If a healthy person is detected
positive for having Cirrhosis

o False Negative (FN): If a person having Cirrhosis is
detected as a healthy one.

e Precision calculates the fraction of correct positive
detection of Cirrhosis.

@ Springer
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Table 6 Representative CNN architectures and their high-level description

CNN architecture Description

AlexNet [51]

The first CNN model to win the ImageNet challenge in 2012 and brought deep learning revolution. Compared to LeNet,

the AlexNet use ReL.U activation function, dropout for regularisation, data augmentation during training, and splitting

computation on multiple GPUs
VGG [55]

A popular deep CNN model from University of Oxford. The VGG network popularised the idea of using small filter kernels

and training the deeper network using pre-training on shallower versions. Two the popular variants of VGG network are:
VGG-16 (having 16 layers) and VGG-19 (having 19 layers)

GoogLeNet [56]

Winner of the 2014 ImageNet challenge. This model contains multiple inception modules, which provides the idea of multi-

scale processing allowing modules to extract features at different levels of detail simultaneously. By stacking multiple
CNN layers, model becomes quite complex, yet having less number of model parameters. One of the popular GoogLeNet

network is the Inception-v3
ResNet [57]

Winner of the 2015 ImageNet challenge. ResNet networks contains skip connections providing information preserving

capability by simply copying the activations from lower layers to higher layers. By concatenating and stacking multiple
ResNet blocks, it made possible to have much deeper networks, yet having lesser model parameters. Having skip
connections in addition to the standard pathway gives network the ability to preserve more information, increasing
network’s ability to pick and lose information, learning residuals, and building deeper networks. Major ResNet network
variants include ResNet-18, ResNet-50, ResNet-101, and ResNet-152

DenseNet [58]

The DenseNet model uses concatenation of the activations of previous layers to the activation of the current layer. The

use of feature maps of all previous layers to the current layer helps to achieve feature reuse capability and reducing
training parameters. The idea of concatenating activations from previous layers preserve global state, making DenseNets
particularly well-suited for smaller datasets, especially medical imaging datasets. One of the important DenseNet model
that has been applied by the medical imaging community is the DenseNet-121 model

e Recall measures how good all the positives are, which
depends on the percentage of total relevant cases cor-
rectly classified by the model. It is also called sensitivity.

¢ F1-measure is the harmonic mean between precision
and recall.

For a binary classification task, the confusion matrix is
a2 X 2 table reporting four primary parameters known as
False Positives (FP), False Negative (FN), True Positives
(TP), and True Negatives (TN).

TP+ TN
Accuracy = €h)
TP + FP + TN + FN
Precision = l 2
" TP +FP 2
TP
Recall = ————
T TP+ EN )

F-measure = 2 X PreC.lS.lon X Recall w
Precision + Recall

Receiver Operating Curve (ROC) is a 2D graphical plot
between the True Positive Rate (Sensitivity) and the False
Positive Rate (Specificity). The ROC represents the trade-
off between sensitivity and specificity. The Area Under
the ROC Curve (AUC) represents a measure of how well
a model can discriminate between patients with liver dis-
eases and a healthy group of individuals.

@ Springer

Contributions

This article aims to characterise diagnosis, staging, and
surveillance of liver diseases using medical imaging,
machine learning and deep learning techniques through a
methodical review of the literature. We seek to answer the
following research questions:

1. Methods — What Al methods are being applied to the
diagnosis and staging of liver diseases using ultrasound
imaging?

2. Datasets — What are different sources of publicly
available datasets?

3. Scope — What types of problems are addressed and
solved using Al in diagnosing liver diseases?

4. Performance — How well do Al techniques including
machine learning and deep learning perform in terms of
diagnostic accuracy?

To answer these questions and draw our insights, we
methodically studied 77 articles from a variety of publi-
cation venues, mostly published between January 2010 to
December 2021. There has been surveys related to liver dis-
eases [62—67]. The survey by [62] mostly focused on diffuse
liver diseases and cover only conventional CAD systems.
[63] focused on radiographic features under different medi-
cal imaging modalities for diagnosing liver diseases. Similar
to [62, 64, 65] focused on conventional ML pipeline for diag-
nosing liver lesions using US imaging. Although [66] pro-
vided details about both machine learning and deep learning
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Table 7 Comparison of review

: Study Focus PRISMA  Methods Datasets Data
articles related to our survey
paper, with their methods and [62] Diffuse liver diseases X ML X UsS
scope [63] Liver fibrosis, cirrhosis, and X X X US;MR;CT
cirrhosis-related nodules
[64] Liver cancer X ML X [ON]
[65] Applications of Ultrasound imaging ¥ ML X [SN
[66] Applications of Ultrasound imaging ¥ ML;DL X [SN
[67] Chronic liver diseases v ML X US;CT;MR;ES
This Study  Liver diseases v ML;DL v US
models for diagnosing liver diseases using US imaging, they Search strategy

did not follow a systematic approach. In Table 7, current
study is compared to the existing surveys. The current study
provides a more detailed and systematic approach of the
current state-of-the-art ML and DL approaches for diagnos-
ing liver diseases. We also provide details about the data-
sets, methods of severity scoring, and professional societies
guidelines. We close the review by discussing the limitations
of existing studies and noting future research directions to
further improve diagnostic performance, expediting clinical
workflow, augmenting clinicians in their decision making,
and reducing healthcare cost.
The review is structured as follows:

e Sect. 7 provides search strategy in terms of selected data-
bases, inclusion and exclusion criteria, and keywords
related to search query.

e Sect. 8 provides a systematic review of diagnosing liver
diseases using ultrasound imaging.

e Sect. 9 provides an overview of various public datasets
for the diagnosis of liver diseases.

e Sect. 10 provides current limitations and future
research directions.

Table 8 List of inclusion and exclusion criteria

We followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [68] to
perform our review.

Data sources and search queries

We conducted a comprehensive search to identify potentially
all relevant publications on the application of Al including
machine learning and deep learning to the diagnosis of liver
diseases using medical imaging. The Web of Science, Sco-
pus, IEEE Xplore, and the ACM digital library were queried
for articles indexed from Jan 2010 up to 31 December 2021.
We included articles written in English and excluded those
in the form of editorial, erratum, letter, note, or comment.
In Table 8, our inclusion and exclusion criteria are provided.
We first identified keywords and their associations to form
our search query. For ease of search, we divided our key-
words based on four main concepts. The first concept refers
to keywords related to liver diseases such as chronic liver
disease(s), acute liver disease(s), liver lesion(s), nonalco-
holic fatty liver disease, and hepatocellular carcinoma. The

S.No. Inclusion Criteria

1 Study must be published between January 2010 and December 2021

2 Study must be peer-reviewed journal articles or conference proceedings and written in English

3 Study should have clinical focus on diagnosis of liver diseases using computational techniques

4 Study must have used ultrasound as medical imaging modality

5 Technical studies diagnosing multiple diseases including liver are also considered

6 Study should have performed automated diagnosis of liver diseases using computer applications such as
computer vision, machine learning, and deep learning

7 Study must have evaluated the performance of the proposed system using standard evaluation metrics

S.No. Exclusion Criteria

Study should not be systematic reviews, meta-analysis, and survey papers

2 Study should not focus on diagnosing liver diseases using other imaging modalities such as Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), serum biomarkers, liver biopsy, Magnetic
Resonance Imaging derived Proton Density Fat Fraction (MRI-PDFF), etc

3 Studies not having technical contribution such as white papers, cases studies, letters, abstracts only

@ Springer
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Table 9 Search query related to four main concepts which are combined to formulate final query for four databases

Concepts

Keywords

Concept 1: Keywords related to diagnosis

Concept 2: Keyword related to tasks
Concept 3: Keywords related to imaging modalities

Concept 4: Keywords related to computer applications

Search query

chronic liver disease(s) OR acute liver disease(s) OR focal liver disease(s) OR diffuse
liver disease(s) OR liver lesion(s) OR hepatic disease(s) OR fibrosis OR steatosis OR
fatty liver disease OR nonalcoholic steatohepatitis OR NASH OR nonalcoholic fatty
liver disease OR NAFLD OR hepatocellular carcinoma OR HCC

classification OR detection OR localization OR segmentation OR registration OR
tracking OR temporal analysis OR severity scoring

ultrasound OR contrast-enhanced ultrasound OR CEUS OR computed tomography OR
CT OR magnetic resonance imaging OR MRI

computer-aided OR computer-aided detection OR computer-aided diagnosis OR automated
analysis OR artificial intelligence OR machine learning OR deep learning OR deep neural
network OR convolutional neural network OR cnn OR dnn OR deep-cnn

(Concept 1) AND (Concept 2) AND (Concept 3) AND (Concept 4)

first row in Table 9 shows all keywords relevant to the first
concept. The second concept relates to various tasks such as
classification, detection, segmentation, and staging of liver
diseases. The second row in Table 9 shows all keywords
for tasks relevant to the second concept. The third concept
relates to various imaging modalities by which liver diseases
are diagnosed. These include ultrasound, contrast-enhanced
ultrasound, computed tomography, and magnetic resonance
imaging. The third row in Table 9 shows various keywords
and their abbreviations for concepts related to imaging
modalities. The fourth concept belongs to keywords related
to computer applications such as computer-aided diagnosis,
machine learning, and deep learning. For each concept we
included associated keywords as well as their abbreviations
to make the search criteria complete. The final query is the
logical AND of all the four concepts. A complete picture
of concepts,keywords related to each concept, and the final
search query on databases is presented in Table 9.

Article selection

The search query retrieved in total 1,878 studies (Web of
Science: 455, Scopus: 543, IEEE Xplore: 786, and ACM
digital library: 94). We created an EndNote library for
our screening process. We first used “Find Duplicates"

Table 10 Quality assessment questions

function in EndNote to find any potential duplicate stud-
ies. The software highlighted 356 duplicate studies which
we removed, with a total of 1,700 studies left. Given the
limited functionality of the in-built EndNote function for
finding duplicates, we then manually removed duplicates.
After the manual duplicate removal step, we were left with
a total of 1,494 studies. We started our first screening step
based on article title and abstract. We found that there were
many studies which are for other human organs but using
one of the imaging modalities for diagnosis. After our first
screening, we were left with 608 relevant studies. In the
second screening step, we read the full-texts of articles and
found studies on animals (3), other topic (30), review papers
(42), and studies focusing on specific medical condition (9).
After excluding all these studies, we were left with a total of
524 studies after our second screening. In the third screen-
ing step, we separated studies based on imaging modalities.
Out of 524 studies, 243 studies belonged to CT, 81 studies
to MRI, and 147 studies to US. However, 53 studies used
liver biopsy, blood bio-marker, urine bio-marker, and dif-
fraction enhanced imaging for diagnosing liver diseases, In
the final stage of our screening, we reviewed 147 liver US
studies and assessed the quality based on the questions in our
quality assessment given in Table 10. After the final quality
assessment, we were left with a total of 62 studies. During

S.No. Question

O 00 1 N L AW N~

Are research objectives clearly defined?

Is research methodology well-defined?

Is the train and test data source clearly defined?

Are the data pre-processing techniques clearly defined and their selection justified?

Are the feature extraction or feature engineering techniques clearly described and justified?

Are the learning algorithms clearly described?

Does the study perform the comparison with the existing baseline models?

Is the performance of the proposed system evaluated and results properly interpreted and discussed?

Does the conclusion reflect the research findings?

@ Springer
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our detailed review, we also went through the references of
these 62 studies and found a few relevant studies which our
search query was unable to find, to obtain a total of 77 stud-
ies. We have reviewed the 77 studies in detail and provide
a detailed discussion of the applications, methodology and
results. In Fig. 2, the flowchart of our complete article selec-
tion process following the PRISMA guidelines is shown.
Finally, we conducted a methodical review and qualitative
analysis of the 77 studies in accordance with our inclusion
and exclusion criteria. The article selection was performed
by the first author (S.S.) and was agreed by all other authors
of this article.

Due to the heterogeneity and multidisciplinary nature of
the included studies, a formal meta-analysis is not possible.
We did, however, visually determine overall performance by
representing different performance metrics including sensi-
tivity, specificity, F1-score, and receiver operating charac-
teristic (ROC) curves, which are presented later.

Fig.2 PRISMA flowchart for
including articles in our study.
The flow diagram depicts the
flow of information through

the different phases of the
methodical review. It maps out
the number of studies identified,
included and excluded, and the
reasons for exclusions

=

Review of studies on the diagnosis
and staging of liver diseases

In this section, we review selected studies based on the
disease of interest. In Table 11, a summary on studies for
fibrosis classification or staging is provided. Most of these
studies extracted textural features and applied conventional
machine learning algorithms for classification. A few of
studies [69, 70] performed fusion of multiple ultrasound
modalities to improve diagnostic performance on fibrosis
staging. In Table 12, a summary of studies on cirrhosis clas-
sification is provided. The focus is on separating normal
cases from Cirrhosis. In terms of methods, studies have
applied both conventional machine learning and deep learn-
ing methods. Table 13 provides summary of studies focus-
ing on nonalcoholic fatty liver disease diagnosis. Most of
the studies applied a combination of texture feature extrac-
tion algorithms and conventional ML classifiers. Table 14

PRISMA 2009 Flow Diagram

Records identified through
database searching
(n=1,878)

] [ Identification W

Records after duplicates removed
(n= 1,494)

] [ Screening

Eligibility

Included

(

A

Records excluded
(n=886)

Records screened N
(n=1,494) g

Full-text articles excluded,
With reasons
(n=284)

Studies on animals (3)
Review papers (42)
Specific medical condition (9)
Other topics (30)

A4

Full-text articles assessed
for eligibility >
(n=608)

A

Studies included in
qualitative synthesis
(n=524)

A4

Studies included in
quantitative synthesis
(meta-analysis)
(n=77)
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Fig. 3 Number of studies per year. In total there were 77 selected studies that meet our selection criteria

provides summary of classification of various chronic liver
diseases. In this setup, studies focus on three class classifi-
cation (Normal vs. NAFLD vs. Cirrhosis) or four class clas-
sification (Normal vs. Steatosis vs. Fibrosis vs. Cirrhosis).
One study [71] performed six class classification with six
labels namely, normal, steatosis, chronic hepatitis without
cirrhosis, compensated cirrhosis, decompensated cirrho-
sis, and HCC. In Fig. 3, an year-wise number of studies is
shown. The plot shows an increasing trend in the number of
studies over years. In Fig. 4, we provide number of studies
applying ML or DL methods for diagnosing liver diseases.
The plot shows that machine learning was a de-facto choice
before 2017. However, with the rise of deep learning, there
has been a sharp increase in the number of studies using
deep learning methods. In Fig. 5, the distribution of studies
is given based on various applications. Of the 77 studies
covered in this review, the distribution is as: Fibrosis clas-
sification (n=10), Cirrhosis classification (n=T), NAFLD
(n=22), CLD (n=8), FLL (n=24), and HCC diagnosis and
prognosis (n=6). Most of these studies focus on the clas-
sification problem considering one disease versus rest of
the diseases.

The results of studies in Table 14 show that as the number
of classes increase, the performance of models degrade. This

@ Springer

is due to the correlation between diseases and overlapping
biomarkers of diseases. In Table 15, a summary of studies
focusing on different liver lesions and hepatocellular carci-
noma is presented. A major observation is that most of the
studies focused on small private (in-house) datasets contain-
ing only a few samples of liver lesions such as hemangioma

method
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Fig.4 Number of studies applying ML (Machine Learning) and DL
(Deep Learning) methods
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Fig.5 Distribution of studies
application wise. NAFLD clas-
sification (n=22/28.57%), CLD
Classification (n=8/10.38%),
Fibrosis classification
(n=10/12.98%), Cirrhosis clas-
sification (n=7/9.09%), FLL
classification (n=24/31.16%),
and HCC prediction
(n=6/7.79%)

FLL classification

application

Fibrosis classification

HCC prediction

(HEM) or metastases (MET). The studies provide quite
high classification performance in terms of accuracy scores.
However, accuracy is not a robust metric especially when
working with imbalanced datasets. Finally, Table 16 pro-
vides summary of studies focusing on HCC prognosis. Most
of these studies focused on patient survival analysis. Few of
the recent studies showed that CNNs outperforms classical
ML algorithms for HCC diagnosis and prognosis.

Public datasets and online initiatives
for the diagnosis of liver diseases

Most of the reviewed studies in this article use private (in-
house) datasets. Recently, the research community has felt
the need to release benchmark datasets in the public domain
so that computational methods can be fairly compared. The
ImageNet dataset [60] has been one of the underlying fac-
tors in the success of deep learning in computer vision
because it enabled targeted progression and objective com-
parison of methods proposed by the community around the
world. With the same motivation, researchers in the field
of biomedical image computing have started sharing their
curated datasets publicly to advance research and foster fair
comparison of methods. We provide an overview of various
liver datasets below:

¢ B-mode fatty liver ultrasound: [103] released a B-mode
US dataset for the diagnosis of NAFLD steatosis assess-
ment using ultrasound images. It contains 550 B-mode
ultrasound scans and the corresponding liver biopsy

Cirrhosis classification

CLD classification

NAFLD classification

results. The dataset was collected from 55 subjects admit-
ted for bariatric surgery in the Department of Internal
Medicine, Hypertension and Vascular Diseases, Medical
University of Warsaw, Poland.

SYSU-CEUS: The SYSU-CEUS dataset [157] contains
353 CEUS videos of three types of focal liver lesions,
namely, 186 instances of Hepatocelluar carcinoma
(HCC), 109 instances of Hemangioma (HEM), and 58
instances of Focal Nodular Hyperplasia (FNH). Datasets
specific to liver tumours have also been made available
through participation in online challenges.

LiTS: The Liver Tumor Segmentation Challenge(LiTS) [158]
dataset provides 201 contrast-enhanced 3D abdominal CT
scans and segmentation labels for liver and tumour regions.
Each slice of the volume has a resolution of 512 x 512 pixels.
Out of 231 volumes, 131 carry their respective annotations
whereas no ground-truth labels are provided for the test set
containing 70 volumes. The in-plane resolution ranges from
0.60 mm to 0.98 mm, and the slice spacing from 0.45 mm
to 5.0 mm.

SLIVERO07: The Segmentation of the Liver 2007
(SLIVERO7) [159] dataset is a part of the grand-
challenge organised in conjunction with the MIC-
CAI 2007 for liver tumor segmentation. The training
data consists of 10 tumors from 4 patients with their
ground-truth segmentations. For the test set, consist-
ing of 10 tumors from 6 patients, the ground-truth
was not made available to public by the task organis-
ers. The dataset contains liver tumor CT images cor-
responding to portal phase of a standard four-phase
contrast enhanced imaging protocol.

@ Springer
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- % s < 2 e 3D-IRCADb: The 3D Image Reconstruction for Com-
5 g z @ EE % E parison of Algorithm Database (3D-IRCADbD) ! consists
5 2 < 15} . .
E 22 BE 5 2 Z =§ of 3D CT scans of 10 men and 10 women having liver
s B =] = < —
£52 2 T 5 g3 £y tumors in 15 of the cases. The anonymised patient image,
c s = T = . .
- g E g ;E 2 E z z 2 %’ labelled image corresponding to ROI segmented, and
50 g o £ £ 2 B . . . .
g = E g Z 8 e g ; 2 g 2 § mask images are given in the DICOM format. The in-
L g = 2SS =285 n|= .
E 3 T&; —“.; < 3 3 < E § g § Z :, plane resolution ranges from 0.57 mm to 0.87 mm, and
£ £88s8552 % £5%8|%8 5 the slice spacing from 1.6 mm to 4.0 mm.
= = A © ; & e CHAOS: The Combined (CT-MR) Healthy Abdominal
= o S ion Chall CHAOS) [160] i
=B rgan Segmentation Challenge ( ) [160] is an
538 IEEE ISBI 2019 challenge dataset focused on segmenta-
=} . .
£ _§ tion of healthy abdominal organs from CT and/or MRI.
e, . .
= = ® g i g The CHAOS dataset contains abdominal CT of 40 sub-
o) = . . . . .
2 ‘3 § P i}‘g jects having healthy liver. Each slice has a resolution of
x o) x O = .
t e s 8 5 512 x 512 pixels.
. |2 & B $3 8
= £ £ g E @3 e Multi-organ abdominal CT reference standard
3 3 5 3 Q= . . . .
& 2 2 2 23 8 segmentation: The Multi-organ Abdominal CT Refer-
5 2 L: ence Standard Segmentation dataset [161] comprises
e E 2 90 abdominal CT images delineating multiple organs
8' % ‘_é’ g such as spleen, left-kidney, gallbladder, esophagus, liver,
< .
% > é a 2 stomach, pancreas, and duodenum. The abdominal CT
O - . .
£ % . n E E s images and some of the reference segmentations are
£ é Z © 3 “ el from two datasets: The Cancer Image Archieve (TCIA)
=1 S o < = .
£ £ g g %gb 5 = E Pancreas-CT dataset [162] and the Beyond the Cranial
=% .
3 % = g 3 g g g Vault (BTCV) abdominal dataset [163]. The segmen-
= o el . .
g =g B tation of various organs across these CT volumes was
5: g % performed by two experienced undergraduate students
- '§ 5 83 E and verified by a radiologist on a volumetric basis.
g g s 2 ﬁg e DeepLesion: The DeepLesion [164] dataset, released
E § = ::_i % s by the National Institute of Health (NIH) consists of
o o 94 . . e
§ g = i Z 8 more than 32,000 annotated lesions identified on CT
g g 2 &2 = E£8 images, collected from 4,400 unique patients. Each of
=% > 52 £2 8 he 2D CT i d with lesi bound
£3 z 23 Sz £ the scans is annotated with lesion type, bound-
= & O = é g > ing box, and metadata. Each images has a resolution of
- SEE 512 x 512 pixels.
E g 2 %) e MIDAS: The MIDAS liver tumor dataset from the
o E o} E National Library of Medicine (NLM)’s Imaging Meth-
£ = § : % g ods Assessment and Reporting project provides 4 liver
7] < =} . . .
g e 3 ~N 5 Z tumors from 4 patients with five expert hand segmen-
= | £% 3 23 tations. The dataset was made available by Dr. Kevin
o 8 - [2 g Lé . . A
& g E 2 = Cleary at the Imaging Science and Information Systems,
g g E § g E Georgetown University Medical Center.
§ £ g e CLUST: The Challenge on Liver Ultrasound Track
s 2 . .
= = = (CLUST) [165] provides a dataset for automatic track-
g £ (g ing of liver in ultrasound volumes. The dataset consists
g 5 E of 86 independent studies, with 64 (2D + t) and 22 (3D
' § E “g’ + t) studies. The dataset was split into training (40% of
) & & & g Q8 all sequences) and testing set (60%) from the complete
E % E E ;5: < § 5 dataset. Annotations were provided for the training set
£ |8 = 2 2 Eel but no ground-truth provided for the test set.
2I1E | & g g &2%
- a5
2|z 288
—_— <
s (3 5 = 9 E & & FETT . .
~ @& = ® ® 2SI https://www.ircad.fr/research/3dircadb/
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Limitations and future directions

In this section, we outline limitations of existing studies
based on our extensive literature review. We also propose
future research directions to overcome these limitations.

Limitations

¢ Focus on classification Most of the studies focused on
the classification task, i.e., binary classification such
as: Normal vs. Fatty, Normal vs. Fibrosis, Normal vs.
Cirrhosis or multi-class classification such as: Normal
vs. Fibrosis vs. Cirrhosis, Normal vs. Hepatocellular
Carcinoma vs. Metastasis vs Hemangiomas. However,
very little work has been done on disease progression
and severity scoring for diseases.

¢ Small in-house datasets Although there has been a
lot of work on diagnosing liver diseases using various
imaging modalities such as ultrasound, CT, and MRI,
there are only a few publicly available datasets. Most
studies in our literature review worked on in-house
data which are often of small size. Also, these datasets
suffer from a class-imbalance problem. As accuracy
score is not a reliable metric on imbalanced datasets,
the lack of publicly available benchmark datasets often
limits the true assessment of proposed algorithms in
these studies.

e C(lassical CAD system still prevalent Currently, deep
learning has shown tremendous performance improve-
ment across various fields such as computer vision, natu-
ral language processing, robotics, and biomedical image
processing. Specifically in biomedical image comput-
ing, deep learning has shown superior results on various
tasks such as classification, segmentation, and tracking.
Due to the lack of publicly available large-scale anno-
tated datasets on liver US studies, the classical machine
learning pipeline is still prominent in the community.

Future research direction

e Need for multidisciplinary approach: The manage-
ment of HCC encompasses multiple disciplines includ-
ing hepatologists, diagnostic radiologists, pathologists,
transplant surgeons, surgical oncologists, interventional
radiologists, nurses, and palliative care profession-
als [166]. A study by [167] showed that the develop-
ment of true multidisciplinary clinic with a dedicated
tumour board review for HCC patients increased sur-
vival; due to improved staging and diagnostic accuracy,
efficient treatment times and increased adherence to
clinical diagnostic and therapeutic guidelines. There-

@ Springer

fore, the AASLD recommends referring HCC patients
to a centre with multidisciplinary clinic.

e Make use of multi-modal data: Current state-of-the-
art deep learning models when trained on multi-modal
data such as B-mode images, Doppler images, contrast-
enhanced ultrasound images, and SWE images could
improve the early staging and diagnosis of HCC. Multi-
modal data can provide complementary information, in
turn helping models to improve.

¢ Need for benchmark datasets: In order to push the
community’s effort in improving diagnostic performance
by proposing novel methods, there is a need to establish
a benchmark environment with the release of a large-
scale annotated dataset in the public domain. Similar to
benchmark algorithms during challenges, the task organ-
isers can release annotated training and validation data
but not release test data labels. Once participants have
fine-tuned their methods, they may submit predictions
on the test set on the challenge evaluation server.

Conclusion

HCC-related morbidity and mortality continues to up-
trend due to delays in diagnosis and treatment as early
disease is often asymptomatic. Ultrasound is the rec-
ommended first-line imaging modality for diagnosis of
chronic liver disease and to screen for HCC; however,
contrast-enhanced studies are required to confirm HCC
diagnosis. In this paper, we first provide an overview of
current diagnostic methods for stages of liver disease. We
then lay the foundation of methods such as Image pre-
processing, feature extraction, and classification for clas-
sical machine learning algorithms and a brief overview
of convolutional neural networks, which are specialised
deep learning algorithms for processing 2D or 3D data.
Then, we reviewed the use of these methods as diagnostic
tools in chronic liver disease and HCC. We also discussed
the studies reviewed in the survey. Finally, we provide
future research directions in assisting diagnostic accuracy
and efficiency in clinical workflow. We believe that by
adapting Al technologies into medical radiology, diagnos-
tic imaging tools have the potential to be implemented in
first-line management of chronic liver disease and HCC.
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