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ARTICLE

Segregation analysis of 17,425 population-based
breast cancer families: Evidence for genetic
susceptibility and risk prediction

Shuai Li,1,2,3,4,* Robert J. MacInnis,1,5 Andrew Lee,2 Tu Nguyen-Dumont,3,6 Leila Dorling,2

Sara Carvalho,2 Gillian S. Dite,1,7 Mitul Shah,8 Craig Luccarini,8 Qin Wang,2 Roger L. Milne,1,3,5

Mark A. Jenkins,1 Graham G. Giles,1,3,5 Alison M. Dunning,8 Paul D.P. Pharoah,2

Melissa C. Southey,3,5,6 Douglas F. Easton,2 John L. Hopper,1,9 and Antonis C. Antoniou2,9
Summary
Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain

the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied

17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1,

BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic

models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes

and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20–

29 years and decreased steadily with age thereafter. After allowing for these genes, the best fittingmodel for the residual familial variance

included a recessive risk component with a combined genotype frequency of 1.7% (95%CI: 0.3%–5.4%) and a penetrance to age 80 years

of 69% (95% CI: 38%–95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner,

and a polygenic variance of 1.27 (95% CI: 0.94%–1.65), which did not vary with age. The proportion of the residual familial variance

explained by the recessive risk component was 40% at age 20–29 years and decreased with age thereafter. The model predicted age-spe-

cific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies

to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
Introduction

There is a substantial familial aggregation of breast cancer

(MIM: 114480). The familial relative risk (FRR) of breast

cancer for having an affected first-degree relative is on

average about 1.8 but is greater the younger the age at can-

cer diagnosis of the relative(s), the greater the number of

affected relatives, and the younger the age of the

consultand.1

High-risk pathogenic variants (PVs) in the currently

known breast cancer-susceptibility genes BRCA1 (MIM:

113705), BRCA2 (MIM: 600185), and PALB2 (MIM:

610355) and intermediate-risk PVs in genes such as

CHEK2 (MIM: 604373) and ATM (MIM: 607585)2–10 on

average explain 20%–25% of the familial aggregation of

breast cancer and much more at younger ages. A further

on average �20% of the familial aggregation is accounted

for by a polygenic risk score (PRS) based on 313 common

genetic variants identified by genome-wide association

studies (GWASs).11 PVs in other genes, including BARD1

(MIM: 601593), RAD51C (MIM: 602774), RAD51D (MIM:
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602954), TP53 (MIM: 191170), PTEN (MIM: 601728),

and NF1 (MIM: 613113), are also associated with breast

cancer risk, but to a lesser extent, and account for a small

proportion of the familial aggregation.2 Consequently, a

large proportion of the familial aggregation remains

unexplained.

Segregation analyses have been used to develop pedigree-

based statistical models of breast cancer susceptibility and

predict breast cancer risk on the basis of family history, ge-

notype, and other factors.12–15 For example, the Breast and

Ovarian Analysis of Disease Incidence and Carrier Estima-

tion Algorithm (BOADICEA) for estimating a woman’s

future risk of developing breast cancer16–20 was originally

developed with data on 2,785 families and considered

breast cancer familial risk to be determined by the joint ef-

fects of BRCA1 and BRCA2 PVs and a polygenic component

representing the combined multiplicative effects of a large

number of unknown genetic variants each making a small

contribution to the variation in risk.12,14,17 The model

was subsequently extended to incorporate PVs in PALB2,

CHEK2, and ATM, polygenic risk scores, lifestyle- and
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hormone-related risk factors, andmammographic density20

andmore recently PVs in BARD1, RAD51C, and RAD51D.21

It was not previously possible to fit segregation analysis

models that included the joint effects of all known breast

cancer-susceptibility genes simultaneously because of the

lack of data on PVs in some genes. Another challenge has

been small sample sizes that limit the statistical power to

distinguish different inheritance models. In this study,

we conducted the analysis of this kind by using data

from families ascertained through large population-based

series of affected and unaffected probands for which data

on PVs in BRCA1, BRCA2, PALB2, CHEK2, ATM, and

TP53 were available. Our objectives were (1) to estimate

key genetic model parameters simultaneously to further

improve the accuracy of existing genetic models and (2)

to investigate the genetic models of inheritance that best

explain the familial aggregation of breast cancer not ac-

counted for by the known breast cancer-susceptibility

genes and polygenic factors.
Material and methods

Study sample
The sample included 17,425 three-generation families ascertained

via population-based sampling of breast cancer probands from

two studies: 2,712 families from the population-based case-control

family study within the Australian Breast Cancer Family Registry

(ABCFR) and 14,713 families from the prospective Studies of

Epidemiology and Risk Factors in Cancer Heredity (SEARCH) study

in the UK.

ABCFR22–24 includes (1) 1,644 case families, ascertained indepen-

dently of their family history through a sample of adult women

living in the metropolitan areas of Melbourne and Sydney who

were diagnosed between 1992 and 1999 (baseline) with a histolog-

ically confirmed first primary breast cancer (case probands) before

age 70 years and (2) 1,068 control families ascertained through un-

affected adult women (control probands) who were sampled at the

same time via the Australian electoral rolls and frequency matched

to case probands by age. Of these, 858 case families with a proband

diagnosed with breast cancer before age 40 years were included in a

previous segregation analysis.13 Case and control probands gave a

blood sample and completed the same risk factor questionnaire

and family history questionnaire involving the construction of a

pedigree covering all known first- and second-degree adult relatives.

In addition, each proband was asked to obtain permission from

first- and second-degree relatives for their participation, which

involved giving a blood sample, completing the same risk factor

questionnaire, and providing additional information to comple-

ment the pedigree and family history information collected from

the proband. This analysis used demographic data and breast and

ovarian cancer (MIM: 167000) diagnoses of the probands and all

their adult female first- and second-degree relatives identified at

baseline. ABCFR was designed to be enriched for breast cancer diag-

noses at younger ages: 55% of case probands and 52% of control

probands included in this analysis were younger than 40 years at

diagnosis and recruitment, respectively. Of the probands, 92% re-

ported having White ethnicity.

SEARCH25 ascertained families through adult women diagnosed

with breast cancer, identified through the Eastern Cancer Registra-
1778 The American Journal of Human Genetics 109, 1777–1788, Oct
tion and Information Centre. Eligible women were those diag-

nosed between 1991 and 1996 before 55 years of age and recruited

between 1996 and 2002 (prevalent cases) together with women

diagnosed between 1996 and 2011 before age 70 years (incident

cases). Probands were invited to provide a blood sample and com-

plete an epidemiological questionnaire, including family history

in all first-degree relatives and grandparents. This analysis used

the demographic data and breast and ovarian cancer diagnoses

of the probands and all their adult female first-degree relatives

and grandmothers collected at baseline. A total of 1,484 families

with a proband diagnosed before age 55 years between 1991 and

1996 were included in previous segregation analyses.12,14 Of the

probands included in this analysis, 94% were older than 40 years

at diagnosis. Approximately three-quarters of the probands re-

ported their ethnicity, and 99% had White European ancestry.

ABCFR was approved by the Human Research Ethics Committee

of the University of Melbourne. SEARCH was approved by the Na-

tional Research Ethics Service Committee East of England—Cam-

bridge South. All participants provided written consent.

PVs in breast cancer-susceptibility genes
We studied six major cancer-susceptibility genes: BRCA1, BRCA2,

PALB2, CHEK2, ATM, and TP53. PVs included predicted protein-

truncating variants (PTVs) and an additional subset of rare

missense variants (population frequency < 0.001) for BRCA1,

BRCA2, and TP53. The risks associated with this subset of missense

variants have been shown to be similar to those associated with

PTVs,2 and these were aggregated with the PTVs in the analysis.

In ABCFR, PVs were identified by gene-panel testing for 2,305

probands (85% of all probands) and 770 relatives and by other

tests conducted before gene-panel testing was widely available

(Table S1) for 2,317 probands and 1,765 relatives; 2,244 probands

and 611 relatives tested by both regimes. In total, 88% of families

were tested; see Southey et al.26 for more details about the gene-

panel testing and pathogenicity definition. In SEARCH, PVs were

identified by gene-panel testing for 12,654 probands (86% of all

probands). No relatives were screened; see Dorling et al.2 for

more details about the testing and pathogenicity definition. We

effectively applied the American College of Medical Genetics

and Genomics (ACMG) and the Association for Molecular Pathol-

ogy (AMP) criteria to classify variant pathogenicity, as our study

used pathogenicity classification reviewed by the Evidence-based

Network for the Interpretation of Germline Mutant Alleles

(ENIGMA) Expert Panel.

Statistical methods
We conducted complex segregation analysis by using the pedigree

analysis software MENDEL following a similar approach to that

used in previous studies.12–14 Each woman was considered to be

at risk of breast and ovarian cancer from birth until breast or

ovarian cancer diagnosis, baseline interview, death, or age 80 years

(whichever occurred first). The incidences of the two cancers were

modeled simultaneously and assumed to be independent, condi-

tional on genotype. For a woman i in birth cohort k, from country

c and at age t, the incidence of cancer s, li(t, k, c, s), was assumed to

depend on the genetic factors according to the following model:

liðt; k; c; sÞ ¼ l0ðt; k; c; sÞexp
 Xn

m¼1

bMGm
ðt; sÞGmi þ PiðtÞ

!

where l0(t, k, c, s) is the baseline incidence, bMGm
ðt; sÞ is the age-

specific log-relative risk (log-RR) for a major gene that was assumed
ober 6, 2022



to be the same across countries and birth cohorts, n is the number

of major genotypes, and Gmi is an indicator variable that takes the

value of 1 if the woman has major genotype m and 0 otherwise.

Pi(t) is the breast cancer age-specific polygenic component that

was assumed to be normally distributed with zero mean and vari-

ance sP
2(t), the same across countries and birth cohorts, represent-

ing the multiplicative effects of a large number of variants each

associated with a small increment in breast cancer risk. No poly-

genic component was included for ovarian cancer. The polygenic

component was approximated by the hypergeometric polygenic

model (HPM)27,28 as

P ¼ R � Nffiffiffi
N
2

q sP

where R has a binomial distribution (2N, 1/2 ) andN, the number of

loci used in the HPM, was 3.

We firstly fitted a model with a polygenic component only,

without any major genes. The polygenic variance sP
2(t) from

this model reflects the total breast cancer familial variance under

the polygenic susceptibility model.29 Note that while sP
2(t) is

termed the polygenic variance, it also captures the effects of

non-genetic factors contributing to the risks for relatives being

correlated and whose existence is suggested by analysis of twin

pairs in the Nordic Twin Study.30 Given that breast cancer FRR

decreases with age,1 we allowed sP
2(t) to decrease linearly with

age.

We then fitted a model equivalent to the BOADICEA (versions 4

and 5) in terms of the number of major genes, which included the

effects of PVs in BRCA1, BRCA2, PALB2, CHEK2, and ATM, as well

as the polygenic component.We sequentially extended thismodel

to include the effects of PVs in TP53, and a hypothetical major

gene for which we investigated different models of inheritance

(dominant, recessive, general). We used the decrease in sP
2(t) as

major genes were included to express the proportions of breast

cancer familial variance explained by PVs in those genes.

To reduce computational time, we fitted the major gene compo-

nent by using a single locus comprisingmþ 1 alleles, wherem is the

number of major genes considered in the model. That is, we

assumed separate risk alleles representing the presence of a PV in

BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, and the hypothetical

gene and a normal allele. We assumed a dominant inheritance for

the risk alleles in the order of the seven major genes above; there-

fore, there was a total of nine possible major genotypes m: women

with BRCA1 PVs, women with BRCA2 PVs, women with PALB2

PVs, women with CHEK2 PVs, women with ATM PVs, women

with TP53 PVs, the hypothetical gene risk allele homozygotes,

the hypothetical gene risk allele heterozygotes, and women

without PVs. This simplification is unlikely to affect results because

women with PVs in more than one major gene are very rare and

would not contribute materially to the analysis; from our data,

0.1% of the women were such (Table 1). To compute the baseline

incidence l0(t, k, c, s), we used the method previously described12

to constrain the overall incidence across all genotypes to agree

with the UK and Australian birth-cohort-specific smoothed popula-

tion incidences used in the BOADICEA.18

The age-specific breast and ovarian cancer RRs (bMGm
ðt; sÞ) for

BRCA1 and BRCA2 PVs and breast cancer RRs for PALB2, CHEK2,

and ATM PVs were fixed at estimates from previous studies5,7,9,17:

log-RRs were functions of age for BRCA1, BRCA2, PALB2, and

CHEK2 PVs (Table S2), and breast cancer RR was 2.8 for ATM

PVs. Ovarian cancer RRs were assumed to be 1 for PALB2,
The American Jo
CHEK2, and ATM PVs, i.e., ovarian cancer incidence depended

on BRCA1 and BRCA2 PVs only. The risk allele frequencies for all

major genes, the age-specific RRs for TP53 PVs and hypothetical

gene risk allele, and the age-specific polygenic variance sP
2(t)

were estimated. The variances of the parameter estimates were ob-

tained by inverting the observed information matrix. To allow for

the restricted ranges of the parameter values and provide estimates

likely to bemore nearly normally distributed, we used transformed

values for the parameters in the model: allele frequencies were

logit transformed, RRs were log transformed, and sP
2(t) was

square-root transformed. We compared nested models by using

the likelihood ratio test and non-nested models by using the

Akaike information criterion. All statistical tests were two sided,

and results with a p < 0.05 were treated as statistically significant.

Because not all PVs would be detected by the test methods used,

we included a test sensitivity parameter defined as the probability

of detecting a PV if one exists. In ABCFR, the test sensitivity was

the weighted sum of the sensitivities of the test methods used

(Table S1), and weights were the proportional lengths of the exons

screened and taking into account whether multiplex ligation-

dependent probe amplification had been conducted to detect large

rearrangements and copy-number variations. The test sensitivity

was assumed to be 100% for the relatives who had been only tested

for their probands’ PV. For ABCFR probands, the average test sensi-

tivity ranged from 88% to 90% across all genes. For SEARCH pro-

bands, the test sensitivity was assumed to be 90% for all genes. We

also conducted a sensitivity analysis by assuming the test sensi-

tivity to be 80% for all genes and all probands.

To adjust for family ascertainment, we computed the likelihood

of observing the phenotypes and genotypes of each family condi-

tional on observing the phenotypes of the proband, i.e., their can-

cer status and age of diagnosis or censoring. This ascertainment is

justified because all families were ascertained through population-

based sampling of probands, and the family history and genotype

data could be assumed not to influence the ascertainment.

We computed age-specific breast cancer FRR predicted by the

best fitting model by using the likelihoods from MENDEL.16 The

FRR for a woman at age t with a first-degree relative affected at

age t was computed as the ratio of two pedigree-likelihoods:

FRR ¼ PðThe woman affected at age tj The relative affected at age tÞ
PðThe woman affected at age tÞ

¼ PðThe woman affected at age t; The relative affected at age tÞ
PðThe woman affected at age tÞPðThe relative affected at age tÞ:

We computed the FRRs separately for women with an affected

mother and women with an affected sister.

For TP53 PVs and the hypothetical gene risk allele, we estimated

the age-specific cumulative risk (penetrance) to age t, F(t), as

FðtÞ ¼ 1 � exp

0
@ �

Zt
0

lðtÞdt
1
A

where l(t) is the estimated incidence at age t averaged over the

polygenic effects, based on the UK population incidence for

women born in 1940–1949 (the median birth year of the pro-

bands was 1948). The 95% confidence interval (CI) of F(t) was

calculated via a parametric bootstrap: a sample of 10,000 draws

was taken from the multivariate normal distribution that the

maximum likelihood estimates would be expected to follow un-

der asymptotic likelihood theory; for each age, a corresponding

sample of 10,000 cumulative risks was calculated with the
urnal of Human Genetics 109, 1777–1788, October 6, 2022 1779



Table 1. Number and proportion of probands by study and the diagnosis age and pathogenic variant (PV) status of the probanda

Age group
(years) Total

Probands with
BRCA1 PVs

Probands with
BRCA2 PVs

Probands with
PALB2 PVs

Probands with
CHEK2 PVs

Probands with
ATM PVs

Probands with
TP53 PVs

Probands
without PVs Untested

ABCFR case families

<30 88 7 (8.6%) 6 (7.4%) 1 (1.2%) 2 (2.5%) 2 (2.5%) 3 (3.7%) 60 (74.1%) 7

30–39 810 43 (6.0%) 27 (3.8%) 1 (0.1%) 11 (1.5%) 5 (0.7%) 5 (0.7%) 628 (87.3%) 91

40–49 368 15 (4.3%) 5 (1.4%) 4 (1.2%) 6 (1.7%) 3 (0.9%) 0 (0%) 313 (90.7%) 23

50–59 346 2 (0.6%) 6 (1.8%) 5 (1.5%) 2 (0.6%) 3 (0.9%) 3 (0.9%) 315 (93.8%) 10

60–69 32 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (3.4%) 1 (3.4%) 27 (93.1%) 3

Total 1,644 67 (4.4%) 44 (2.9%) 11 (0.7%) 21 (1.4%) 14 (0.9%) 12 (0.8%) 1,343 (88.9%) 134

ABCFR control families

<30 86 0 (0%) 1 (1.7%) 0 (0%) 1 (1.7%) 3 (5.0%) 0 (0%) 55 (91.7%) 26

30–39 468 2 (0.5%) 3 (0.8%) 1 (0.3%) 0 (0%) 1 (0.3%) 0 (0%) 366 (98.4%) 96

40–49 240 2 (0.9%) 1 (0.5%) 0 (0%) 2 (0.9%) 0 (0%) 0 (0%) 206 (97.6%) 29

50–59 218 0 (0%) 0 (0%) 0 (0%) 1 (0.5%) 2 (1.1%) 1 (0.5%) 179 (97.8%) 35

60–69 56 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 42 (100%) 14

Total 1,068 4 (0.5%) 6 (0.6%) 1 (0.1%) 4 (0.5%) 6 (0.7%) 1 (0.1%) 848 (97.7%) 200

SEARCH

<30 60 4 (8.9%) 2 (4.4%) 1 (2.2%) 3 (6.7%) 0 (0%) 1 (2.2%) 35 (77.8%) 15

30–39 878 19 (2.8%) 29 (4.2%) 1 (0.1%) 15 (2.2%) 1 (0.1%) 5 (0.7%) 614 (89.8%) 194

40–49 3,519 40 (1.4%) 72 (2.5%) 23 (0.8%) 53 (1.8%) 21 (0.7%) 6 (0.2%) 2,665 (92.6%) 642

50–59 5,694 27 (0.5%) 79 (1.6%) 39 (0.8%) 83 (1.7%) 37 (0.8%) 1 (0.02%) 4,648 (94.6%) 782

60–69 4,558 10 (0.2%) 41 (1.0%) 18 (0.4%) 49 (1.2%) 31 (0.8%) 1 (0.02%) 3,983 (96.4%) 426

70–79 4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (100%) 0

Total 14,713 100 (0.8%) 223 (1.8%) 82 (0.6%) 203 (1.6%) 90 (0.7%) 14 (0.1%) 11,949 (94.4%) 2,059

aTen Probands had a PV in two genes: ABCFR case families—one proband (30–39 years) in BRCA1 and BRCA2 and one proband (40–49 years) in BRCA1 and CHEK2;
ABCFR control families—one proband (30–39 yeas) in BRCA2 and ATM; SEARCH—two probands (40–49 years, 60–69 years) in BRCA1 and CHEK2, one proband
(50–59 years) in BRCA2 and PALB2, and four probands (one <30 years, two 40–49 years, and one 50–59 years) in BRCA2 and CHEK2. Within each age group,
proportions (percentages in the parentheses) were calculated within the tested probands only, i.e., untested probands were excluded.
formula above, and the 2.5th and 97.5th percentiles of this distri-

bution were taken to be the 95% CI limits.

Results

A total of 15,032 (86%) probands were screened, and 892

(5.9%) were found to carry a PV in BRCA1, BRCA2,

PALB2, CHEK2, ATM, or TP53 (Table 1). Of the 1,924

ABCFR relatives tested, 142 from 88 families were found

to carry a PV (Table S3), and 164 from 86 families did not

carry the PV found in their affected probands. 2,449

(14.1%) and 1,521 (8.7%) probands had a family history

of breast cancer in first-degree relatives and second-degree

relatives, respectively; the corresponding numbers for a

family history of ovarian cancer were 328 (1.9%) and 165

(0.9%), respectively (Table S4).

When a polygenic-component-only model was fitted,

sP
2(t) was 3.86 (95% CI: 3.27, 4.47) at age 20–29 years

(calculated with the middle point, i.e., 25 years; the same

for the age ranges below), decreasing to 0.72 (95% CI:
1780 The American Journal of Human Genetics 109, 1777–1788, Oct
0.42, 1.03) at age 70–79 years (Table S5). After additionally

fitting BRCA1, BRCA2, PALB2, CHEK2, and ATM, sP
2(t) was

2.25 (95% CI: 1.61, 2.88) at age 20–29 years, decreasing to

1.11 (95% CI: 0.70, 1.51) at age 70–79 years. The propor-

tion of the total breast cancer familial variance attributed

to these five major genes was therefore 42% at 20–29 years

and decreased steadily with age thereafter (Figure 1;

Table S6).

We then additionally fitted a sixth hypothetical major

gene (Table S5). All three inheritance models (dominant,

recessive, and general) that included the hypothetical

gene gave a better fit than their equivalent nested models

without the additional gene (all p < 0.03). The dominant

inheritance model gave the best fit, and the general inher-

itance model essentially converged to the dominant inher-

itance model. Under the dominant inheritance model, the

hypothetical gene had a risk allele frequency of 0.003%

(95% CI: 0.001%, 0.008%) and an RR of 340 (95% CI:

140, 810); sP
2(t) was 1.53 (95% CI: 1.37, 1.70), and there

was no evidence that sP
2(t) depended on age (p ¼ 0.2).
ober 6, 2022
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Figure 1. Age-specific breast cancer familial variance explained by genes
For a gene, the age-specific breast cancer familial variance explained by the gene was calculated as the age-specific difference in the sP

2(t)
between the model without the gene and the model with the gene. The variance explained by BRCA1 and BRCA2 was the sP

2(t) of the
model including an age-decreasing sP

2(t) onlyminus the sP
2(t) of the model including BRCA1, BRCA2, and an age-decreasing sP

2(t). The
variance explained by PALB2,CHEK2, andATMwas the sP

2(t) of themodel including BRCA1, BRCA2, and an age-decreasing sP
2(t) minus

the sP
2(t) of themodel including BRCA1, BRCA2, PALB2,CHEK2, ATM, and an age-decreasing sP

2(t). The variance explained by TP53was
the sP

2(t) of the model including BRCA1, BRCA2, PALB2, CHEK2, ATM, and an age-decreasing sP
2(t) minus the sP

2(t) of the model
including BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, and an age-decreasing sP

2(t). The variance explained by unknown genes (recessive
inheritancemodel) was the sP

2(t) of themodel including BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, and an age-decreasing sP
2(t) minus

the sP
2(t) of the model including BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, the hypothetical gene, and an age-constant sP

2(t). The
variance explained by the polygenic risk score was from Mavaddat et al.11 The variance explained by other common genetic variants
was that explained by all imputable common genetic variants via the OncoArray (i.e., chip heritability), which was approximately twice
that explained by known common genetic variants,31minus those explained by known common genetic variants, i.e., the polygenic risk
score.
Most of the difference in log-likelihoods between the

dominant inheritance model for the hypothetical gene

and its equivalent nested model without the gene was

attributed to a small number of families (Figure S1). For

all ten families contributing the most evidence for the hy-

pothetical gene, the proband was diagnosed with breast

cancer before age 42 years, and all the affected relatives

were diagnosed before age 37 years (Table S7). For three

of these families, the proband carried a PV in TP53. No

PVs in the other genes were identified for the probands

of these families from the gene-panel testing data. We

therefore hypothesized that the hypothetical gene might

reflect the effects of TP53 PVs and further extended the

models to include TP53.

Incorporating TP53 in addition to the five major genes

while fitting an age-decreasing sP
2(t) improved the model

fit (p < 10�15; Table S8). The best fitting model included a

TP53 RR, which decreased linearly with age on the log-RR
The American Jo
scale over age 20–49 years and then was constant over age

50–79 years. Under this model, the frequency for TP53 PVs

was 0.017% (95% CI: 0.009%, 0.034%) and the estimated

cumulative risk of breast cancer to age 80 years for TP53

PVs was 45.0% (95% CI: 25.5%, 74.0%) (Figure 2). After

fitting TP53, there was marginal evidence (p ¼ 0.07) that

sP
2(t) decreased with age. On the basis of the model with

an age-decreasing sP
2(t), the proportion of the total breast

cancer familial variance attributed to TP53was 3.5% at age

20–29 years and decreased with age thereafter; in terms of

the residual familial variance after adjusting for the effects

of BRCA1, BRCA2, PALB2, CHEK2, and ATM, the propor-

tion decreased from 6.1% at age 20–29 years (Figure 1;

Table S6).

On the basis of the best fitting model that included TP53

and an age-constant sP
2(t), we incorporated an additional

hypothetical gene (Table 2). There was evidence for the hy-

pothetical gene under both the recessive and general
urnal of Human Genetics 109, 1777–1788, October 6, 2022 1781
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Figure 2. Age-specific cumulative risks with 95% confidence intervals for TP53 PVs and homozygotes of the risk alleles implicated in
the recessive risk component
The recessive risk component is from the best fit model including BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, a seventh hypothetical
gene, and an age-constant sP

2(t). Shaded areas are 95% confidence intervals.
inheritance models (both p < 0.02), and the general inheri-

tance model essentially converged to the recessive inheri-

tance model. Under the best fitting recessive inheritance

model, the hypothetical gene had a risk allele frequency of

13% (95%CI: 5%, 23%) and anRRof 10 (95%CI: 4, 25), giv-

ing a cumulative risk to age 80 of 69.4% (95% CI: 37.9%,

94.7%) for homozygotes (Figure 2). Under this model,

sP
2(t)was estimated tobe1.27 (95%CI: 0.94, 1.65) and there

was no evidence that it depended on age (p¼ 0.81). The pro-

portion of the total breast cancer familial variance explained

by the hypothetical gene was 21.6% at age 20–29 years and

decreased steadily with age thereafter; in terms of the resid-

ual familial variance after adjusting for the effects of

BRCA1, BRCA2, PALB2,CHEK2,ATM, and TP53, the propor-

tion was 39.7% at age 20–29 years and decreased thereafter

(Figure 1; Table S6). Under this model, the PV allele fre-

quencies of BRCA1, BRCA2, PALB2, CHEK2, ATM, and

TP53 were 0.080%, 0.141%, 0.059%, 0.385%, 0.167%, and

0.017%, respectively, corresponding to frequencies of indi-

viduals with BRCA1, BRCA2, PALB2, CHEK2, ATM, and

TP53 PVs of 0.159%, 0.281%, 0.119%, 0.768%, 0.334%,

and 0.034%, respectively.

No family contributed a large change in the log-likeli-

hood when the hypothetical gene (recessive inheritance

model) was added (Figure S1). For all ten families contrib-

uting most to the evidence for the hypothetical gene, the
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proband had at least one sister diagnosed with breast can-

cer before or at age 45 years (Table S9). No PVwas identified

for the probands of these ten families from the gene-panel

testing data.

Similar results were found from the sensitivity analyses

in which the PV test sensitivity was reduced to 80%

(Table S10). With this sensitivity, the PV allele frequencies

of BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 genes

were 0.089%, 0.157%, 0.067%, 0.432%, 0.187%, and

0.020%, respectively, corresponding to frequencies of indi-

viduals with BRCA1, BRCA2, PALB2, CHEK2, ATM, and

TP53 PVs of 0.178%, 0.313%, 0.133%, 0.862%, 0.374%,

and 0.039%, respectively.

The age-specific FRRs associated with a family history in

a first-degree relative predicted by the best fitting recessive

inheritance model were consistent with those observed by

the largest combined analysis of epidemiological studies1

(Table 3). At each age, the FRR associated with a sister

affected was slightly greater than the FRR associated with

the mother affected.
Discussion

This study provides insights into the genetic susceptibility

of breast cancer. In terms of explaining why women of the
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Table 2. Models including BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, a hypothetical gene, and a polygenic component

Parameters
Dominant
inheritance model

Recessive
inheritance modela

General
inheritance model

Recessive inheritance model
with an age-dependent sP

2(t)b

sP
2(t) (95% CI) 1.534 (1.448, 1.624) 1.272 (0.944, 1.649) 1.272 (0.908, 1.698) a ¼ 1.066 (95% CI: �1.186,

3.318), b ¼ 0.004
(95% CI: �0.033, 0.040)

PV allele frequency (95% CI)

BRCA1 0.080% (0.069%, 0.092%) 0.080% (0.069%, 0.092%) 0.080% (0.069%, 0.092%) 0.080% (0.069%, 0.092%)

BRCA2 0.141% (0.126%, 0.158%) 0.141% (0.125%, 0.158%) 0.141% (0.125%, 0.158%) 0.141% (0.125%, 0.158%)

PALB2 0.060% (0.049%, 0.073%) 0.059% (0.049%, 0.073%) 0.059% (0.049%, 0.073%) 0.059% (0.049%, 0.073%)

CHEK2 0.385% (0.338%, 0.438%) 0.385% (0.338%, 0.438%) 0.385% (0.338%, 0.438%) 0.385% (0.338%, 0.438%)

ATM 0.167% (0.139%, 0.200%) 0.167% (0.139%, 0.200%) 0.167% (0.139%, 0.200%) 0.167% (0.139%, 0.200%)

TP53 0.018% (0.005%, 0.057%) 0.017% (0.008%, 0.038%) 0.017% (0.008%, 0.037%) 0.017% (0.008%, 0.038%)

Hypothetical gene 0.001% (0.0002%, 0.007%) 13.1% (5.4%, 23.2%) 13.1% (4.6%, 26.2%) 13.1% (5.4%, 23.2%)

RR of TP53 PVs (95% CI)

Age 20–29 years 134.43 (44.84, 401.30) 142.86 (62.37, 325.81) 142.86 (63.10, 321.86) 144.90 (56.64, 368.97)

Age 30–39 years 30.81 (9.59, 98.44) 32.10 (14.81, 70.02) 32.10 (15.01, 69.05) 32.45 (13.21, 79.73)

Age 40–49 years 7.06 (1.58, 31.60) 7.21 (2.42, 21.48) 7.21 (2.49, 21.10) 7.27 (2.25, 23.50)

Age 50–59 years 3.01 (0.36, 25.45) 3.13 (0.87, 11.29) 3.13 (0.90, 10.92) 3.16 (0.68, 14.75)

Age 60–69 years 3.01 (0.36, 25.45) 3.13 (0.87, 11.29) 3.13 (0.90, 10.92) 3.16 (0.68, 14.75)

Age 70–79 years 3.01 (0.36, 25.45) 3.13 (0.87, 11.29) 3.13 (0.90, 10.92) 3.16 (0.68, 14.75)

RR of the hypothetical gene (95% CI)

Heterozygote 282.55 (259.43, 307.72) 1 1 1

Homozygote 282.55 (259.43, 307.72) 10.03 (4.04, 24.9) 10.03 (3.47, 28.97) 10.42 (4.62, 23.53)

Log likelihood �35,635.90 �35,632.18 �35,632.09 �35,632.06

Number of parameters
estimated

12 12 13 13

Akaike information criterion 71,295.80 71,288.18 71,290.18 71,290.12

pc 0.23 0.005 0.01 0.01

Best fitting model no yes no no

CI: confidence interval; PV: pathogenic variant; RR: relative risk.
aLog-RR ¼ a þ b 3 (age – 20) in age 20–49 years, where a ¼ 5.71 (95% CI: 4.72, 6.69), b ¼ �0.15 (95% CI: �0.21, �0.09).
bsP

2(t) ¼ a þ b 3 age.
cFrom the likelihood ratio test of comparing with the model including BRCA1, BRCA2, PALB2, CHEK2, ATM, TP53, and an age-constant sP

2(t).
same age differ in risk, the known susceptibility genes,

including BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53

play more important roles at younger ages; the proportion

of the total breast cancer familial variance explained by

these genes was 46% at age 20–29 years and decreased

steadily with age thereafter. GWASs have identified several

hundred common genetic variants associated with breast

cancer risk;31 these variants combine multiplicatively,

and their effects can thus be summarized by a PRS. The

most extensively validated PRS, comprising 313 common

genetic variants, is associated with breast cancer risk with

little evidence of variation in the relative risk by age,11

implying that the PRS explains a higher fraction of the

breast cancer familial variance at older ages than at

younger ages.32,33 The odds ratio (OR) per standard devia-

tion of the PRS is 1.61, equivalent to a familial variance of
The American Jo
�0.23. Therefore, the PRS accounts for about 20% of the re-

sidual polygenic variance of 1.27 estimated after taking

into account the known and predicted additional major

gene(s), in line with previous estimates for the PRS contri-

bution.11,20 The breast cancer familial variance explained

by all imputable common genetic variants via the

OncoArray (i.e., chip heritability) was estimated to be

approximately twice that explained by the known com-

mon genetic variants (and thus about 40% of the residual

polygenic variance).31 As illustrated in Figure 1, there is

substantial breast cancer familial variance that cannot be

explained by the known susceptibility genes and common

genetic variants, and the unexplained familial variance is

larger at younger ages. Therefore, breast cancer genomic

studies focused on individuals diagnosed at younger ages

may be a fruitful approach to identifying novel breast
urnal of Human Genetics 109, 1777–1788, October 6, 2022 1783



Table 3. Age-specific breast cancer familial relative risks associated with an affected first-degree relative

Age (years)
Predicted familial relative risk with
the mother affected

Predicted familial relative risk
with a sister affected

Observed familial relative risk
(95% CI)a

25 9.90 10.35 5.7 (2.7, 11.8)

30 5.84 6.22

35 3.37 3.71

40 2.44 2.74 2.0 (1.5, 2.8)

45 2.07 2.31

50 1.82 2.00 1.6 (1.2, 2.1)

55 1.67 1.80

60 1.56 1.65 1.4 (1.2, 1.7)

65 1.49 1.55

70 1.44 1.48

75 1.39 1.42

CI, confidence interval.
aFrom the epidemiological studies by Collaborative Group on Hormonal Factors in Breast Cancer.1
cancer genetic susceptibility genes or variants. Our ana-

lyses predicted a recessively inherited risk component ex-

plaining a substantial proportion of the residual familial

variance after taking into account PVs in BRCA1, BRCA2,

PALB2, CHEK2, ATM, TP53, and the PRS, with the propor-

tion greater at younger ages (44% at ages 20–29 years) and

decreased steadily with age thereafter.

Althoughour study sample overlappedwith thedata used

in three previous analyses,12–14 the current dataset was

seven times larger. Moreover, we were able to include PV

data for the large majority of probands, providing much

more robust analyses. Our evidence for an additional reces-

sively inherited major breast cancer-susceptibility gene, af-

ter considering the effects of PVs in BRCA1, BRCA2, PALB2,

CHEK2, ATM, and TP53, is consistent with the results from

previous analyses.12–15 The best fitting model predicted

age-specific FRRs consistent with the observed FRRs by

epidemiological studies. The recessive risk component leads

to the prediction that the FRR will be higher for sisters of

affected women than for mothers of affected daughters,

and this is consistentwithobservations inpopulation-based

epidemiological studies.1,13,25,34–36 Although the lower rela-

tive risk formothers couldbepartly explainedby thembeing

parous by definition, the risk difference is more profound

before age 50 years when mothers are pre-menopausal and

the protective effect of parity is weaker.1,35 Our analysis

used birth-cohort-specific incidences; therefore, the results

are unlikely to be due to the higher incidence for sisters,

who were born more recently than mothers. However, we

cannot rule out the possibility that part of the increased

risk to sistersmaybe due to surveillance because sisters of in-

dividuals with breast cancer are more likely to participate in

screening programs.

We also cannot rule out the role of non-genetic familial

factors in explaining familial aggregation of breast cancer,

as we only considered genetic models. The Nordic Twin
1784 The American Journal of Human Genetics 109, 1777–1788, Oct
Study of breast cancer found evidence for non-genetic ef-

fects shared by twins, especially at younger ages, which

would also be consistent with that the FRR is greater for sis-

ter pairs than for mother-daughter pairs30 and could reflect

factors operating prior to adulthood such as puberty-

related risk factors.

Our results also do not necessarily imply there is a single

additional susceptibility gene (indeed this is highly un-

likely), nor imply one or two genes contribute most of

the effect, because such gene(s) would probably have

been identified through linkage or association studies. It

is more likely that the recessive component reflects the

combined effects of multiple variants (and in more than

one gene or non-coding region), each potentially being

associated with different effects, although the actual num-

ber of variants and genes cannot be inferred from segrega-

tion analysis alone. Nevertheless, our results could inform

the design of sequencing studies to try to identify such var-

iants by focusing on analyzing the following types of sam-

ples that do not have PVs in the known genes: (1) families

with multiple affected siblings; (2) families of young

women (e.g.,%40 years) with breast cancer; and (3) a com-

bination of (1) and (2).

Breast cancer FRR depends on pathological subtype, and

the risks associated with both known breast cancer-suscep-

tibility genes and PRS differ across subtypes.11,34,37 Howev-

er, our study was not able to investigate this in detail

because, for most families, tumor features were only avail-

able for the affected probands. Further analyses of datasets

with breast cancer subtype data for both probands and rel-

atives are needed to investigate the extent to which the

recessive risk component and the residual polygenic vari-

ance are subtype specific.

We calculated the age-specific proportion of breast can-

cer familial variance explained by PVs in major genes as

the difference in the polygenic variance between nested
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models. The results in Table S6 suggest the proportion at

age 60 and older might be minimal, despite the fact the

RRs for breast cancer associated with PVs at those ages

are greater than 1. The estimated contribution of PVs at

older ages may have been underestimated due to the fact

that the total breast cancer familial variance used to calcu-

late the contributions was based on a model without any

major genes. Under this model, the polygenic variance

decreased linearly with age, which may have resulted in

imprecision of the estimated variance at older ages.

Although our study—by design—did not include pro-

bands diagnosed after age 70 years, the analyses are still

informative for familial aggregation after age 70 years

because it was the phenotypes (i.e., age of cancer diagnosis

or censoring) of relatives, not of probands, that contrib-

uted to the analyses, as the likelihood of observing the

family phenotypes was conditioned on the proband’s

phenotype. Our study included 22,253 relatives from

12,393 families (71% of the total families) who were

censored after age 70 years, and 470 of them were diag-

nosed with breast cancer.

Our study did not consider the PVs in other recently es-

tablished breast cancer-susceptibility genes such as BARD1,

RAD51C, and RAD51D, which are incorporated in the

most recent version of BOADICEA (version 6).21 However,

these PVs only explain on average 0.31% of residual breast

cancer familial variance,21 so not considering these PVs is

unlikely to have materially impacted our results.

We previously conducted a population-based study of

women with breast cancer diagnosed at a young age in

ABCFR and confirmed that germline TP53 PVs occur

among women diagnosed at a very young age.38 Here, we

estimated the PV frequency to be 0.017%, similar to the

1/5,000 estimated by a segregation analysis of 278 breast

cancer families ascertained via population-based cases

diagnosed before age 30 years.39 Reliable breast cancer

risk estimates from population-based studies associated

with TP53 PVs are lacking. Two studies of sarcoma families

reported a breast cancer cumulative risk for TP53 PVs of

approximately 37% to age 80 years and 54% to age 70

years, respectively.40,41 Although these studies did not

report confidence intervals for their risk estimates, our con-

fidence intervals include those point risk estimates and

therefore are not significantly different. Another prospec-

tive analysis from the longitudinal Li-Fraumeni Syndrome

Study reported a breast cancer cumulative risk of approxi-

mately 56% to age 60 years, higher than our estimate

and outside our confidence intervals.42 However, the par-

ticipants in that study were from families with Li-

Fraumeni syndrome, who were ascertained on the basis

of family history of cancer, including family history of

breast cancer. That was a prospective study with no adjust-

ments for the ascertainment of study participants. There-

fore, the risk estimate of the longitudinal Li-Fraumeni Syn-

drome Study would be applicable to womenwith TP53 PVs

with cancer family history. On the other hand, the esti-

mates in our study are based on families from popula-
The American Jo
tion-based studies of breast cancer, and our analysis has

adjusted for the ascertainment process and allowed for

the modification of cancer risks by the residual familial

component. As a result, our estimate represents the average

risk for women with TP53 PVs unselected for family his-

tory and would be expected to be lower than the estimates

for those with family history of breast cancer—similar to

the patterns observed previously for the risks for women

with BRCA1/2 PVs.3,43 Since the TP53 PV risks are assumed

to be modified by the residual familial component, the

breast cancer risk predicted by the model will vary by the

exact family history, and the risks for those with one or

two affected relatives will be higher than the average risk.

The findings of the current study can be used to update

breast cancer-risk models, in particular BOADICEA, which

currently considers the effects of PVs in known major

genes and a polygenic component.21 Thus, the model

could be updated by incorporating the recessive compo-

nent, using the revised estimate for the polygenic variance,

and adding TP53 PVs. However, the extent to which

including the additional genes and using the updated

polygenic variance improves breast cancer-risk prediction

overall needs to be investigated. Moreover, such a revised

model would need to be validated with independent

studies.

To allow for the possibility that not all PVs can be de-

tected by the test methods used, our analysis included a

test sensitivity parameter, which was assumed to be

�90%. The actual sensitivity is difficult to estimate and

will depend on the methods used. The current implemen-

tation of BOADICEA assumes sensitivities of 89%, 96%,

92%, 98%, and 94% for BRCA1, BRCA2, PALB2, CHEK2,

and ATM, respectively, on the basis of typical clinically

testing approaches,2,21 but the sensitivity will be lower

for research testing, particularly because large rearrange-

ments would not have been detected in the targeted

sequencing used in SEARCH.2 Using lower test sensitivities

might have resulted in some underestimation of the poly-

genic component and some overestimation of the contri-

butions of rare PVs to familial aggregation, through the

estimation of higher PV frequencies. However, the differ-

ences would be small, as our estimates of PV frequencies

for BRCA1 and BRCA2 were slightly greater than, and the

estimates for PALB2, CHEK2, and ATM were similar to,

those assumed in the BOADICEA, which had been derived

from large population-based targeted-sequencing data and

adjusted for the test sensitivity of targeted-sequencing.21

On the other hand, by using lower test sensitivities, our

analysis reduced the possibility that the recessive risk

component is simply due to unidentified variants in any

of the considered major genes; our more conservative

sensitivity analysis assuming the test sensitivity to be

80% still provided evidence for a recessive risk component.

Our study has several strengths. First, it included data

from more than 17,000 three-generational families ascer-

tained via probands from population-based studies and

screened for high- and moderate-risk PVs in the major
urnal of Human Genetics 109, 1777–1788, October 6, 2022 1785



known susceptibility genes. Second, our study incorpo-

rated the explicit age-specific effects of PVs in PALB2,

CHEK2, ATM, and TP53 in addition to BRCA1 and BRCA2

while modeling the residual familial variance of breast can-

cer as a function of age with a polygenic component.

The study has also some limitations. First, family history

in some families was self-reported and therefore subject to

reporting errors, though reporting of breast cancer in first-

degree relatives is generally considered to be accurate.44

Second, we modeled the major genes by using a single lo-

cus with eight alleles and assumed the genes were in a

dominant hierarchy rather than seven loci each with two

alleles. While this approach substantially reduces the

computational time, it could introduce some imprecision

in the parameter estimates, although the impact is likely

to be minimal because the PVs in the known genes are

rare. The polygenic component was also approximated

with a binomial distribution inherited under the hyper-

geometric model; previous analyses had found that results

are insensitive to the number of loci assumed,12 but this

might not be true formore complexmodels. Third, thema-

jority of our probands were of White European ancestry;

therefore, our findings might not be applicable to other

ethnicities.

In conclusion, by considering the explicit effects of es-

tablished major breast cancer-susceptibility genes and

polygenes and using the largest sample size of its kind,

our analysis estimates the proportion of breast cancer fa-

milial aggregation that is explained by established suscep-

tibility genes and variants and provides evidence for an

additional recessive risk component, which could explain

a substantial proportion of the residual familial aggrega-

tion, especially at a younger age. Our findings are infor-

mative for the design of sequencing studies to identify

novel breast cancer-susceptibility genes and modeling

breast cancer genetic susceptibility for disease risk

prediction.
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