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Background: Kidney renal clear cell carcinoma (KIRC) is an inflammation-

related carcinoma, and inflammation has been recognized as an important

factor in inducing carcinogenesis. To further explore the role of inflammation in

KIRC, we developed an inflammation-related signature and verified its

correlation with the tumor micro-environment.

Methods: After the differential inflammation-related prognostic genes were

screened by Lasso regression, the inflammation-related signature (IRS) was

constructed based on the risk score of multivariate Cox regression. Then, the

prognostic value of the IRS was evaluated by Kaplan-Meier analysis, receiver

operating characteristic (ROC) curve analysis and multivariate Cox regression.

Gene set variation analysis (GSVA) was applied to screen out enriched signaling

pathways. Infiltrated immune cells, tumor mutational burden (TMB) and

immune checkpoints were explored by CIBERSORTx and maftool.

Results: Four genes (TIMP1, PLAUR, CCL22, and IL15RA) were used to construct

the IRS in patients with KIRC. Kaplan-Meier analysis and multivariate Cox

regression identified that the IRS could independently predict the prognosis

of patients with KIRC in the training and validation groups. The diagnostic value

of the nomogram increased from 0.811 to 0.845 after adding the IRS to the

multiparameter ROC analysis. The GSVA results indicated that IRS was closely

related to primary immunodeficiency and antigen processing and presentation.

The immune checkpoint LAG3 was highly expressed in patients with high-risk

score (p < 0.05), while CD274 (PD-L1) and HAVCR2 were highly expressed in

patients with low-risk score (p < 0.001). There was a significant positive

correlation between the high-risk score group and CD8+ T, activated CD4+

memory T, gamma and delta regulatory T and M0 macrophage cells, while the

low-risk score group was negatively associated with B memory, plasma, resting

CD4+ memory T, activated NK, M1 macrophages and resting mast cells.

Conclusion: We found that the IRS might serve as a biomarker to predict the

survival of KIRC. Moreover, patients with high or low-risk score might be

sensitive to immune drugs at different immune checkpoints.
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Introduction

Worldwide, there were 431,288 newly diagnosed kidney

cancers in 2020, which represented approximately 2.2% of all

cancers (Sung et al., 2021). In United States, according to the

data of 2022, the incidence of kidney cancer occupied sixth

and ninth in the new cancers of male and female, respectively

(Siegel et al., 2022). Of these, renal cell carcinoma (RCC)

accounts for approximately 90% of all kidney malignancies.

The main pathological type of RCC is kidney renal clear cell

carcinoma (KIRC), which accounts for 70%–80% of cases

(Nerich et al., 2014). Partial and radical nephrectomy is the

optimal therapeutic choice for located KIRC. Unfortunately,

approximately one-third of patients with localized RCC

inevitably develop metastases, which need systemic treatment

to control the disease (Escudier et al., 2019). Given the poor

therapeutic outcome, chemotherapy was used to cure patients

with KIRC. In recent years, to further improve the prognosis of

KIRC, immunotherapy has been applied clinically (Escudier

et al., 2019). However, few biomarkers can precisely predict

the prognosis and therapeutic outcome of KIRC, which hinders

the personalized application of these therapies and the creation

of new drugs. This dilemma prompted us to explore the

potential mechanism of the occurrence and progression

of KIRC.

Chronic inflammation has been recognized as an important

factor for carcinogenesis by inducing oxidative and nitrative

DNA damage (Ohnishi et al., 2013). Moreover, inflammatory

cells are a major component of the tumor microenvironment and

an indispensable factor in promoting tumor proliferation,

neoplastic processes, survival, and migration (Okada et al.,

2021). Tumor-associated inflammation has been widely

studied and listed as a hallmark of cancers (Hanahan, 2022).

Moreover, Zhao et al. (2019) identified five immune- and

inflammation-related core clusters by integrating multiomics

data to identify the role of immunity and inflammation in

KIRC. To further explore the role of inflammation in KIRC,

Marona et al. (2017) identified that low MCPIP1 levels could

increase proliferation, tumor outgrowth, and vascularity by

upregulating inflammation by degrading mRNAs encoding

proinflammatory cytokines in KIRC. Clinically, an included

10-study meta-analysis identified that the systemic immune-

inflammation index could independently predict survival

outcomes in patients with renal cell carcinoma. KIRC is an

inflammation-related carcinoma, which inspired us to clarify

the role of inflammation in KIRC. And these evidences suggest

that we should construct an inflammation-related signature

(IRS) and validate whether it can be used as a potential

biomarker for KIRC.

Therefore, this study first constructed an IRS for patients

with KIRC and validated the prognostic value of this signature.

Furthermore, we explored the correlation between the IRS and

immunotherapy by evaluating the tumor mutational burden,

immune checkpoint and immune cell infiltration in KIRC.

Materials and methods

Data collection

The clinical and RNA_seq data of KIRC were downloaded

from Cancer Genome Atlas (www.gdc.cancer.gov, TCGA) (Wei

et al., 2018) database. After excluding patients with

postoperative survival times shorter than 30 days, the

remaining patients were randomly divided into the TCGA

training group (n = 364) and TCGA test groups (n = 156).

Then, the TCGA training group was used to develop the IRS,

while the TCGA test group was employed to validate the

signature. GSE29609 (Edeline et al., 2012) was extracted

from the Gene Expression Omnibus (Edgar et al., 2002) to

further estimate the diagnostic and prognostic value of the IRS.

Before analysis these clinical and RNA_seq data, the

removeBatchEffect function in limma package was used to

reduce the batch effects of the TCGA and GEO datasets.

Identification of differentially expressed
inflammatory genes and biological
functional analysis

To identify the differentially expressed genes, the mRNA data

of 520 KIRC samples and 72 normal samples were compared by

the “limma” package with False Discover 99 Rate (FDR) < 0.05.

The inflammation-related genes were provided by hallmark

genes of the Molecular Signature Database (Subramanian

et al., 2005). In detail, the inflammation-related gene set was

generated by a computational methodology based on identifying

gene set overlaps and retaining genes that display coordinate

expression. Moreover, the Molecular Signatures Databases team

provided the microarray data that served for refining and

validation of the inflammation-related gene set online

(Liberzon et al., 2015). Furthermore, the “Venn Diagram”

package in R software was used to screen out the co-expressed

inflammation-related genes in the TCGA dataset and GSE29609.

To explore possible biological functions and signaling

pathways, the “cluster Profiler” package in R software was

used to analyze all differentially expressed genes. In Gene

Ontology (GO) enrichment analysis, the results with

Frontiers in Genetics frontiersin.org02

Yu et al. 10.3389/fgene.2022.866696

http://www.gdc.cancer.gov
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.866696


p-value < 0.05 and q-value < 0.05 were collected and visualized in

bar plots based on molecular function (MF), biological process

(BP) and cellular component (CC) categories. Similarly,

according to the results of Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis, the signaling pathways with

p-value < 0.05 and q-value < 0.05 were included and

visualized in a bubble plot. Based on a linear regression-based

algorithm and a label propagation algorithm, GeneMania (www.

genemania.org) (Warde-Farley et al., 2010) was employed to

predict interacting genes and generate a visual figure.

Development and validation of an
inflammation-related signature

To identify a stable and predictive inflammation-related

signature, a lasso regression model was employed to evaluate

all differentially expressed inflammation-related genes. In this

process, the penalty parameter (λ) of the model was controlled by

10-fold cross-validation. Referring to the lasso results, the IRS

was constructed based on the selected genes. Furthermore, risk

score was generated in a multivariate Cox regression model with

the following formula:

Risk score � ∑
n

i�1
coefficientipEXP(mRNA)i (1)

All patients were divided into high- and low-risk groups

according to the median risk scores. To validate the prognostic

value of the IRS, Kaplan-Meier analysis was performed to

compare the survival time and outcomes between the high-

and low-risk score KIRC patients in the TCGA training

group, TCGA test group and GSE29609 group.

Correlation of the inflammatory signature
with clinical parameters

To further validate the relationship between the IRS and

clinical parameters, subgroups were generated by classifying age,

sex, T stage, metastasis, and AJCC stage and comparing the

different risk score in these subgroups. To assess the

discernibility of the IRS, we performed principal component

analysis and depicted the risk score plot depending on the risk

score and survival outcome. The Wilcoxon rank-sum test was

used to compare the risk score in each subgroup. Kaplan-Meier

analysis was performed to estimate the prognosis of different risk

score in each subgroup. Receiver operating characteristic (ROC)

curve analysis was used to assess the diagnostic ability of the IRS

in the TCGA training, TCGA test and GSE29609 groups.

Furthermore, the independent prognostic ability of the IRS

and clinical parameters was evaluated by a multivariate Cox

regression model.

Gene set variation analysis, tumor
mutational burden analysis, and immune
cell infiltration

Gene Set Variation Analysis (GSVA) (Hänzelmann et al.,

2013) was performed by the “GSVA” package in R. The GSVA

results were generated by comparing the high- and low-risk score

groups and visualized by heatmap. We uploaded the

transcriptome data of high- and low-risk score patients in

TCGA training and a collection of KEGG pathways from the

Molecular Signature Database (MSigDB, version 7.4) (Liberzon

et al., 2015) for GSVA. For the estimation of tumor mutational

burden (TMB) in KIRC, tumor mutational burden analysis used

the “maftools” package to calculate the mutation rate of each

sample downloaded from the TCGA database. After calculating

the mutation rate, the samples were divided into high and low

TMB groups according to the TMB score, and the survival time

and outcome between the groups were compared by Kaplan-

Meier analysis.

TMB and immune checkpoint-associated mismatched

repair genes in tumor tissue were considered potential

biomarkers for predicting immunotherapy response. Thus,

we compared the transcriptome data of CD274 (PD-L1),

PDCD1LG2 (PD-L2), CTLA4, HAVCR2, LAG3, PDCD1,

TIGIT, and SIGLEC15 in both risk score groups.

Furthermore, after normalization of transcriptome gene

expression data of KIRC patients with the “limma” package,

the CIBERSORT algorithm was utilized to evaluate the immune

infiltration of 22 leukocyte subtypes (LM22), which were

downloaded from the known reference set on the

CIBERSORTx website (Newman et al., 2015). The infiltration

difference between the high- and low-risk score groups was

calculated with the Wilcoxon rank-sum test, and a boxplot was

used for visualization. Meanwhile, Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm, acquiring data

from the TCGA-KIRC cohort, was used to predict and compare

the immunotherapy response of patients in high- or low-risk

score group (Jiang et al., 2018; Fu et al., 2020).

Development and validation of a
predictive nomogram

To quantitatively predict the prognosis of KIRC patients, a

nomogram was carefully established based on the risk score and

clinical parameters, including age, M stage and AJCC stage. Of

these, patients over 60 years old were divided into elderly group

and the remaining young group. For the purpose of validation,

the concordance index (C-index), multiparameter ROC

analysis, decision curve analysis (DCA) and calibration

curves were used to validate the reliability and accuracy of

the nomogram.
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Statistical analysis

All analyses were carried out using R software, version

4.1.2. Quantitative data in two groups were compared using

Student’s t test. Quantitative data were compared with one-

way analysis of variance (ANOVA) or Welch’s test in three or

more groups. P < 0.05 was regarded as statistically

significant.

Results

Patient characteristics, co-expressed
inflammation genes and biological
functional analysis

Figure 1 shows the workflow of our work. Table 1 presents

the clinicopathologic features of all included patients. There

were 364, 156, and 39 patients included in the TCGA training,

TCGA test and GSE29609 groups, respectively. Figure 2A

provides the survival outcomes of the TCGA-train, TCGA-

test and GSE29609 groups, and no significant difference

existed among these three groups. A total of

15,453 differentially expressed genes were collected with

the absolute value of the log2-transformed fold change

(FC) > 1 and the adjusted p value (adj. p) < 0.05 was used

as the threshold after normalization and batch effect removal.

Then, 108 co-expressed inflammatory genes were selected by

Venn Diagram (Figure 2B). Further GO analysis showed that

the co-expressed inflammatory genes were positively

correlated with cytokine-mediated signaling pathways,

leukocyte migration, the external side of plasma and

immune receptor activity (Figure 2C). The results of KEGG

analysis showed that the co-expressed inflammatory genes

were positively associated with cytokine–cytokine receptor

interactions (Figure 2D).

FIGURE 1
The workflow of this study.
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As shown in Figure 2E, the lasso regression model selected

five inflammatory genes (CX3CL1, TIMP1, PLAUR, CCL22, and

IL15RA). To assess the independent prognostic value of these

genes, a multivariate Cox regression model was used to calculate

the five genes. The results illustrated that TIMP1, PLAUR,

CCL22, and IL15RA could independently predict the

prognosis of patients with KIRC (p < 0.05). According to the

GeneMANIA results, we found that TIMP1, PLAUR, CCL22,

and IL15RA proteins were associated with some proteins, such as

CCL14, PF4V1, ACKR2, and PGAP1 (Figure 2F).

Establishment and validation of the
inflammation-related gene signature

Referring to the results of the multivariate Cox regression

model above, TIMP1, PLAUR, CCL22 and IL15RA were used

to construct the IRS. Patients in the three groups were

divided into the high-risk score group and the low-risk

score group according to the median risk score of the

TCGA training group, TCGA test group and

GSE29609 group. As shown in Figures 3A–C, the risk

scores clearly differed between the high- and low-risk

score groups in the TCGA training group, TCGA test

group and GSE29609 group. There were significant

differences in overall survival (OS) between the high- and

low-risk score groups in the TCGA training group

(Figure 3D, p < 0.001). Similarly, patients in the high-risk

score group of TCGA-test group and GSE29609 group were

correlated with worse OS than those in the low-risk group,

even GSE29609 provided only 39 patients (Figures 3E,F, p =

0.002, p = 0.049, respectively). Furthermore, a positive

correlation was found between the increased IRS score

and the increase in mortality in the TCGA training group,

TCGA test group and GSE29609 group (Figures 3G–I).

Correlation between the inflammation-
related signature and clinical parameters

As shown in Figures 4A–C, there were significant differences

in the risk scores at T stage, M stage and AJCC stage in the TCGA

training group (all p < 0.001). Similarly, in the TCGA-test group,

patients with T3-4 or M1 or AJCC stage III-IV were associated

with higher risk scores than those with low stage (Figures 4D–F,

all p < 0.01). In the GSE29609 group, patients with T3-4 or AJCC

stage III-IV were correlated with higher risk scores than patients

with low stage, but not M1 (Figures 4G–I).

Prior to analyzing the prognosis of the subgroups, we

reported that the IRS score could predict the prognosis of the

TCGA training group, TCGA test group and GSE29609 group in

the previous section. In the subgroup analysis, high-risk score

patients in the TCGA training group were associated with worse

OS than those with low-risk scores, including females (Figure 5A,

p < 0.001), males (Figure 5B, p < 0.001), T1-2 (Figure 5C, p =

0.003), M0 (Figure 5D, p < 0.001), and AJCC stage I-II

(Figure 5E, p = 0.007). The results of the subgroup analysis in

the TCGA-test group were similar to those in the TCGA-training

group; patients with high-risk scores were correlated with shorter

OS than patients with low-risk scores, including females

(Figure 5F, p = 0.019), males (Figure 5G, p = 0.048), T1-2

(Figure 5H, p = 0.003), M0 (Figure 5I, p = 0.005), and AJCC

stage I-II (Figure 5J, p = 0.01). We did not perform Kaplan-Meier

analysis in GSE29609 because of the limited number of patients.

Figure 5K illustrates that age, M stage, AJCC stage and IRS score

were independent predictors of patients in the TCGA training

group. To further validate the predictive value of the IRS, we

performed amultivariate Cox regression model in the TCGA-test

group and identified that M1 stage and high-risk scores were

independently associated with worse OS (Figure 5L). As

Figure 5M shows, the areas under the curve (AUCs) of the

IRS score in the TCGA training group were 0.809, 0.708 and

0.720 at 1, 3, and 6 years, respectively. In the TCGA-test group,

the AUC of the IRS score was 0.708, 0.654, and 0.685 at 1, 3, and

6 years, respectively (Figure 5N). Due to the limited number of

TABLE 1 Clinicopathologic characteristics of the included patients.

Characteristic GSE29609 TCGA test TCGA train

n 39 156 364

Age, n (%)

Older 17 (3%) 50 (8.9%) 127 (22.7%)

Young 22 (3.9%) 106 (19%) 237 (42.4%)

Sex, n (%)

female NA 60 (11.5%) 117 (22.5%)

Male NA 96 (18.5%) 247 (47.5%)

T stage, n (%)

1 11 (2%) 74 (13.2%) 193 (34.5%)

2 5 (0.9%) 25 (4.5%) 45 (8.1%)

3 22 (3.9%) 54 (9.7%) 118 (21.1%)

4 1 (0.2%) 3 (0.5%) 8 (1.4%)

M stage, n (%)

M0 25 (4.7%) 115 (21.5%) 302 (56.6%)

M1 14 (2.6%) 30 (5.6%) 48 (9%)

AJCC stage, n (%)

Stage I 15 (2.7%) 72 (12.9%) 189 (33.9%)

Stage II 3 (0.5%) 21 (3.8%) 37 (6.6%)

Stage III 13 (2.3%) 32 (5.7%) 85 (15.3%)

Stage IV 8 (1.4%) 30 (5.4%) 52 (9.3%)

Survival status, n (%)

Alive 22 (3.9%) 99 (17.7%) 250 (44.7%)

Dead 17 (3%) 57 (10.2%) 114 (20.4%)

TCGA, cancer genome atlas; n, number; NA, no data; M, metastasis; AJCC, american

joint committee on Cancer.
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patients in GSE29609, we only calculated the AUCs at 1, 3, and

4 years, which were 0.527, 0.636, and 0.826, respectively

(Figure 5O).

Gene set variation analysis, tumor
mutational burden analysis, and immune
cell infiltration

As shown in Figure 6A, the enrichment pathways included

primary immunodeficiency, antigen processing and presentation

and systemic lupus erythematosus, which were mainly correlated

with inflammation and immune pathways.

The waterfall presented the top 15 most mutated genes,

VHL and PBRM1, making up the majority of the mutations

(Figure 6B). Of these, the majority of mutations were

nonsense mutations, missense mutations and frame shift

del. To further assess the prognostic value of the TMB

score, all patients with TMB scores were divided into four

groups according to the TMB score and IRS score. The TMB in

the high-risk-score group was significantly higher than that in

the low-risk-score group in the TCGA training and TCGA test

groups (Figures 6C,D). The OS of these four groups was

analyzed by Kaplan-Meier analysis, which showed that

patients with low-risk scores and low TMB scores were

associated with a better OS than patients in other groups

FIGURE 2
Construction of inflammation-related signature: the overall survival of included patients (A), the Venn diagram of differentially coexpressed
genes (B), the GO result (C), the KEGG result (D), the results of five genes in multivariate Cox regression model (E), the result of protein–protein
interaction network (F).
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(Figure 6E). Interestingly, LAG3 expression in the high-risk

score group was higher than that in the low-risk score group,

while the expression of mismatch repair genes CD274 (PD-

L1) and HAVCR2 in the high-risk score group was lower than

that in the low-risk score group (Figure 6F). The Wilcoxon

rank-sum test displayed a remarkable discrepancy between

the high- and low-risk score groups in 22 immune cell types.

There was a significant positive correlation between the high-

risk score group and CD8+ T, activated CD4+ memory T,

gamma and delta regulatory T and M0 macrophage cells,

while the low-risk score group was negatively associated

with B memory, plasma, resting CD4+ memory T, activated

NK, M1 macrophages and resting mast cells (Figure 6G).

Referring the results of TIDE, patients with low-risk score

in TCGA training group and test group had higher

immunotherapy response rate than patients with high-risk

score (Figures 6H–K). Similarly, patients with low-risk score

were associated with lower TIDE score than patients with low-

risk score (Figures 6L,M).

Development and validation of a
predictive nomogram

The correlation between the prognosis of KIRC, the IRS score

and clinical parameters was tested using a multivariate Cox

regression model based on the TCGA training group in the

previous section (Figure 5K). The parameters with p < 0.05 were

selected for further analysis according to the results of the

multivariate Cox regression model. To extend the clinical

applicability of the IRS, a nomogram containing parameters

with age, AJCC stage, IRS score and M stage was constructed

FIGURE 3
Prognostic performance of the inflammation-related signature: Principal component analysis results of the TCGA training group (A), TCGA test
(B) and GSE29609 (C). Kaplan-Meier analysis results of the TCGA training group (D), TCGA test (E) and GSE29609 (F). The risk score plots of TCGA
training group (G), TCGA test (H) and GSE29609 (I).
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based on the TCGA training group (Figure 7A). The

concordance index of this module was 0.784 (0.762–0.805).

The calibration curves at 1, 3, and 6 years showed that there

was good agreement between the predicted value and the true

value (Figure 7B). Interestingly, the consistency between the

predicted value and the true value increased with time.

Furthermore, compared with clinical parameters, the IRS

score exhibited potential clinical value (Figure 7C). This

nomogram was superior to either the “all positive” or “all

negative” model in predicting the prognosis of KIRC

(Figure 7D). In detail, module with IRS score was associated

with better DCA curve than module without IRS score. To

further validate the prognostic value of the IRS, we compared

the prognostic value of each factor which built the nomogram.

The Figure 7E shown that the IRS score had highest AUC value

0.726. Multiparameter ROC analysis was also used to calculate

the AUC of the nomogram with or without the IRS score. As

shown in Figures 7F,G, the AUC of the nomogram was obviously

increased from 0.811 to 0.845 after adding the IRS score into the

multiparameter ROC analysis, which identified the prognostic

value of the IRS score.

Discussion

KIRC is an inflammation-related carcinoma with a poor

therapeutic outcome. Although surgery can improve the

prognosis of patients with early-stage KIRC, 20%–40% of

patients will still experience recurrence (Liang, 2020).

Furthermore, a previous study reported that cancer cell-

intrinsic inflammation can facilitate both KIRC metastasis and

the initial progression of KIRC (Nishida et al., 2020). To improve

the prognosis of patients with KIRC, many inflammatory genes

and cytokines were studied to assess their prognostic and curative

FIGURE 4
The risk scores of patients in different clinicopathological parameters: TCGA training group: T stage (A), M stage (B), AJCC stage (C). TCGA-test
group: T stage (D), M stage (E), AJCC stage (F). GSE29609: T stage (G), M stage (H), AJCC stage (I).

Frontiers in Genetics frontiersin.org08

Yu et al. 10.3389/fgene.2022.866696

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.866696


FIGURE 5
The prognostic ability of the risk scores: Kaplan-Meier analysis results of subgroups in TCGA training group: female (A), male (B), T1_2 (C),
M0 (D) and AJCC stage I-II (E); Kaplan-Meier analysis results of subgroups in TCGA test group: female (F), male (G), T1_2 (H), M0 (I) and AJCC stage
I_II (J); Results of multivariate Cox regression model for parameters in TCGA training group (K); Results of multivariate Cox regression model for
parameters in TCGA test group (L); Receiver operating characteristic curve analysis results of TCGA training group (M), TCGA test group (N) and
GSE29609 (O).
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FIGURE 6
The results of gene set variation analysis (A), the results of tumor mutational burden analysis (B), the correlation of tumor mutational burden
scores and the risk scores in the TCGA training group (C), the correlation of tumor mutational burden scores and the risk scores in the TCGA test
group (D), the OS of the high-risk group compared with that in the low-risk group in the TCGA training group (E), the expression of immune
checkpoints in the high-risk group compared with that in the low-risk group in the TCGA training group (F), and the immune cell infiltration in
the high-risk group compared with that in the low-risk group in the TCGA training group (G). The TIDE immunotherapy response outcome of high-
risk score group (H) and low-risk score group (I) in the TCGA training group, high-risk score group (J) and low-risk score group (K) in the TCGA test
group. The TIDE score of the TCGA training group (L) and the TCGA test group (M).
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value. For example, Yang et al. (2021) identified interferon-

induced transmembrane protein 2, an inflammation-related

gene, as being associated with lymphatic metastasis and poor

clinical outcome of KIRC. Another example of this was

interleukin-6 (IL-6), an inflammation-related cytokine that

could be an independent early-stage immunologic prognostic

factor for KIRC patients. The significant role of inflammation in

KIRC enlightened us to construct an IRS to enhance the

treatment schedule and prognosis of patients with KIRC. The

current study selected four differentially expressed

inflammation-related genes (TIMP1, PLAUR, CCL22, and

IL15RA) and created an IRS based on the four genes. In

further analysis, the AUC of the IRS was 0.809, 0.708, and

0.720 at 1, 3, and 6 years, respectively. Furthermore, the

multiparameter ROC analysis illustrated that the AUC

increased from 0.785 to 0.829 after adding the IRS score to

the analysis. Similarly, the prognostic value was identified in the

validation groups, suggesting that the IRS could be considered a

potential biomarker for KIRC.

There is a close correlation between inflammation-related

genes and the occurrence and progression of KIRC. Therefore,

we would like to introduce the role of the four genes in KIRC.

FIGURE 7
The nomogram of the inflammation-related gene signature and its performance: the nomogram (A), the calibration curves of the nomogram
(B), the calibration curves of different factors (C) and the nomogram (D), the result of ROC analysis with different factors (E), the result of
multiparameter ROC analysis without the risk scores (F), the result of multiparameter ROC analysis with the risk scores (G).
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TIMP1, a key tissue inhibitor of metalloproteinase that regulates

most matrix metalloproteinases, was usually found to be

increased in renal cell carcinoma (RCC) and could affect the

efficiency of radiotherapy (Smyth et al., 2007). Moreover,

TIMP1 could promote the invasion and metastasis of RCC

and predict the prognosis of RCC (Peña et al., 2010; Lu et al.,

2014; Feng et al., 2019). PLAUR belongs to the plasminogen

activation system and is widely involved in various cancer-

specific processes, including inflammation- and immune- and

hypoxia-related pathways (Liu et al., 2021). In addition, several

studies have identified that PLAUR is associated with the

prognosis of patients with RCC using an online database

(Shen et al., 2020; Li et al., 2021). Jin et al. (2019) reported

that CCL22 was overexpressed in RCC and could promote the

progression and metastasis of RCC by downregulating miR-34a-

5p. Furthermore, a study found that CCR4, the chemokine

receptor for CCL2 and expressed on T cells, could be

considered a therapeutic target for cancer immunotherapy

(Yoshie, 2021). Interestingly, in the current study, the

infiltration of T cells, including CD8+ T cells, gamma and

delta regulatory T cells and activated CD4+ memory T cells,

was higher in the high-risk score group, which suggested that the

high-risk score group might be sensitive to immunotherapy.

Although few studies have reported IL15RA in RCC, it could

predict the prognosis of some cancers and play a protective role

in the progression and treatment of some cancers, including

colorectal carcinoma, breast carcinoma and multiple myeloma

(Marra et al., 2014; Borrelli et al., 2018; Yang et al., 2019; De

Mattia et al., 2021). The mechanism of this phenomenon might

be caused by upregulation of IL15RA, which could induce the

proliferation and activation of NK cells and activate peripheral

blood mononuclear cells upon coculture in a paracrine signaling

manner (Marra et al., 2014; Borrelli et al., 2018). In the present

study, NK cell infiltration in the low-risk-score group was

significantly higher than that in the high-risk-score group,

which might be one reason why patients in the low-risk-score

group had better OS.

To identify the correlation between the IRS and

clinicopathological features, we compared the IRS score in

different subgroups. The results indicated that high risk scores

were associated with T3-4 stage, AJCC stage III-IV and M1,

which was also found in the validation group, except for the M

stage of GSE29609. A reasonable explanation was the limited

number of patients in GSE29609. Moreover, Kaplan-Meier

analysis identified that the IRS score could distinguish the

prognosis of patients in the male, female, T1-2, AJCC stage

I-II and M0 subgroups, and these results also appeared in the

TCGA test. Unfortunately, GSE29609 did not perform subgroup

analysis due to the limited samples. Furthermore, the IRS clearly

differed the patients in the high- and low-risk score groups in all

groups. Therefore, we successfully identified the stability and

universality of the IRS.

To explore the related pathways, GSVA was used to

determine the enriched KEGG pathways by comparing the

transcriptome data of the high- and low-risk score groups.

The enrichment pathways included primary

immunodeficiency, antigen processing and presentation,

allograft rejection and systemic lupus erythematosus, which

were mainly correlated with inflammation and immune

pathways. In accordance with the present results, Zhang et al.

(2021) also constructed an inflammation-related signature for

gastric carcinoma, and the enriched KEGG pathways were

associated with immune pathways. According to the results of

tumor mutational burden analysis, VHL and PBRM1 made up

the majority of the mutations. Gong et al. (022) reported that

VHL gene expression can significantly inhibit the proliferation

ability of RCC and promote its apoptosis. However, the high

mutation of VHL suggested that it might be a therapeutic target

in KIRC. Furthermore, immune checkpoints are widely focused

biomarkers of immunotherapy. PD-L1 and HAVCR2 were

significantly higher in the low-risk-score group, which

suggested that patients in the low-risk-score group might be

sensitive to PD-L1-related immunotherapy. As mentioned in the

literature review, previous studies reported that many cancers

with high TMB scores were usually associated with better survival

after receiving immunotherapy (Valero et al., 2021). However,

this outcome was contrary to the effect of TMB in RCC, which

suggested that a high TMB score could not bring survival benefit

to patients who received immunotherapy (Wood et al., 2020).

Similarly, the high-risk score group was correlated with higher

TMB but was associated with lower expression of PD-L1 and

HAVCR2 in this study. Moreover, in our study, patients with

low-risk score were associated with lower TIDE score than

patients with high-risk score, which might predict a poor

response of patients with high-risk score to anti-PD1 or anti-

CTLA4 immunotherapy (Jiang et al., 2018). Therefore, compared

with patients in the low-risk score group, those in the high-risk

score group might benefit less from immunotherapy with the

PD-L1 and HAVCR2 immune checkpoints. However, the high-

risk score group was positively correlated with the immune

infiltration of CD8+ T cells, activated CD4+ memory T cells,

gamma and delta regulatory T cells and macrophages. Therefore,

combining the results of TMB, immune checkpoint and immune

infiltration, these results might be interpreted cautiously by

patients in the high-risk score group, as they might benefit

from other immune checkpoints, such as LAG3, rather than

PD-L1. Of course, this explanation requires further experiments

and studies. Regardless of the explanation, the results of the

present study suggest that the IRS is a robust biomarker to predict

outcomes and treatment responses in KIRC patients.

This study first identified an inflammation-related signature

in KIRC, and we demonstrated its value. It has the potential to

become a powerful tool in the management of KIRC patients in

clinical practice.
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Conclusion

We found that the IRSmight serve as a biomarker to predict the

survival of KIRC. Moreover, patients with high or low risk scores

mightbe sensitive to immunedrugsatdifferent immunecheckpoints.
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