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ABSTRACT
Background  The microbiota is emerging as a key 
factor in the predisposition to insulin resistance and 
obesity.
Objective  To understand the interplay among gut 
microbiota and insulin sensitivity in multiple tissues.
Design  Integrative multiomics and multitissue approach 
across six studies, combining euglycaemic clamp 
measurements (used in four of the six studies) with 
other measurements of glucose metabolism and insulin 
resistance (glycated haemoglobin (HbA1c) and fasting 
glucose).
Results  Several genera and species from the 
Proteobacteria phylum were consistently negatively 
associated with insulin sensitivity in four studies 
(ADIPOINST, n=15; IRONMET, n=121, FLORINASH, 
n=67 and FLOROMIDIA, n=24). Transcriptomic analysis 
of the jejunum, ileum and colon revealed T cell-related 
signatures positively linked to insulin sensitivity. 
Proteobacteria in the ileum and colon were positively 
associated with HbA1c but negatively with the number 
of T cells. Jejunal deoxycholic acid was negatively 
associated with insulin sensitivity. Transcriptomics 
of subcutaneous adipose tissue (ADIPOMIT, n=740) 
and visceral adipose tissue (VAT) (ADIPOINST, n=29) 
revealed T cell-related signatures linked to HbA1c and 
insulin sensitivity, respectively. VAT Proteobacteria were 
negatively associated with insulin sensitivity. Multiomics 
and multitissue integration in the ADIPOINST and 
FLORINASH studies linked faecal Proteobacteria with 
jejunal and liver deoxycholic acid, as well as jejunal, VAT 
and liver transcriptomic signatures involved in the actin 
cytoskeleton, insulin and T cell signalling. Fasting glucose 
was consistently linked to interferon-induced genes and 
antiviral responses in the intestine and VAT. Studies in 
Drosophila melanogaster validated these human insulin 
sensitivity-associated changes.

Conclusion  These data provide comprehensive insights 
into the microbiome-gut-adipose-liver axis and its 
impact on systemic insulin action, suggesting potential 
therapeutic targets.Cite Now

INTRODUCTION
Obesity is associated with multiple metabolic alter-
ations, specifically insulin resistance and type 2 
diabetes (T2D). The last years witnessed the recog-
nition of strong systemic effects of microbiota 
in determining propensity to obesity, T2D and 
metabolic syndrome.1 2 In experimental models, 
the gut microbiota has been shown to increase 
intestinal permeability, favouring the transloca-
tion of microbiome-derived lipopolysaccharide 
(LPS) to the bloodstream. This leads to metabolic 
endotoxaemia, which initiates obesity and insulin 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ In recent years, there has been growing 
recognition of the significant systemic effects 
of microbiota diversity and composition on the 
predisposition to obesity, type 2 diabetes and 
metabolic syndrome. However, most studies 
investigating the connections between gut 
microbiota and insulin sensitivity have used 
single-omics approaches focused on specific 
tissues and limited to individual human studies. 
Consequently, our understanding remains 
fragmented. The limitations of previous studies 
highlight the necessity for a more integrative 
approach to comprehend the interplay among 
gut microbiota, intestine, adipose tissue and 
liver in influencing systemic insulin action.
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resistance.3 4 While some research has explored the links between 
gut microbiota and insulin sensitivity in humans, most studies 
have used single-omic approaches focussing on individual tissues 
and are often limited to a singular human cohort. Consequently, 
our understanding remains fragmented, lacking a holistic under-
standing of the intricate interplay among the gut microbiota, 
intestine, adipose tissue and liver influencing systemic insulin 
action.5 The limitations of prior studies underscore the need for 
a more comprehensive and integrative approach to grasp the 
complexities of these interactions.

In this work, we conducted an unparalleled investigation of 
the gut-adipose-liver axis in humans by applying a pioneering 
comprehensive multiomics, multitissue, cross-cohort integrative 
approach encompassing transcriptomics in the intestine (jejunum, 
ileum and colon), liver and adipose tissue (both visceral and 
subcutaneous). In addition, we incorporated plasma metabolo-
mics, lipidomics of the intestine and plasma, and faecal, ileal and 
colon metagenomics, coupled with the gold standard assessment 
of insulin sensitivity using the hyperinsulinaemic-euglycaemic 
clamp, complemented by indirect measurements of insulin sensi-
tivity such as fasting glucose and glycated haemoglobin (Hb1Ac) 
levels. This investigation was performed across six independent 
studies (ADIPOINST, n=29; IRONMET, n=121; SIMMU-
NIDIA, n=55; FLOROMIDIA, n=37; FLORINASH, n=80 and 
ADIPOMIT, n=740, online supplemental table 1) and valida-
tions in Drosophila melanogaster. Our unique approach high-
lighted an intricate crosstalk between the intestine, liver and 
adipose tissue and revealed a robust and reproducible microbial-
metabolic-transcriptomics signature involving Proteobacteria, 
bile acids and T cell-related genes linked to insulin sensitivity.

RESULTS
Proteobacteria and Erysipelotrichaceae species are negatively 
associated with insulin sensitivity
Few studies have investigated the relationship between gut 
microbiota and insulin sensitivity using the hyperinsulinaemic-
euglycaemic clamp.6–11 Importantly, all these studies assessed 
microbial composition using 16S rRNA sequencing, which did 

not provide information on microbial composition at the species 
levels or microbial function and did not take into account the 
compositional nature of the metagenomics datasets. To over-
come these limitations, we analysed the faecal microbiota of 
three independent studies (ADIPOINST, n=15; IRONMET, 
n=121 and FLORINASH, n=67) by shotgun metagenomics. 
We applied linear regression models in the log-scale taking into 
account the underlying compositional structure of the metag-
enomics data using the analysis of compositions of micro-
biome with bias correction (ANCOM-BC)12 adjusting for age, 
sex and body mass index (BMI). We found a consistent nega-
tive association of insulin sensitivity with several genera and 
species (figure 1A-E and online supplemental tables 2–7) from 
the Erysipelotrichaceae family and the Proteobacteria phylum, 
specifically from the Enterobacteriaceae family, across three 
independent studies. We further validated these results on a 
subset of patients from the FLOROMIDIA cohort with avail-
able hyperinsulinaemic-euglycaemic clamps (n=24) using faecal 
16S rRNA sequencing. Once again, the genus Desulfovibrio from 
the Proteobacteria phylum was strongly negatively associated 
with insulin sensitivity (online supplemental figure 1 and online 
supplemental table 8).

Conversely, insulin sensitivity was positively associated with 
microbial species from the Bifidobacterium and Prevotella 
genera. In the ADIPOINST and FLORINASH cohort, we also 
found a positive association between short-chain fatty acid 
(SCFA)-producing species from the Blautia and Faecalibacte-
rium genus and insulin sensitivity (figure 1D-E). Recent studies 
also demonstrate the causal role of gut microbiota in insulin 
sensitivity regulation. Faecal microbiota transplantation (FMT) 
from lean donors has been shown to enhance peripheral insulin 
sensitivity,7 9 whereas FMT from metabolic syndrome donors has 
had the opposite effect.6 Consistent with our results, FMT from 
lean male donors to male subjects with obesity increased SCFA-
producing bacteria like Bifidobacterium pseudolongum, while 
reducing Escherichia coli levels compared with the autologous 
group.9 Additionally, increases in Desulfovibrio spp. predicted a 
≥10% decrease in insulin sensitivity, whereas Prevotellaceae spp 
predicted non-deterioration.6 Similarly, treatment with vanco-
mycin in male patients with obesity decreased peripheral insulin 
sensitivity and increased gram-negative bacteria, mainly Proteo-
bacteria.8 Elevated Proteobacteria levels have also been observed 
in individuals with T2D,13 14 although these studies often did 
not account for medication use. Conversely, other studies found 
no clear link between increased Proteobacteria and insulin sensi-
tivity after vancomycin treatment in obese individuals,15 and 
under certain conditions, a decrease in Proteobacteria has been 
associated with insulin sensitivity or with improved metabolic 
outcomes, such as after gastric bypass16 17 or in toll-like receptor 
2 knockout mice.18

Medication is known to impact the gut microbiota.19 20 
Therefore, to rule out the confounding effects of medication 
on our current associations, we conducted additional analyses 
controlling for hypertension and dyslipidaemia medication, as 
well as the consumption of proton pump inhibitors, which were 
the primary medications in our studies. Additionally, although 
the ADIPOINST and IRONMET studies did not include patients 
with T2D (HbA1c <6.5% and fasting glucose <126 mg/dL), nine 
patients (13%) in the FLORINASH cohort had T2D. To further 
eliminate the confounding effect of diabetes, we controlled the 
analyses for the presence of T2D in the FLORINASH cohort. 
Remarkably, after controlling for these additional covariates, not 
only did most of the associations remain significant, but genera 
from the Proteobacteria phylum also exhibited the strongest 

WHAT THIS STUDY ADDS
	⇒ It is the first study to offer comprehensive insights into the 
microbiome-gut(jejunum, ileum and colon)-adipose-liver 
axis and its impact on systemic insulin action in humans, 
underscoring: (1) the pivotal role of Proteobacteria, bile 
acids, and T-cell related genes in influencing insulin 
sensitivity, (2) the involvement of Enterobacteria through 
several of the identified genes, and (3) associations between 
antiviral response genes across different tissues and fasting 
glucose. These findings significantly contribute to our 
understanding of the complex interplay among tissues and 
the gut microbiota within the context of obesity and insulin 
resistance.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR 
POLICY

	⇒ The novel insights gained from our findings may pave the 
way for the development of innovative therapeutic strategies 
targeting the gut microbiota and the intestine-adiposeliver 
axis. Such strategies and targets hold the potential to 
enhance insulin sensitivity and improve metabolic health, 
representing promising avenues for advancement in clinical 
practice.
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Figure 1  Associations of the faecal microbiota composition and functionality with the hyperinsulinaemic-euglycaemic clamp across studies. (A–F) 
Volcano plots of differential microbial (a-c) genera and (d-f) species associated with insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) in the 
ADIPOINST (n=15), IRONMET (n=121) and FLORINASH (n=67) studies, respectively; identified using the analysis of microbiomes with bias correction 
compared. The log2 (Fold Change) and the −log10 (p values) adjusted for multiple testing are plotted for each taxon. Significantly different taxa are 
coloured according to phylum. (g–i) Dot plots of the KEGG pathway over-representation analyses (q value <0.1) mapping the KEGG orthologues 
significantly associated with insulin sensitivity in the ADIPOINST, IRONMET and FLORINASH studies, respectively. Dots are coloured according to the q 
value. KEGG, Kyoto Encyclopaedia of Genes and Genomes.
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negative fold changes and most significant (padj) associations 
with insulin sensitivity (online supplemental figure 2 and online 
supplemental tables 9–11).

Previous studies have overlooked microbial functionality 
analyses, which are essential to accurately capture the host-
microbiome interactions due to microbial functional redun-
dancy.21 Hence, we next performed functional analyses based on 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) orthologs 
in the three studies (online supplemental tables 12–14) and a 
pathway enrichment analysis using those microbial genes asso-
ciated with insulin sensitivity (padj<0.05). In the ADIPOINST, 
IRONMET and FLORINASH studies, we found a consistent 
over-representation of pathways involved in energy metabolism 
such as the tricarboxylic acid cycle, oxidative phosphorylation, 
glycolysis/gluconeogenesis, pyruvate metabolism and the pentose 
phosphate pathway (figure 1G-I and online supplemental tables 
15–17). Notably, both the IRONMET and FLORINASH studies 
showed a strong association with lipoic acid and histidine metab-
olism. Alpha-lipoic acid has been demonstrated to increase 
insulin sensitivity measured with hyperinsulinaemic-euglycaemic 
clamp in patients with T2D.22–24 A functional analysis based on 
KEGG modules identified histidine degradation as one of the 
most significant pathways (online supplemental figure 3 and 
online supplemental tables 18–20). Notably, imidazole propio-
nate, a microbially produced histidine metabolite, is elevated in 
subjects with prediabetes and diabetes and has been shown to 
impair insulin signalling.25 26

A T cell-related jejunal transcriptomic signature is positively 
associated with systemic insulin sensitivity
Recent evidence suggests the gut is a key tissue in obesity-related 
insulin resistance through the gut microbiota-induced inflam-
mation27 by disrupting intestinal permeability and enhancing 
absorption of microbial products such as LPS.3 4 Most of the 
digestion of lipids and sugars takes place in the jejunum and 
is regulated by insulin.28 However, little is known about the 
jejunal transcriptome in relation to insulin sensitivity. Consid-
ering this, we performed an RNAseq of jejunal samples from 
the ADIPOINST cohort (n=26) and applied robust linear regres-
sion models adjusted for age, BMI and sex, to identify jejunal 
transcriptome signatures associated with the hyperinsulinaemic-
euglycaemic clamp (figure 2A and online supplemental table 21). 
A pathway over-representation analysis highlighted that most of 
the upregulated genes played a key role in both the CD4 and 
CD8 helper T cell receptor signalling (TCR) and differentiation 
(Th1 and Th2), innate immunity, modulation of the inflamma-
tory response, the RHO GTPase cycle and maintenance of the 
intestinal epithelium integrity (figure  2B,C and online supple-
mental table 22). CR2, involved in the complement cascade, and 
CCL11, encoding for an eosinophil-specific chemokine, were 
the two jejunal genes that had the highest effect size. These find-
ings hint at the preservation of intestinal immunity and integrity 
with increased insulin sensitivity.

As the TCR signalling pathway had the strongest association 
with insulin sensitivity in the jejunum, we sought to measure the 
content of T cells in the ileum of another independent cohort 
(SIMMUNIDIA, n=42). We found that both the numbers and 
proportion of ileal T cells were negatively associated with 
fasting glucose and HbA1c (figure  2D-G). While interpreting 
these results, it is important to consider that the ileum has a 
slightly distinct immune microenvironment than the jejunum.29 
Overall, these findings indicate that the presence of T cells seems 
to exercise a protective function in the small intestine. Similarly, 

the frequency of Th2 cells has also been negatively correlated 
with insulin resistance in mice and humans in other tissues like 
VAT.30 31

Ileal Proteobacteria and deoxycholic acid (DCA) exhibit a 
negative association with insulin sensitivity
The gut microbiota and derived metabolites are key in intestinal 
barrier disruption and local immune responses that contribute 
to inflammation and lead to metabolic disease.32 However, only 
a limited number of studies have described the composition of 
the small intestine microbiota, and there is even little evidence 
about its relationship with obesity and insulin resistance.33 Thus, 
we analysed the microbiota of the ileum mucosa in the SIMMU-
NIDIA cohort (n=42) using 16S rRNA gene sequencing and 
identified bacterial genera associated with HbA1c as an indi-
rect marker of insulin resistance (figure 2H). In agreement with 
our findings in faeces, bacterial genera from the Proteobacteria 
phylum (Escherichia, Shigella and Enterobacter) were associated 
with insulin resistance (figure 2H and online supplemental table 
23) and negatively with the total number of T cells (figure 2I 
and online supplemental table 24), while the Bifidobacterium 
genus and SCFA-producing genera such as Faecalibacterium 
were negatively associated. In line with our results, a high-fat 
diet (HFD) resulted in alterations in the ileum microbiota that 
impaired the immune system of the small intestine by decreasing 
the number of interleukin (IL)-17-producing CD4 T cells (Th17) 
and induced T2D in mice.34

We next profiled the lipidome and metabolome of the 
jejunum in the ADIPOINST cohort (n=26) to elucidate the 
small intestine biochemical pathways linked to insulin sensi-
tivity. We applied a random forest-based variable selection 
machine learning algorithm to identify lipids and metabolites 
predictive of the hyperinsulinaemic-euglycaemic clamp. DCA, a 
microbial-derived secondary bile acid, was identified as the most 
important metabolite negatively associated with insulin sensi-
tivity (figure 2J and online supplemental table 25). Valine and 
isoleucine were also strongly negatively associated with insulin 
sensitivity, whereas taurine had a positive association.

Consistently, jejunal levels of DCA were positively associated 
with the presence of proinflammatory bacterial species in faeces 
such as Gammaproteobacteria (E. cloacae, E. coli and Citro-
bacter) and negatively associated with species from the Bifido-
bacterium and Faecalibacterium genera (online supplemental 
figure 4 and online supplemental table 26). In line with our 
results, FMT from donors with metabolic syndrome resulted in 
an increase in faecal levels of DCA and other secondary bile acids 
while decreasing the insulin sensitivity of recipient patients.6 
DCA is known to induce intestinal inflammation, disrupting the 
epithelial barrier and increasing gut permeability.35–37 Elevated 
levels of intestinal DCA have been linked to HFDs and western 
diets38 and increased abundance of the genus Clostridium, the 
main producer of DCA, promoting colonic inflammation.38 
Plasma levels of DCA were associated with insulin resistance and 
significantly elevated in patients with T2D.39

Proteobacteria and a T cell-related transcriptomic signature 
in the colon are also associated with insulin sensitivity
We also performed a colon transcriptomics analysis in the 
FLOROMIDIA cohort to identify genes associated with insulin 
sensitivity (figure 3A and online supplemental table 27). Consis-
tent with our findings in the jejunum, pathways involved in the 
CD4/CD8 helper T cell lineage commitment and the Th17 type 
immune response were enriched (figure 3B, online supplemental 
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Figure 2  Cross-cohort and cross-omics associations in the small intestine with insulin sensitivity and resistance. (a) Volcano plot of differentially 
expressed genes associated with insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) in the jejunum of patients from the ADIPOINST cohort 
(n=26) identified by limma-voom analysis controlling for age, sex and BMI. The log2 fold change associated with a unit change in the clamp and the 
log10 p values adjusted for multiple testing are plotted for each gene. (b) Dot plot of pathways significantly associated (q value <0.1) with insulin 
sensitivity in the jejunum identified from a pathway over-representation analysis mapping significantly upregulated genes to the Reactome, Kyoto 
Encyclopaedia of Genes and Genomes, Wikipathways, PID and NetPpath databases. Dots are coloured by the q value. (c) Over-representation analysis 
results were mapped as a function network of pathways using an enrichment map. Edges connect overlapping gene sets, while node size reflects the 
total number of genes in each pathway. Overlapping gene sets tend to cluster together, making it easy to identify functional modules. Functionally 
related pathways are clustered based on the Markov Cluster Algorithm and coloured with the same colour. (d–g) Scatter plot of the partial Spearman’s 
rank correlations (adjusted for age, sex and BMI) between the fasting glucose or HbA1c levels and the number of T cells or the percentage of T cells 
in the ileum of patients from the SIMMUNIDIA cohort (n=43). The ranked residuals are plotted. (h) Volcano plots of differential microbial genera 
associated with HbA1c and (i) the number (#) of T cells in the ileum of the SIMMUNDIA cohort (n=42) identified using ANCOM-BC controlling for age, 
sex and BMI. The log2 (Fold Change) and the −log10 (p values) adjusted for multiple testing are plotted for each taxon. Significantly different taxa are 
coloured according to phylum. (j) Boxplots of the normalised variable importance measure for the metabolites/lipids associated with insulin sensitivity 
in the jejunum of the ADIPOINST cohort. The red dot represents the mean and the colour bar above each plot indicates the sign of the association 
between the metabolites/lipids and insulin sensitivity, with red indicating negative correlation and green positive correlation. Significant metabolites 
were identified using the Boruta algorithm with 5000 trees and 500 iterations. ANCOM-BC, analysis of microbiomes with bias correction; BMI, body 
mass index; HbA1c, glycated haemoglobin.
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Figure 3  Cross-cohort and cross-omics associations in the colon with insulin sensitivity and resistance. (a) Volcano plot of differentially expressed 
genes associated with insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) in the colon of patients from the FLOROMIDIA cohort (n=22), 
identified by limma-voom analysis controlling for age, sex and BMI. The log2 fold change associated with a unit change in the clamp and the log10 
p values adjusted for multiple testing are plotted for each gene. (b) Dot plot of gene ontology-biological processes significantly associated (q value 
<0.1) with insulin sensitivity in the colon identified from a gene ontology over-representation analysis using significant genes associated with insulin 
sensitivity. Dots are coloured by the q value. (c) Gene-concept network depicting the linkage of significant genes associated with insulin sensitivity 
participating in Th17 immune response and CD4+ or CD8+, alpha-beta T cell lineage commitment. (d) Volcano plot of differentially expressed 
genes associated with the fasting glucose levels in the colon of patients from the SIMMUNIDIA cohort (n=22), identified by limma-voom analysis 
controlling for age, sex and BMI. The log2 fold change and the log10 p values adjusted for multiple testing are plotted for each gene. (e) Volcano plots 
of differential microbial genera associated with HbA1c and (F) the number (#) of T cells in the colon of the SIMMUNDIA cohort (n=55) identified 
using ANCOM-BC controlling for age, sex and BMI. The log2 (Fold Change) and the –log10 (p values) adjusted for multiple testing are plotted for each 
taxon. Significantly different taxa are coloured according to phylum. ANCOM-BC, analysis of microbiomes with bias correction; BMI. body mass index; 
HbA1c, glycated haemoglobin.
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table 28). We found that insulin sensitivity was positively asso-
ciated with interleukin 17 receptor E (IL17RE) and interleukin 
6 receptor (IL6R), but negatively with IL-23 subunit alpha 
(IL23A) (figure 3A,C). Similarly, the fasting glucose levels in the 
SIMMUNIDIA cohort were associated with the expression of 
IL-17 receptor B (IL17RB) and tumour necrosis factor receptor 
(CD40) (figure 3D and online supplemental table 29). We then 
analysed the microbiota of the colon in the SIMMUNIDIA 
cohort (n=55) using 16S rRNA gene sequencing. In agreement 
with our results at the ileum, we found that genera from the 
Proteobacteria phylum (Escherichia, Shigella and Gammapro-
teobacteria) were positively associated with insulin resistance 
assessed with the HbA1c and negatively associated with the 
number of T cells in the colon, whereas Faecalibacterium were 

again negatively associated (figure  3E,F and online supple-
mental tables 30,31).

An adipose tissue signature involved in T cell and Rho GTPase 
signalling is associated with systemic insulin sensitivity and 
resistance
Chronic inflammation in the adipose tissue has become a hall-
mark of obesity-related insulin resistance. Hence, we performed 
an RNA-seq analysis of the subcutaneous adipose tissue (SAT) 
of patients with and without obesity from the ADIPOMIT 
cohort (n=740). After fitting robust linear regression models 
controlling for age, BMI and sex, we identified several genes 
associated with HbA1c (figure  4A and online supplemental 

Figure 4  SAT transcriptomic signatures associated with HbA1c. (a) Volcano plot of differentially expressed genes associated with HbA1c in the 
SAT of patients from the ADIPOMIT cohort (n=740), identified by limma-voom analysis controlling for age, sex and BMI. The log2 fold change and 
the log10 p values adjusted for multiple testing are plotted for each gene. (b) Manhattan-like plot of pathways significantly associated (q value <0.1) 
with insulin sensitivity in the jejunum identified from a pathway over-representation analysis mapping significantly downregulated genes and (c) 
significantly upregulated genes to the Reactome, Kyoto Encyclopaedia of Genes and Genomes, Wikipathways, PID and NetPath databases. HbA1C, 
glycosylated haemoglobin; SAT, subcutaneous adipose tissue.

https://dx.doi.org/10.1136/gutjnl-2024-332602
https://dx.doi.org/10.1136/gutjnl-2024-332602
https://dx.doi.org/10.1136/gutjnl-2024-332602
https://dx.doi.org/10.1136/gutjnl-2024-332602
https://dx.doi.org/10.1136/gutjnl-2024-332602


8 Castells-Nobau A, et al. Gut 2024;0:1–17. doi:10.1136/gutjnl-2024-332602

Gut microbiota

table 32). An enrichment analysis highlighted that genes nega-
tively associated with HbA1c were involved in pathways that 
included insulin signalling, insulin resistance, IRS activation 
or leptin signalling, whereas genes positively associated with 
HbA1c were mainly involved in the TCR signalling, the immune 
system and the signalling by Rho GTPases (figure  4B,C and 
online supplemental tables 33,34), consistent with our findings 
in the jejunum and colon. However, while higher expression of 
the genes associated with these pathways in the intestine appears 
to be linked to greater insulin sensitivity, in adipose tissue, it 
seems to be associated with increased insulin resistance. This 
disparity might indicate different stages of development and/or 
asynchronous responses to environmental stimuli. In the intes-
tine, higher insulin sensitivity could correspond to a stronger 
immune response, suggesting that an adequate intestinal immune 
response might prevent gut dysbiosis-induced insulin resistance. 
Conversely, in adipose tissue, an increased immune response 
could indicate insulin resistance-associated adipose tissue 
dysfunction. Chronic activation of this response in adipose tissue 
can become detrimental. However, it should be noted that these 
interpretations remain speculative.

We next performed an RNA-seq analysis of the VAT of 
patients from the ADIPOINST cohort (n=29). After applying 
robust linear regression models adjusted for age, BMI and sex, 
we identified a large number of VAT genes associated with 
insulin sensitivity (figure 5A and online supplemental table 35). 
Remarkably, a pathway enrichment analysis based on the genes 
negatively associated with insulin sensitivity revealed associa-
tions with innate immunity, specifically an over-representation 
of the TCR signalling pathway; the signalling by Rho GTPases; 
the IL4-, IL8-, IL3-, IL-18-, IL2-mediated signalling events and 
anticipated metabolic pathways such as leptin, adiponectin, 
glucagon and phosphatidylinositol 3-kinase (PI3K)/protein 
kinase B signalling (figure 5B and online supplemental table 36).

A multiomics and multitissue integration links Proteobacteria 
with jejunal DCA, jejunal and VAT genes involved in actin 
cytoskeleton, insulin and T cell signalling
Single-omics analyses only provide information about one layer 
of biological regulation. Therefore, we integrated the metag-
enomic, metabolomic and transcriptomic (jejunal and VAT) 
profiles linked to insulin sensitivity in the ADIPOINST cohort 
to obtain a holistic picture of the mechanisms underlying the 
gut microbiome-host interactions related to insulin sensitivity. 
Due to the large number of VAT genes associated with insulin 
sensitivity, we applied a multivariate method based on the 
multiblock-sparse projection to latent structures (MB-sPLS) 
using an L1 regularisation to select the 50 most relevant VAT 
genes and improve interpretation.

Cluster 1 depicted a strong negative association with insulin 
sensitivity and jejunal metabolites and lipids (DCA, valine, isole-
ucine, dehydroepiandrosterone sulfate (DHEAS)), microbial 
genera from the Proteobacteria phylum (Escherichia, Shigella 
and Legionella) and the Erysipelotrichaceae family (Allobac-
ulum and Solobacterium) and transcriptomic signatures in the 
jejunum and VAT (figure 5C). Notably, this cluster was strongly 
negatively associated with cluster 2, with a strong correlation 
among metabolites (taurine), microbial genera (Faecalibacte-
rium), jejunal and VAT genes strongly positively associated with 
insulin sensitivity.

DHEAS), microbial genera from the Proteobacteria phylum 
(Escherichia, Shigella and Legionella) and the Erysipelotricha-
ceae family (Allobaculum and Solobacterium) and transcriptomic 

signatures in the jejunum and VAT (figure  5C). Notably, this 
cluster was strongly negatively associated with cluster 2, with a 
strong correlation among metabolites (taurine), microbial genera 
(Faecalibacterium), jejunal and VAT genes strongly positively 
associated with insulin sensitivity.

To explore the role of the genes of both clusters in relation 
to insulin sensitivity, we conducted gene ontology-biological 
process (GO-BP) and pathway enrichment analyses. The most 
significant BP from jejunal genes in cluster 2 (positively associ-
ated with insulin sensitivity) involved lymphocyte migration and 
the regulation of the immune system (figure 5D). Consistently, 
the most significant jejunal pathways from this cluster included 
modulators of TCR signalling and T cell activation, the comple-
ment cascade, the innate immune system and the Rho GTPase 
cycle (figure 5E), whereas the most significant VAT pathway was 
precisely involved in the regulation of insulin-like growth factor 
(IGF) transport and uptake by IGFBPs (q value=0.0008).

Additionally, supramolecular fibre organisation (CCL1, 
CHRFAM7A, CYFIP2 and RHOH) and actin cytoskeleton organ-
isation (CCL11 and RHOH) were among the GO-BP over-
represented in cluster 2. Actin disassembly in both adipose and 
muscle cells has been shown to inhibit insulin-induced events 
such as glucose transporter recruitment to the cell surface 
and enhanced glucose transport40; actin is indispensable for 
the insulin-stimulated translocation of the glucose transporter 
GLUT4.41 Plasma CCL11, has been positively associated with 
steatosis severity42 and CCL11 knockout mice fed a high-fat, 
high-calorie diet improved insulin sensitivity.43 Additionally, 
RHOH is a key factor for the development and proper function 
of T cells.44 45

Of note, the GO-BP and pathways from the VAT most strongly 
associated with cluster 1 (negatively associated with insulin 
sensitivity) comprised again the regulation of the actin cyto-
skeleton organisation and regulation but also the insulin signal-
ling (figure 5F,G) Similarly, the over-represented BP from these 
cluster in the jejunum also included the musculoskeletal move-
ment and the supramolecular fibre organisation (figure 5H).

Finally, to assess whether the negative associations between 
faecal Proteobacteria and insulin sensitivity translated to the 
adipose tissue, we performed 16S rRNA sequencing of the VAT 
in a subset of patients from the IRONMET cohort (n=12). In 
line with our results, we found that genera from the Proteobac-
teria phylum (Bradyrhizobium and Moraxellaceae families) in the 
VAT were negatively associated with insulin sensitivity (figure 5I 
and online supplemental table 37).

A multiomics and multitissue integration links proteobacteria, 
liver DCA and liver genes involved in actin cytoskeleton, 
insulin secretion and the immune system
The liver plays a central role in modulating glucose and 
insulin. Therefore, we next profiled the liver transcriptome 
of obese patients from the FLORINASH cohort (n=80). 
After fitting robust linear regression models adjusted for age, 
BMI and sex, we identified 1356 genes associated with the 
hyperinsulinaemic-euglycaemic clamp (figure  6A and online 
supplemental table 38). Consistent with our findings in 
the jejunum and the VAT, these genes were involved in the 
TCR signalling, the complement system, the Ras and Rap1 
GTPase signalling and the cytokine–cytokine receptor inter-
action (figure 6B and online supplemental table 39). We also 
profiled the lipidome of the liver of a subset of these patients. 
We found several lysophosphatidylcholines and lysophos-
phatidylethanolamines associated with insulin sensitivity 
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Figure 5  VAT transcriptomic signatures associated with insulin sensitivity and cross-omics and cross-tissue integration in the ADIPOINST cohort. (a) 
Volcano plot of differentially expressed genes associated with insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) in the VAT of patients from 
the ADIPOINST cohort (n=29) identified by limma-voom analysis controlling for age, sex and BMI. The log2 fold change associated with a unit change 
in the clamp and the log10 p values adjusted for multiple testing are plotted for each gene. (b) Manhattan-like pathways significantly associated (q 
value <0.1) with insulin sensitivity in the VAT identified from a pathway over-representation analysis mapping significantly downregulated genes to 
the Reactome, Kyoto Encyclopaedia of Genes and Genomes, Wikipathways, PID and NetPath databases. (c) Correlation circle plot for the integration 
of the jejunum and VAT genes, jejunum metabolites and faecal microbial species associated with insulin sensitivity in the ADIPOINST cohort using a 
multiblock sparse PLS model. Strongly positively associated variables or groups of variables are projected close to one another on the correlation circle 
(~0° angle). The variables or groups of variables strongly negatively associated are projected diametrically opposite (~180° angle) on the correlation 
circle. Variables not correlated are situated ~90° from one another. (d) Dot plot of significantly enriched (q value <0.1) gene ontology-biological 
processes and (e) pathways from jejunal genes strongly positively associated with insulin sensitivity included in cluster 2 with a heatmap displaying 
the gene participating in each biological term. Dots are coloured by the q value and genes in the heatmap are coloured by the log2 Fold Change of the 
association with insulin sensitivity. (f) Dot plot of significantly enriched (q value <0.1) gene ontology-biological processes and (g) pathways from VAT 
and (h) jejunal genes strongly negatively associated with insulin sensitivity included in cluster 1 with a heatmap displaying the gene participating in 
each biological term. Dots are coloured by the q value and genes in the heatmap are coloured by the log2 Fold Change of the association with insulin 
sensitivity. (i) Volcano plots of differential microbial genera associated with insulin sensitivity in the VAT of the IRONMET (n=12) identified using 
ANCOM-BC controlling for age, sex and BMI. The log2 (Fold Change) and the –log10 (p values) adjusted for multiple testing are plotted for each taxon. 
Significantly different taxa are coloured according to phylum. ANCOM-BC, analysis of microbiomes with bias correction; BMI, body mass index; VAT, 
visceral adipose tissue
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Figure 6  Liver transcriptomic signatures associated with insulin sensitivity and cross-omics and cross-tissue integration in the FLORINASH cohort. 
(a) Volcano plot of differentially expressed genes associated with insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) in the liver of patients 
from the FLORINASH cohort (n=80) identified by limma-voom analysis controlling for age, sex and BMI. The log2 fold change associated with a unit 
change in the clamp and the log10 p values adjusted for multiple testing are plotted for each gene. (b) Manhattan-like plot of pathways significantly 
associated (q value <0.1) with insulin sensitivity in the liver identified from a pathway over-representation analysis mapping significant genes to the 
Reactome, KEGG, Wikipathways, PID and NetPpath databases. (c) Boxplots of the normalised variable importance measure for the lipids associated 
with insulin sensitivity in the liver of the FLORINASH cohort (n=41). The bar above each plot indicates the sign of the association between the lipids 
and insulin sensitivity, with red indicating a negative correlation and green a positive correlation. Significant metabolites were identified using the 
Boruta algorithm with 5000 trees and 500 iterations. (d) Volcano plots of differential microbial genera associated with insulin sensitivity (clamp) in 
the liver of a subset of patients from Spain of the FLORINASH cohort (n=17) identified using ANCOM-BC controlling for age, sex and BMI. The log2 
(Fold Change) and the −log10 (p values) adjusted for multiple testing are plotted for each taxon. Significantly different taxa are coloured according 
to phylum. (e) Correlation circle plot for the integration of the liver lipids, liver genes and faecal microbial species associated with insulin sensitivity 
in the FLORINASH cohort using a multiblock sparse partial least squares model. Strongly positively associated variables or groups of variables 
are projected close to one another on the correlation circle (~0° angle). The variables or groups of variables strongly negatively associated are 
projected diametrically opposite (~180° angle) on the correlation circle. Variables not correlated are situated ~90° from one another. (f) Dot plot of 
significantly enriched (q value <0.1) pathways (based on Reactome, KEGG, Wikipathways, PID and NetPath) and (g) heatmap of genes participating 
in these pathways, identified from liver genes strongly negatively associated with insulin sensitivity from the transcriptome signature clustering with 
Proteobacteria and deoxycholic acid and negatively associated with insulin sensitivity. Dots are coloured by the q value and genes in the heatmap are 
coloured by the log2 Fold Change of the association with insulin sensitivity. KEGG, Kyoto Encyclopaedia of Genes and Genomes.
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Figure 7  Enterobacter cloacae mono-association and HFD supplementation produce transcriptional changes in orthologues of insulin sensitivity-
associated genes in the Drosophila intestine and fat body. (a) An experimental scheme was followed to generate Drosophila wild-type flies under 
sterile (germ-free) or monocolonisation conditions. Sterile flies can be easily generated by egg sterilisation. Subsequently, mono-associations were 
established by fly food supplementation with E. cloacae or the vehicle (sterile flies). On the 10th day of adulthood, dissections were conducted. 25–30 
fly intestines or fat bodies were collected per sample. For complete flies, eight adults were collected per sample. Quantitative reverse transcription-
PCR results; bars represent relative gene expression of b) hig, c) Rac1, (d) Cyflip, (e) Deaf, (f) drk, (g) Zir, (h) Col4a1, (i) Moe, (j) siz, (k) Past1, (l) cta, 
(m) ssh, (n) vib, (o) Ac76E, (p) Dsor1, (q) mys, (r) dlip2 and (s) Hpd in flies fed with SD and HFD non-colonised with E. cloacae or left sterile for the. 
P values were determined using the one-way analysis of variance combined with Fisher’s (least significant difference) multiple comparisons test 
when unequal variances Kruskal-Wallis non-parametric test with multiple comparisons was conducted. (t) Larval haemolymph glucose clearance 
after glucose feeding at 0, 10, 20, 30 and 90 min. Statistical significance at each time point was tested using an unpaired, two-sided t-test. n=3 
independent replicates pulling eight larvae each. Error bars represent SE of the mean (#p<0.1, *p<0.05, *p<0.01 and *p<0.001). (u) Schematic 
representation of FOXO activation through insulin signalling in Drosophila. HFD, high-fat diet; SD, standard diet
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Figure 8  Cross-cohort and cross-tissue transcriptomic associations with fasting glucose levels. Volcano plot of differentially expressed genes 
associated with the fasting glucose levels in the (a) jejunum, (b) ileum, (c) VAT and (g) colon from the ADIPOINST (n=26), SIMMUNIDIA (n=16), 
ADIPOINST (n=29) and FLOROMIDIA (n=37) studies, respectively. The log2 fold change associated with a unit change in the fasting glucose levels 
and the log10 p values adjusted for multiple testing are plotted for each gene. (d–f) Dot plot of gene ontology biological processes (d,e) and Kyoto 
Encyclopaedia of Genes and Genomes pathways (F) significantly associated (q value <0.1) with the fasting glucose levels in the jejunum, ileum and 
VAT, respectively. (h) Gene-concept network depicting the linkage of significant genes associated with fasting glucose levels participating in pathways 
involved in the antiviral response in the jejunum, ileum, VAT and colon. VAT, visceral adipose tissue.
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(figure 6C, online supplemental figure 5A and online supple-
mental table 40). Importantly, we found again a negative asso-
ciation of DCA with insulin sensitivity (figure 6C and online 
supplemental figure 5A). We also analysed the microbiota of 
the liver of a subset of participants from Spain (n=17) and 
Italy (n=20) in the FLORINASH study. Consistent with our 
previous results in faeces, ileum, jejunum and colon, we found 

that genera from the Proteobacteria phylum in the liver exhib-
ited the strongest and/or most significant negative associations 
with insulin sensitivity, after controlling for age, BMI, sex, 
dyslipidaemia and hypertension medication and diabetes both 
in Spain (figure  6D and online supplemental table 41) and 
Italy (online supplemental figure 5B and online supplemental 
table 42). A MB-sPLS-based multiomics integration of the 

Figure 9  Functional analysis based on KEGG modules. Dot plots of the KEGG module-based pathway over-representation analyses (q value <0.1) 
mapping the KEGG orthologues molecular function significantly associated with insulin sensitivity in the (A) ADIPOINST, (B) IRONMET and (C) 
FLORINASH studies, respectively. Dots are coloured according to the q value. KEGG, Kyoto Encyclopaedia of Genes and Genomes.
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faecal microbiota and liver lipids and genes (only the 50 most 
relevant using an L1 regularisation) associated with insulin 
sensitivity revealed the presence of a cluster of highly inter-
connected features including genera from the Proteobacteria 
phylum (Deltaproteobacteria_uc, Desulfovibrionaceae_uc, 
Bilophila and Desulfovibrionales_uc) and the Erysipelotricha-
ceae family, primary (taurocholic acid) and secondary (DCA) 
bile acids and a transcriptomic signature negatively associated 
with insulin sensitivity (figure 6E).

Consistent with our previous results in the jejunum and VAT, a 
pathway enrichment analysis on this transcriptome identified an 
over-representation of the Rap1 signalling pathway, the leuco-
cyte transendothelial migration, the regulation of the actin cyto-
skeleton, the chemokine signalling pathway, the immune system, 
the cytokine signalling in the immune system and the secretion 
of insulin, among others (figure 6F,G and online supplemental 
table 43). Again, a GO-BP analysis highlighted an enrichment of 
pathways mainly involved in lymphocyte activation, leucocyte 
cell–cell adhesion, regulation of leucocyte migration and T cell 
activation (online supplemental table 44).

HFD and mono associations with Enterobacter cloacae induce 
transcriptional changes associated with insulin resistance in 
D. melanogaster intestine and fat body
To further explore the multiorgan transcriptional changes 
associated with insulin sensitivity, we used the model organism 
D. melanogaster. To model insulin resistance in Drosophila, 
we administer a HFD that causes an obese-like phenotype 
in flies, including increased circulating glucose levels and 
insulin-like resistance.46 To further assess the role of Proteo-
bacteria in insulin resistance, E. cloacae was selected for 
monocolonisation experiments in D. melanogaster due to its 
dual relevance as both a commensal of the Proteobacteria 
phylum in Drosophila47 48 and its established association with 
obesity-related phenotypes in humans and animal models 
(figure 7A).49–51 We depicted the Drosophila orthologues of the 
jejunal genes identified in cluster 2 involved in the regulation 
of the immune system CR2 (hig), DOCK8 (Zir), GRAP2 (drk), 
CYFIP2 (Cyflip), SPN (Deaf) and RHOH (Rac1) (figure  5D) 
and assessed relative gene expression by qRT-PCR in the fly’s 
intestine fed with standard diet (SD) or HFD either raised in 
axenic conditions or mono-associated with E. cloacae. HFD-
fed flies exhibited a significant decrease in the expression of 
hig, Rac1, Cyflip and Deaf, which aligns with our findings in 
humans, as these genes were positively associated with insulin 
sensitivity in the jejunum (figure 7B-G). Similarly, SD-fed flies 
mono-associated with E. cloacae showed a significant reduc-
tion in the intestinal expression of hig, Rac1 and a tendency 
for Deaf (figure  7B-G). These findings collectively suggest 
that both HFD and mono-associations with E. cloacae lead to 
alterations in intestinal gene expression patterns reminiscent 
of those observed in insulin-resistant humans.

Next, we conducted gene expression analysis in the Drosophila 
fat body, which serves as the equivalent of human adipose 
tissue. We assessed the expression of Cluster 1 genes, Past1, ssh, 
siz, cta, Dsor1 and Col4a1, which correspond to the human 
homologues of EHD2, SSH1, IQSEC1, GNA12, MAP2K1 and 
COL4A2, respectively (figure 5F,G). HFD-fed flies displayed a 
significant increase in the expression of Col4a1, siz and Past1 
compared with SD-fed flies (figure  7H-M). In humans, these 
genes were negatively associated with insulin sensitivity in the 
VAT (figure 5F,G). Mono-associations with E. cloacae did not 
affect FB expression of the selected genes.

Fruit flies do not contain an organ equivalent to the liver; 
its functions are assumed by the fat body.52 53 Therefore, we 
assessed fat body gene expression of vib, Moe, Ac76E and 
mys (figure  7N-Q), the Drosophila orthologues of PITPNA, 
MSN, ADCY7, and ITGB2, all of them associated with the 
hyperinsulinaemic-euglycaemic clamp in liver transcriptomics 
(figure  6G). HFD-fed flies mono-associated with E. cloacae 
exhibited a significant increase of vib expression in the FB 
(figure 7N). Remarkably, we observed that PITPNA, its corre-
sponding human orthologue, was depicted as one of the genes 
associated with insulin resistance together with species from 
the Proteobacteria phylum (figure 6E). Furthermore, Moe, the 
Drosophila orthologue of MSN, which displayed an inverse asso-
ciation with insulin sensitivity in the human liver, exhibited a 
significant upregulation in HFD-fed flies (figure 7O).

Finally, in order to investigate the role of Proteobacteria in 
insulin resistance and validate our model, we assessed the expres-
sion of dilp2 (Drosophila insulin-like peptide 2), one of the 
Drosophila orthologues of human insulin. We observed increased 
expression of dilp2 in HFD-fed flies compared with SD-fed flies, 
resembling insulin resistance as previously described.46 Mono-
association of flies with E. cloacae further elevated the levels 
of dilp2 expression of SD-fed flies, indicating that this bacte-
rium exacerbates insulin resistance also in D. melanogaster 
(figure  7R). Additionally, flies monocolonised with E. cloacae 
showed a significant decrease in the expression of hydroxy-
phenylpyruvate dehydrogenase (Hpd) compared with axenic 
flies (figure 7S). Hpd expression is regulated by the transcrip-
tion factor dFOXO, which is activated downstream of PI3K in 
response to insulin.54 In conditions of insulin resistance, there is 
a decrease in dFOXO signalling and the expression of its down-
stream genes55 (figure 7U). Finally, when challenged for glucose 
tolerance,56 larvae monocolonised with E. cloacae did not clear 
glucose from haemolymph as efficiently as sterile larvae. Ninety 
min after ingesting a glucose solution, the E. cloacae-colonised 
larvae had significantly higher levels of glucose in the haemo-
lymph (figure 7T). Given that Drosophila larvae primarily use 
trehalose as a circulating sugar,56 we also measured the levels of 
circulating trehalose in addition to glucose. Our findings indi-
cated that larvae monocolonised with E. cloacae consistently 
exhibited higher levels of trehalose and glucose in the haemo-
lymph compared with sterile larvae (online supplemental figure 
6).

Overall, these experiments align with the transcriptional 
changes observed in the human intestine, VAT and liver, 
correlating with insulin sensitivity and further supporting the 
role of the Proteobacteria in the exacerbation of insulin resis-
tance pathophysiology when present in the intestine.

Fasting glucose levels are linked to antiviral response genes
Our results identified consistent associations between insulin 
sensitivity and glycaemic state with specific microbiota and 
T cell numbers and signalling in different tissues. Given the 
importance of T cells in responding to viral infections, and our 
observation of intriguing associations between insulin sensitivity 
and viral infections such as Epstein-Barr virus infection, viral 
myocarditis and human cytomegalovirus infection (figure  2B 
and figure  6F), we also analysed the associations of fasting 
glucose with the transcriptome in the jejunum, ileum, VAT and 
liver (figure  8A-C,G and online supplemental tables 45–48). 
Strikingly, a GP-BP analysis revealed the defence response to the 
virus (figure 8D,H and online supplemental table 49) and viral 
transcription (figure 8E,H and online supplemental table 50) as 
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the most over-represented processes in the jejunum and ileum. It 
also highlighted the type I interferon (IFN) production and the 
cytoplasmic pattern recognition receptor pathway in response 
to the virus (figure 8D). A KEGG over-representation analysis 
in the colon and VAT identified a significant enrichment of the 
viral protein interaction with cytokine and cytokine receptor 
(figure  8F,H and online supplemental table 51), and the viral 
infection, including the hepatitis C, influenza A and cytomegalo-
virus infection, which have been associated with an increased risk 
for the development of prediabetes and diabetes.57 A pathway 
over-representation analysis in the jejunum also highlighted an 
enrichment of the IFN signalling, the antiviral mechanism by 
IFN-stimulated genes and the oligoadenylate synthetase antiviral 
response (online supplemental table 52), while the type II IFN 
signalling was also over-represented in the colon (figure 8H and 
online supplemental table 53). A recent study also identified that 
downregulation of glucose metabolism promoted retinoic acid-
inducible gene I-like receptor (RLR)-induced type I IFN produc-
tion along with a reduction in virus replication and identified 
elevated lactate dehydrogenase and/or glycolysis as a potential 
mechanism for viruses to evade host defence by inhibiting RLR-
triggered type I IFN production.58 Type I IFNs play a crucial 
role in protecting cells from viral pathogens. A screening of over 
>380 human IFN-stimulated genes revealed eight broadly acting 
effectors, including IRF7 and IFIH1,59 which we also found asso-
ciated with glucose levels in the ileum (figure 8H). Genes iden-
tified in the jejunum included OASL, a gene involved in targeted 
antiviral specificity and well-known antiviral effectors such as 
EIF2AK2, or the IFN-induced genes, OAS1, OAS2 and OAS3, 
which play a key role in innate cellular antiviral response and 
have recently been identified as associated with critical illness 
caused by COVID-19.60

CONCLUSIONS
Our study sought to uncover the complex interactions among 
the gut microbiota, intestine, adipose tissue and liver and their 
effects on systemic insulin action. Using a multiomics (metage-
nomics, metabolomics, transcriptomics and lipidomics), multi-
tissue (jejunum, ileum, adipose tissue and liver) approach across 
six different studies, combined with gold-standard measurements 
of insulin sensitivity using the hyperglycaemic-euglycaemic 
clamp and other measurements of glucose metabolism and 
insulin resistance, we provide the first comprehensive analysis 
of its kind. This integrative approach offers an unprecedented 
comprehensive view into the intricate microbiome-gut-adipose-
liver crosstalk influencing insulin sensitivity (figure 9).

However, our study has several limitations. Although it 
includes multiomics measurements in multiple tissues across 
multiple studies, its nature is mainly observational. In addition, 
some studies had a small sample size, which is a limitation for the 
analysis of high-dimensional omics data sets and their integra-
tion. Thus, data from large-scale longitudinal studies would have 
further supported the current findings. Finally, not all omics data 
were available in all tissues and all studies. For instance, faecal 
shotgun metagenomics data was only available in three studies, 
while gold standard measurements of insulin sensitivity were 
only performed in four studies.

Despite this, it is the first study to offer comprehensive 
insights into the microbiome-gut-adipose-liver axis and its 
impact on systemic insulin action in humans. Our approach was 
crucial in underscoring the pivotal role of Proteobacteria, bile 
acids and T cell-related genes in influencing insulin sensitivity 
and identified a positive association between insulin sensitivity 

and SCFA-producing species from the Blautia and Faecalibac-
terium genera. Thus, our single- and integrated-omics analyses 
unveiled faecal microbial signatures comprising taxa from the 
Proteobacteria phylum and DCA in the jejunum negatively asso-
ciated with insulin sensitivity, along with intestine (jejunum, 
ileum and colon) T cell-related signatures that were linked to 
better insulin sensitivity. Transcriptomics analyses of the SAT 
and VAT also revealed upregulated and downregulated T cell-
related signatures linked to HbA1c and insulin sensitivity, 
respectively, while Proteobacteria in the VAT were negatively 
associated with insulin sensitivity. This opposite association of 
T cell signatures in the intestine and VAT in relation to insulin 
sensitivity might indicate asynchronous responses to environ-
mental stimuli. Increased intestinal immune response might 
prevent gut dysbiosis-induced insulin resistance, while increased 
adipose immune response could indicate insulin resistance-
associated adipose tissue dysfunction, for which chronic acti-
vation could be detrimental. Multiomics analyses in the liver 
revealed again negative associations of liver deoxycholic acid 
with insulin sensitivity as well as a liver transcriptomic signature 
involved in insulin and T cell signalling. Notably, the involve-
ment of Enterobacteria through several of the identified genes 
in the jejunum, VAT and liver was validated in the intestine 
and fat body of D. melanogaster models. Lastly, we identified 
a consistent link between glucose metabolism and IFN-induced 
genes involved in the antiviral response. In fact, recent evidence 
supports a bidirectional relationship between metabolic disease 
and viral infection.57 Hence, the immune system may induce 
transient changes in glucose metabolism as a strategy against viral 
infection.61 Our study emphasises the significance of considering 
microbial functionality and adopting a multiomics integration 
approach to thoroughly understand the mechanisms driving the 
complex interplay among tissues and the gut microbiota within 
the context of obesity and insulin resistance. The novo insights 
gained from our findings may lead to the development of inno-
vative therapeutic strategies targeting the gut microbiota and 
the intestine-adipose-liver axis to enhance insulin sensitivity and 
improve metabolic health.
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