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Abstract
Purpose For the visualization of pulmonary ventilation with Electrical Impedance Tomography (EIT) most devices use stan-
dard reconstruction models, featuring common thorax dimensions and predetermined electrode locations. Any discrepancies
between the available model and the patient in terms of body shape and electrode position lead to incorrectly displayed
impedance distributions. This work addresses that problem by presenting and evaluating a method for 3D model generation
of the thorax and any affixed electrodes based on handheld video-footage.
Methods Therefore, a process was developed, providing users with the ability to capture a patient’s chest and the attached
electrodes via smartphone. Once data is collected, extracted images are used to generate a 3D model with a structure from
motion approach and locate electrodes with ArUco markers. For the evaluation of the developed method, multiple tests
were performed in laboratory environments, which were compared with manually created reference models and differences
quantified based on mean distance, standard deviation, and maximum distance.
Results The implemented workflow allows for automated model reconstruction based on videos or selected images captured
with a handheld device. It generates sparse point clouds from which a surface mesh is reconstructed and returns relative
coordinates of any identified ArUco marker. The average value for the mean distance error of two model generations was
5.4 mm while the mean standard deviation was 6.0 mm. The average runtime of twelve reconstructions was 5:17 min, with a
minimal runtime of 3:22 min and a maximal runtime of 7:29 min.
Conclusion The presented methods and results show that model reconstruction of a patient’s thorax and applied electrodes
at an emergency site is feasible with already available devices. This is a first step toward the automated generation of patient-
specific reconstruction models for Electrical Impedance Tomography based on images recorded with handheld devices.
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Introduction

The correct assessment, diagnosis, and pulmonary function
monitoring remain a challenge, especially in the prehospital
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or emergency setting. There, injuries to the chest (thorax) rep-
resent one of the most common types of injury [1]. Thoracic
trauma is in conjunction with pneumothorax (the accumu-
lation of air in the pleural space) the second leading cause
of death in polytrauma patients in Germany. The assessment
of lung ventilation by emergency personnel usually starts by
auscultation of the lungs with a stethoscope. Due to this pro-
cedure’s susceptibility to interference from ambient noise, it
is of limited use in high-noise scenarios. In most cases, the
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emergency physician can only suspect the existence and size
of a pneumothorax.

Even if there remains some uncertainty about the presence
of a pneumothorax, chest tubes are placed as a precautionary
measure to remove the potentially threatening accumulation
of air from the pleural space. However, studies have shown
that 24% of chest tubes placed by emergency physicians
would not have been necessary, and up to 22% of drains
were not put in the correct position, requiring correction in
the hospital [2]. Half of the drains inserted were ineffective
and did not resolve the patient’s potentially life-threatening
pneumothorax.Due to these circumstances, there is a demand
for mobile systems that can measure or visualize pulmonary
ventilation quickly and in any given scenario.

Recent publications highlight the use of ultrasound in
emergencies, where auscultation is difficult due to the envi-
ronmental noise [3, 4]. Another approach is to use an
Electrical Impedance Tomography (EIT) system. EIT gives a
more conclusive analysis of pulmonary ventilation. It covers
a larger area within the patient’s thorax and is more user-
friendly as the sensors are placed on the skin and do not need
to be held by the user. EIT is a non-invasive, radiation-free
imaging technique that can provide information about the
lungs’ ventilation and function with low-resolution recon-
struction images [5, 6]. For these reasons, efforts have been
undertaken in recent years to develop handheld devices
that enable emergency medical personnel to perform EIT
in ambulatory emergencies. The procedure involves plac-
ing electrodes around the patient’s chest to measure the
conductivity of the inside of the body by using weak elec-
trical currents. Measurements taken at different times are
compared in a reconstruction algorithm to visualize the intra-
thoracic impedance changes subsequently.

The reconstruction of EIT images is an inverse problem
since measured values are used to infer the change in their
cause [7]. The application of a reconstruction matrix, created
and optimized using a 2D or 3D model of the human tho-
rax, solves the inverse problem and determines the changed
impedances [8]. With the models’ help, the electric current’s
behavior in the patient’s body is approximated so that the
shape, extent, and proportioning of the upper body region in
the model have a crucial role in the subsequent reconstruc-
tion of EIT images [9]. Also, the electrodes’ positions in the
model take on a defining part, as their location on the upper
body and the distances between them significantly affect the
approximation of impedance changes.

Therefore, to determine the magnitude and position of
intra-thoracic impedance changes with sufficient accuracy, it
is necessary to enter the affected patient’s anatomy and the
location of the attached sensors into the reconstructionmodel
as a priori information. Depending on the individual patient,
using a standard model that has deviating characteristics
may result in the misrepresentation of impedance changes.

If a patients suffers from pneumothorax, a potentially life-
threatening air collection between the lung and the inside
of the chest-wall, distorted EIT images (reconstructed using
standard models not representing the individual anatomy)
could identify the location of the pneumothorax incorrectly.
Pneumothorax compromising heart or lung function needs
to be treated by thoracotomy. The minimum information
required would be which side of the chest is affected [10].
Minor impedance shifts in the EIT reconstructions and thus
the resulting localization of the pneumothorax have no direct
influence on the placement of the drainage, as long as it
detects the correct side of the chest. In communication with
medical experts we determined that a too large deviation of
themodel, e.g., a shift of the electrode positions by one place,
which corresponds to 30–40mmfor a beltwith 32 electrodes,
corrupts the position information too much and any informa-
tion about the pulmonary ventilation occurring unilateral or
bilateral, and in the latter case delayed or symmetric, would
be displayed incorrectly.

Hence, themodelmust be trained or adjusted to be patient-
specific, yet manual modeling is not desirable. According
to medical experts, a seamless integration of the patient-
specific EIT-analysis in a fast-paced emergency medical
scenario is only possible if it requires less than 2 min for
setup and initial computation, in some cases less than 1
min. Therefore, performing extensive upper body measure-
ments and manual model design with dedicated hardware
and software consumes too much time. Instead of initiat-
ing time-consuming designing activities, the feasibility of
which depends on robust and possibly unwieldy hardware,
the modeling or model fitting should be done automatically
without the necessity for additional user inputswhile employ-
ing already available hardware.

Related work

Based on these requirements, methods for location-
independent surface recognition and electrode identification,
and electrode localization had to be found. A similar problem
exists in studies concerning electroencephalography (EEG).
The estimation of spatial coordinates of applied electrodes
to the head is essential to minimize source displacement
of electrical brain activity. This challenge was addressed
by implementing a method for photogrammetric coordinate
measurements and color-based identification of EEG elec-
trodes positions on the human head, employing a rotating,
2 MP digital camera in an experimental setup [11]. In a
stationary laboratory setup, the approach was used for the
identification and localization of electrodes with a maximum
error of 0.77 mm.

The present work further develops this approach to deter-
mine the positions of electrodes attached to the thorax in an
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emergency with simple means. For this purpose, 3D models
of the patient’s thorax with attached electrodes were created
using smartphones.

Materials andmethods

The developed method to detect the electrodes and create
the 3D model of the patient’s thorax consists of two phases,
visualized inFig. 2. Thefirst phase is the data acquisitionwith
a smartphone camera (Phase A: 1), and the second phase is
the calculation of the 3D model with the attached electrodes
(Phase B: 2–10). To validate this method, the quality of the
surface scan and the quality of the electrode positions were
determined (Phase C).

Data acquisition

Before generating the data for the 3Dmodel and the electrode
positions, each electrode was prepared with a marker. With-
out the markers, the pipeline couldn’t detect the electrodes.
A smartphone camera was used for the data acquisition,
allowing emergency medical personnel to record a video
of the upper patient’s body with already present hardware.
Video recording is supposed to be done from one side to the
other with an arc-shaped movement and at a steady distance
between the patient and the smartphone, as depicted in the
first step of Fig. 2.

Preparation of the electrodes

For the belt preparation, 32 Ag/AgCl-electrodes were
mounted on a stretchable, textile belt that has a length of
70 cm when it is not stretched. The electrodes were squared
and 10 × 10 mm in dimension, however since they are not
visible if the belt is worn by the patient, electrode positions
were highlighted by ArUco markers (Fig. 1). Each ArUco
marker represented one electrode with its respective index.
ArUco markers were generated with the OpenCV library,
using the fastest predefined dictionary; 4 × 4_50. For the
squared markers a surface area of 17 × 17 mm was chosen,
which was limited by the distance of the subjacent electrodes
toward each other. For ArUcomarker detection the functions
provided by the OpenCV library were used as well.

Video recordings

Video recordings were performed in a laboratory environ-
ment, where the stretchable belt was applied around the
thorax of a volunteer as well as two different phantoms. Dur-
ing video capture, the person or object can be standing, sitting
upright, laying in an inclined or a supine position. Videos
were recorded with a smartphone, which was moved during

recording from one side of the target body wearing the EIT
belt to the other side in an arc shape with a constant distance
of 70 cm between smartphone and body surface. The cov-
ered angle of the arc had a radius of 100 degrees, while the
movementwas performedwith a constant speed. For later ref-
erences, the captured body or phantom surface wasmeasured
and the relative electrode positions were recorded alongside
a measuring tape.

Calculation of the 3Dmodel with the attached
electrodes

The calculation of the 3D model and the electrode positions
is based on images, which were extracted from the video
records with two frames per second. The images were used
for the generation of sparse point clouds of the captured sur-
faces, using a structure from motion approach, which was
developed by Shilkrot et al. [12].

Create the 3D-Model

Shilkrot et al. [12] describe the used pipeline in chapter 2
Explore Structure from Motion with the SfM Module 2 of the
bookMastering OpenCV 4. The image processing is visual-
ized in Fig. 2 (blue boxes), which shows how to reconstruct a
mesh frommultiple images of the desired body surface. After
image recording, features in each image were extracted (3)
by the AKAZE detector [13, 14]. The detected features were
used to define the shared features between two images (4), the
possible matches were filtered by multiple methods. After-
ward image features were tracked (5) in multiple images by
match graphs. Through a reconstruction of the tracking, a
sparse point cloud was generated (6) by the structure from
motion method [13]. The sparse point cloud was densified
(9), using the OpenMVS library [15]. The mesh, which rep-
resents the surface of the target body area, was created from
the resulting dense point cloud (10).

Detection of the attached electrodes

The electrode positions were calculated using the ArUco
markers, whichwere attached on the opposite side of the belt,
facing away from the patient. The markers were detected
in each extracted frame of the video recording, thereby
marking their corner points (Fig. 2, 7). Found corner points
of each marker were defined as a two-dimensional vector
within the extracted images. Following the identification, the
corner-point-vectors were adjusted, ensuring there existed
the same number of markers and identical marker indices.
The two positions of one corner point in two adjacent frames
were triangulated using the Direct Linear Transformation
method (DLT method). Afterward filtering of the triangu-
lated ArUco markers was employed to generate four unique
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Fig. 1 EIT belt with ArUco markers on electrodes and measuring tape

Fig. 2 Representation of surface reconstruction pipeline of Shilkrot et al. [11] with one torso model dataset

three-dimensional vertices per marker and remove multiple
occurring vertices, which resulted from the pairwise tri-
angulation of neighboring images. The calculation of the
electrodes’ middle positions was done by calculating the
three-dimensional center point from the extracted corner
points of every detected marker. This way the corners of
the ArUcomarkers were calculated and the two-dimensional
marker points triangulated and filtered (Fig. 2, 8). Subse-
quently, each detected electrode was defined by the four
corner positions in three-dimensional space.

Method validation

For validation, the video-reconstruction error and the run-
time of the method were determined by testing the method
on two objects and one person. The error of the video recon-
struction was divided into the 3D model reconstruction and
the electrode position detection. Each part of the video recon-
structionwas validated using the open-source softwareCloud
Compare. The standard deviation, the mean difference, and
the maximum difference from the reconstructed point clouds

to the original point clouds or the electrode positions were
measured. Two objects were compared with 12 3D model
reconstructions in total. The 3D model reconstructions of
two objects and one person were compared with 19 electrode
position reconstructions.

Error calculation for reconstructed 3D-Model

The reconstructed 3D-Model was scaled manually, registra-
tion between the reconstructed model and the original mesh
was done by aligning the two models per custom-picked
equal point pairs. Fine registration of the reconstructed 3D-
Model and the original mesh was performed after aligning
the respective entities. Once alignment and fine registration
were completed, the distance between mesh and model was
calculated.

Error calculation for reconstructed electrode-positions

The error calculation for the electrode-positions was done by
measuring the 3D-Model and mesh distance and identifying
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Fig. 3 Generated mesh based on
measurements with phantom as
target object and electrode belt.
Mesh is shown in three
dimensional view; pink dots
mark the corners of fiducial
markers over electrodes. The
cornerpoints are enlarged and
some of them are invisible
because of the overlapping mesh

the scale factor between the reconstructions and the body of
the volunteer or phantoms. Based on the recorded measure-
ments, whichwere performed during the video recordings for
themodel reconstruction, the scalewas determined, and iden-
tified marker positions and their respective corner locations
were scaled to match with the reconstructed model. After-
ward, the distances between the reconstructed and the real
electrode positions were calculated, by using the distances
between adjacent electrodes during the recording to deter-
mine their actual positions on the body and the coordinates
of their corners.

Runtime validation

Themethod’s runtimewasmeasured from twelve reconstruc-
tions of an object and seven reconstructions of a phantom.
The duration of each step of the pipeline is documented, and
the standard deviation is calculated. This is achieved bymea-
suring the runtime duration of each pipeline component in
milliseconds, i.e., measuring the amount of time necessary to
reconstruct the sparse point cloud, locate markers and assign
electrodes, densify the point cloud, and reconstruct the mesh
from the dense point cloud. Afterward, the entire runtime of
the complete pipeline process is calculated, after which the
calculation of the standard deviation of the measured recon-
structions is performed.

Results

One result of the explained surface scan with a smartphone is
shown in Fig. 3. The scanned object, a phantom of the upper
body, is presented by a triangular mesh. The pink dots repre-
sent the fiducial marker corners which highlight the electrode
corners.

Video reconstruction error

The error distances of the 3D model reconstruction to the
original mesh over two objects and twelve reconstructions
are shown in Table 1. It has a mean distance of 5.4 mm and
a standard deviation of 6.0 mm. The calculated reconstruc-
tion errors of the electrode positions are shown in Table 2 for
the torso phantom and the second object. Overall, electrode
position reconstructions over two objects and twelve recon-
structions have a mean distance of 3.7 mm and a standard
deviation of 2.5 mm. Counterpart error calculations for the
human volunteer are shown in Table 3. The mean distance
of electrode position reconstruction error over one person
and seven reconstructions were m � 7.0 mm with a standard
deviation of 6.8 mm.

Runtime

Table 4 presents an overview of the measured runtimes of
surface reconstructionwith electrode localization on the used
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Table 1 Error of video reconstruction on the torsomodel and the second
model

Mean
distance
(mm)

Std. dev.
(mm)

Max.
distance
(mm)

Reconstruction
T-Model 1

9.80 22.80 219.00

Reconstruction
T-Model 2

10.90 20.20 144.40

Reconstruction
T-Model 3

6.10 10.80 95.90

Reconstruction
T-Model 4

10.30 15.70 123.40

Reconstruction
T-Model 5

2.70 10.90 107.40

Reconstruction
T-Model 6

2.50 4.20 149.40

Reconstruction
T-Model 7

2.80 5.10 62.00

Reconstruction
T-Model 8

3.60 8.80 77.70

Reconstruction
T-Model 9

3.60 5.80 83.10

Reconstruction
S-Object 1

9.30 7.90 49.80

Reconstruction
S-Object 2

− 2.00 7.00 42.40

Reconstruction
S-Object 3

− 0.90 8.10 40.70

Ø Reconstructions
of torso model and
second object

5.40 6.00 99.60

torso phantom. The method’s total runtime (Phase B) mea-
sured on one object with twelve reconstructions has a mean
of 5:17 min and a standard deviation of 1:26 min. The min-
imal measured total runtime is 3:22 min and the maximal
7:29 min. The standard deviation of the total runtime and
the twelve reconstructions is 1:26 min. To reconstruct a
sparse point cloud, the method needs an average of 0:25 min.
The sparse point cloud’s densification requires an average
computation time of 4:44 min, the following reconstruction
of the mesh has a mean runtime of 0:06 min. The detec-
tion of the electrode positions requires an average time of
0:02 min. Measured runtimes of surface reconstruction with
electrode localization on the volunteering person are shown
in Table 5. The total runtime of the method (Phase B) mea-
sured on one person with seven reconstructions has a mean
of 8:30 min. The standard deviation is 2:39 min. The den-
sification counts on average 07:37 min and has a standard
deviation of 2:14 min.

Table 2 Error of electrode position reconstruction on the torso model
and the second object in millimeters

Mean
distance
(mm)

Std. dev.
(mm)

Max.
distance
(mm)

Reconstruction
T-Model 1

4.40 4.70 21.00

Reconstruction
T-Model 2

2.90 2.50 10.30

Reconstruction
T-Model 3

7.20 11.00 57.40

Reconstruction
T-Model 4

2.50 2.00 8.30

Reconstruction
T-Model 5

3.50 3.00 18.10

Reconstruction
T-Model 6

2.50 2.30 10.30

Reconstruction
T-Model 7

2.30 2.80 17.90

Reconstruction
T-Model 8

1.40 1.00 5.60

Reconstruction
T-Model 9

3.90 3.90 22.20

Reconstruction
S-Object 1

4.30 3.70 13.50

Reconstruction
S-Object 2

3.30 2.40 8.50

Reconstruction
S-Object 3

6.30 4.70 17.10

Ø Reconstructions
of torso model and
second object

3.70 2.50 17.50

Table 3 Error of electrode position reconstruction on the person in mil-
limeters

Mean
distance
(mm)

Std. dev.
(mm)

Max distance
(mm)

Reconstruction 1 7.30 8.00 30.30

Reconstruction 2 5.80 4.10 18.90

Reconstruction 3 8.20 6.80 24.20

Reconstruction 4 6.60 7.30 29.40

Reconstruction 5 5.10 4.60 20.90

Reconstruction 6 7.30 9.10 47.10

Reconstruction 7 − 6.60 7.40 17.00

Ø Reconstructions 7.00 6.80 26.80
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Table 4 Runtime of the surface
reconstruction with electrode
position detection on the torso
model and second object

Sparse point
cloud
(hh:mm:ss)

Densify point
cloud
(hh:mm:ss)

Mesh
(hh:mm:ss)

Electrode
position
(hh:mm:ss)

Total
(hh:mm:ss)

T-Modell 1 00:00:15 00:03:00 00:00:06 00:00:01 00:03:22

T-Modell 2 00:00:17 00:04:31 00:00:05 00:00:02 00:04:54

T-Modell 3 00:00:36 00:05:47 00:00:01 00:00:03 00:06:28

T-Modell 4 00:00:21 00:04:36 00:00:01 00:00:02 00:05:00

T-Modell 5 00:00:16 00:03:41 00:00:04 00:00:01 00:04:03

T-Modell 6 00:00:28 00:04:13 00:00:07 00:00:02 00:04:50

T-Modell 7 00:00:19 00:03:17 00:00:06 00:00:02 00:03:43

T-Modell 8 00:00:20 00:06:52 00:00:08 00:00:03 00:07:23

T-Modell 9 00:00:24 00:04:33 00:00:09 00:00:02 00:05:08

T-Modell 10 00:00:20 00:03:43 00:00:11 00:00:02 00:04:16

T-Modell 11 00:00:33 00:06:05 00:00:13 00:00:02 00:06:53

T-Modell 12 00:00:46 00:06:35 00:00:05 00:00:03 00:07:29

Mean runt 00:00:25 00:04:44 00:00:06 00:00:02 00:05:17

Std. dev 00:00:09 00:01:18 00:00:04 00:00:00 00:01:26

Table 5 Runtime of the surface
reconstruction with electrode
position detection on the person

Sparse point
cloud
(hh:mm:ss)

Densify point
cloud (hh:mm:ss)

Mesh
(hh:mm:ss)

Electrode
position
(hh:mm:ss)

Total
(hh:mm:ss)

Modell 1 00:00:30 00:05:47 00:00:05 00:00:01 00:06:22

Modell 2 00:00:36 00:07:00 00:00:05 00:00:01 00:07:41

Modell 3 00:00:48 00:07:43 00:00:02 00:00:02 00:08:36

Modell 4 00:00:28 00:07:10 00:00:11 00:00:01 00:07:49

Modell 5 00:01:25 00:11:33 00:00:05 00:00:04 00:13:07

Modell 6 00:00:52 00:09:17 00:00:28 00:00:03 00:10:40

Modell 7 00:00:20 00:04:49 00:00:05 00:00:02 00:05:15

Mean runt 00:00:43 00:07:37 00:00:09 00:00:02 00:08:30

Std. dev 00:00:22 00:02:14 00:00:09 00:00:01 00:02:39

Discussion

Video reconstruction error

In regard to the requirements stated in the introduction,
which stem from the application of the user-specific EIT-
reconstruction for detection and localization of a pneumoth-
orax, the average deviations of the generated models and
the calculated spatial positions of the fiducial markers were
within a desired range and therefore acceptable. While the
largest maximal discrepancies occurred during the recon-
struction of the torso model, reaching a mean maximal error
distance of 118 mm, the average error distance was 5.8 mm,
which means maximal errors of that dimensions are most
likely outliers. On average, the error distance in this instance
is not even quarter of the 30mm, themodel-reality-electrode-
displacement which would be likely to cause major shifts

in the impedance distributions. Therefore, the approach is
regarded as suitable, once improvements have been made in
the post-processing of the method. The model reconstruction
of the second model yields similar results with an average
mean error distance of 4 mm, while the mean maximal dis-
tance is 44.3 mm, far less than the torso model and probably
due to a small number of outliers and generation artefacts.
The error distances resulting from the spatial localization of
the fiducial markers and the connected electrodes are smaller
than the model deviations. The average mean electrode dis-
placement errors for the torso model, the ultrasonic phantom
and the tests on a volunteer being 3.4, 4.6 and 7 mm, respec-
tively. The averagemaximal distances are 19mmfor the torso
model, 13.1 mm for the ultrasonic phantom and 26.8 mm for
the volunteer. Spatial electrode localization based on fidu-
cial marker detection is therefore more accurate with smaller
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error distances, with the average mean error distances reach-
ing values smaller than 1 cm, supporting the validity of the
implemented method.

While clinical evaluation and tests regarding the accuracy
increase in EIT with the patient-specific model have yet to
be done, the results can already be compared with studies
concerning exact electrode placement during electrocardio-
gram (ECG)measurements. KellyMcCann et al. showed that
out of 924 ECG-electrode arrangements, emergency depart-
ment clinicians reached a mean placement error of 13.5 mm
in a vertical and 16.5 mm in a horizontal direction, both
errors being higher than mean errors achieved with the pre-
sented method [16]. However, Barber and Brown recognized
in their studies early on, that uncertain electrode positioning
with even small deviations affect the reconstruction outcome
and lead to significant EIT image errors [17]. The effect of
incorrect electrode locations has been studied further, prov-
ing them to be the cause of severe imaging artifacts [18, 19].
With the additional model inaccuracies, caused by move-
ment of the thorax through breathing and postural changes,
these image errors increase significantly andultimately,make
EIT images unsuitable for medical diagnosis altogether [20,
21]. Yet many EIT systems rely on the correct placement of
a particular electrode belt, whose application doesn’t usu-
ally result in an electrode pattern with equidistant spacing,
increasing differences between 3D models and real-world
conditions considerably. Compared to this, the results of the
proposed method are an improvement and justify the pursuit
of further development steps in that direction.

Runtime and usability

The presented work is therefore a first step toward patient-
specific EIT reconstruction models, yet it needs further work
for actual applicability. The processing times during this
study were rather long and did not meet the requirements
for application in emergency medicine, posed by the medi-
cal experts. While data processing is done automatically and
requires no additional input after the initial video record-
ing, the shortest runtime of model generation workflow was
3:22 min, extending the maximal processing time of 2 min
by over 1 min. The largest processing time frames exceeded
10 min, which is not acceptable in any emergency setting,
considering the necessity to evaluate the patients’ ventilation
as soon as possible to reduce possibly irreversible damage.
Additional measures have to be taken in order to minimize
the necessary computing times, especially the point cloud
densification, which is currently the biggest time-related bot-
tleneck of the method.

In comparison with previous publications, like Baysal
and Şengül, the method presented in this work has a higher
usability and is more flexible while being more applicable in

pre-clinical situations, since our work requires only a smart-
phone or tablet and allows small distance variations [11].
However, as a trade-off for the significant reduction in use
constraints, themeasurement errors of ourmethod are higher.
Another flexible approach was presented by Fritsch, employ-
ing a smartphone or tablet to capture images to calculate the
three-dimensional model of a recorded scene [22]. Contrary
to this work, themodel creation required an initial calibration
of the smartphone/tablet camera, resulting in an unavoidable
delay.

Future works

In order to improve accuracy additional steps for image
processing need to be implemented, enabling the medi-
cal application of the method by compensating blur, shaky
camera movement, and artifacts caused by rain, debris, or
scratches on the lens surface. The electrode displacement
needs to be addressed in future research, with additional
correction steps during the video processing and the post-
processing of the mesh generation, minimizing any errors
occurring during modeling or spatial detection of fiducial
markers. Further development should address inaccuracies
and outliers of the model generation with surface smooth-
ing algorithms as well as constraints for neighboring surface
elements during post-processing. The effectiveness of edge
detection, threshold algorithms, and filter methods need to
be evaluated, comparing the cost–benefit ratio of accuracy
and processing time.

For the improvement of the model calculation time, the
image processing workflows needs to be executed on one
or several external, powerful computing machines, which
should lead to considerable decreases in the required time to
process images and create the adjustedmodel. To that end, an
automated and encrypted end-to-end communication needs
to be implemented, which is used with a dedicated handheld
application that is not reliant on any stored data, assuring
compliance with data protection regulations. This would
enable users to transfer encrypted recordings to the exter-
nal system and receive anonymized model information. The
necessary computations could possibly be reduced further,
when the implemented method no longer generates a com-
pletemodel from scratch, but rather uses the image features to
adjust an already existing model and place the detected fidu-
cial markers onto it. The approach could include constraints
during thematching process, throughwhich neighboring sur-
face elements with unrealistic distances toward each other
can be avoided, avoiding outliers. However, model adjust-
ment is a feature based optimization process and could lead
to increased inaccuracies as a trade-off for the faster compu-
tation or even require more time to present a finished model,
if the error gradient thresholds are too demanding. Hence,
the first approach should include the comparison of model
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adjustment results with structure models generated by the
methods presented in this paper, ensuring equal or improved
accuracy. Finally, the next iteration of the method needs to be
evaluated in a dedicated study, analyzing the model gener-
ation and electrode-placement error over multiple subjects,
preferably with a corresponding 3D model and analyzing its
advantages.

Conclusion

For using EIT in an emergency, a method was developed
to detect the surface of a patient’s thorax and the electrode
positions of the EIT belt by a smartphone video. The created
thoraxmodelwith the electrodes can be used to select the best
patient-specific thorax model for EIT reconstruction. Now,
the method’s results have to be integrated into the selection
of the patient-specific models within the EIT process.
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