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This study introduces a novel SI2HR model, where “I2” denotes two infectious classes
representing asymptomatic and symptomatic infections, aiming to investigate and analyze
the cost-effective optimal control measures for managing COVID-19. The model in-
corporates a novel concept of infectious density-induced additional screening (IDIAS) and
accounts for treatment saturation. Furthermore, the model considers the possibility of
reinfection and the loss of immunity in individuals who have previously recovered. To
validate and calibrate the proposed model, real data from NovembereDecember 2022 in
Hong Kong are utilized. The estimated parameters obtained from this calibration process
are valuable for prediction purposes and facilitate further numerical simulations. An
analysis of the model reveals that delays in screening, treatment, and quarantine
contribute to an increase in the basic reproduction number R0, indicating a tendency to-
wards endemicity. In particular, from the elasticity of R0, we deduce that normalized
sensitivity indices of baseline screening rate (q), quarantine rates (g, as), and treatment rate
(a) are negative, which shows that delaying any of these may cause huge surge in R0,
ultimately increases the disease burden. Further, by the contour plots, we note the two-
parameter behavior of the infectives (both symptomatic and asymptomatic). Expanding
upon the model analysis, an optimal control problem (OCP) is formulated, incorporating
three control measures: precautionary interventions, boosted IDIAS, and boosted treat-
ment. The Pontryagin's maximum principle and the forward-backward sweep method are
employed to solve the OCP. The numerical simulations highlight that enhanced screening
and treatment, coupled with preventive interventions, can effectively contribute to sus-
tainable disease control. However, the cost-effectiveness analysis (CEA) conducted in this
study suggests that boosting IDIAS alone is the most economically efficient and cost-
effective approach compared to other strategies. The CEA results provide valuable in-
sights into identifying specific strategies based on their cost-efficacy ranking, which can be
implemented to maximize impact while minimizing costs. Overall, this research offers
significant insights for policymakers and healthcare professionals, providing a framework
to optimize control efforts for COVID-19 or similar epidemics in the future.
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1. Introduction

In epidemiology, many contagious diseases that emerge or re-emerge require quick and targeted repercussions. There is
nothing better than immunizing the afflicted populace with some kind of vaccination or treatment; however, it's not always
the case. For instance, during the early stages of COVID-19's emergence, pharmaceutical interventions like vaccines and
medications were not readily available worldwide. Similarly, when a new disease initially emerges, it's not always possible to
access or develop the necessary medicinal resources. As a result, we rely heavily on non-pharmaceutical control mechanisms,
including social isolation, masking, testing or screening, and so on. When disease prevalence is higher and reliable swift
diagnostic facilities are available, screening as a standalone measure may be effective. Screening for COVID-19 has been
crucial in controlling the spread of the virus by identifying individuals who are infected, either through symptoms or testing,
and isolating them. It also helps to identify asymptomatic individuals who can unknowingly spread the virus, high-risk in-
dividuals for severe illness, and outbreaks. But due to even a minor possibility of false positive test results, screening in low
prevalence scenarios may lead to an unwarranted saturation of healthcare resources and disease burden (Wald et al., 1999).
Therefore, an efficient and effective screening technique is always useful in counteracting any rapid epidemic in a community.

Almost half a century ago, the World Health Organization (WHO) published a comprehensive report on “Principles and
practice of screening for disease” byWilson and Jungner, popularly known as theWilson-Jungner criterion of disease detection
(Maxwell GloverWilson& Jungner, 1968). Listed below are some of the crux points (Andermann et al., 2008) of that criterion,
which became the public health paradigm.

1. There should be a discernible latent/early symptomatic or asymptomatic infectious stage.
2. An apt test should be well-received by the population it is designed for.
3. The project should not be a ‘once and for all.’ It should continue until the condition persists.
4. The process should be cost-effective as a whole.

Several mathematical modelers have tried incorporating the points of this classic criteria by defining some specific
screening rate functions in disease models. For an example, one of the earliest works includes a random screening of the
infectious population; this work by Hsieh (Hsieh, 1991) was based on the initial model of HIV dynamics given by May and
Anderson (Robert Mccredie May and Roy Malcolm Anderson, 1988). Kim and Milner (Kim &Milner, 1995) extended the work
of Hsieh (Hsieh,1991) bymodifying the screening rate functionwhile studying the effect of screening on a diseasemodel with
variable infectiousness; the authors took s(y)/y as screening rate per unit time, with active population y ¼ S þ I. The purpose
of taking this kind of screening rate was to partially incorporate the third point (mentioned above) of the WJ criterion. Their
argument was that the screening should be directly proportional to the active infectious population (y) and inversely pro-
portional to the non-susceptibility (S/I), which they showed by re-writing the removal term as s(y)/(1 þ S/I). If seen from the
other perspective, this rate function also incorporates the saturation caused by the limited availability of resources to finance
the detection drive. Since the 2000s, many authors have used this rate function or modified versions of it in their models.
There have been quite a few epidemic outbursts that required widespread disease-detection drives, for instance, the recent
outbreak of COVID-19. Recent studies by Al-Rifai et al. (Rami et al., 2021), Xue et al. (Xue et al., 2021) have emphasized the
importance of screening in controlling the spread of COVID-19 and reducing its impact on public health. Yuan and Blakemore
(Yuan & Blakemore, 2022a) have presented an observational study to emphasize the effect of testing and tracing on the
COVID-19 outbreak without lockdown in Hong Kong. Nonetheless, the screening of diseases faces a potential challenge due to
immigration and emigration. However, this challenge can be addressed through the application of patch modeling, as
demonstrated in a recent study on COVID-19 by Das et al. (Das et al., 2023). Patch modeling is also employed in a meta-
population environment, where populations are dispersed across numerous interconnected dense patches. This approach
aids in comprehending the local dynamics within these patches. The COVID-19 pandemic has had a significant impact on
Hong Kong, with the city facing several waves of infections since the outbreak began. The city has implemented strict social
distancing measures and widespread testing to curb the spread of the virus, yet the situation remains challenging (Yuan &
Blakemore, 2022b). One of the critical challenges in managing the spread of the virus in Hong Kong is balancing the need
for additional screening and treatment measures to reduce transmission with the costs associated with these interventions.
This observation serves as motivation for our study, in which we propose a model that addresses both the “lower petals” of
the WJ screening criterion depicted in Fig. 1. We develop a model that incorporates additional screening based on infectious
density and perform an analysis to determine its cost-effectiveness. Simultaneously, we examine other control intervention
strategies for comparative purposes.

A study by Aleta et al. (Aleta et al., 2020) presents a mathematical model to analyze the potential effectiveness of testing,
contact tracing, and household quarantine in reducing the spread of COVID-19 during the second wave of the pandemic in
Boston city. One of the recent studies by Gao et al. (Gao et al., 2023) presents an SI2A2L2R compartmental model (considering
two compartments e those with testing and those without e for each: symptomatic infectious, asymptomatic infectious, and
isolated classes) to analyze how testing and isolation compliance impact early-stage COVID-19 spread, their results
emphasize the importance of testing and isolation underscoring the need for other control measures. High testing rates and
isolation compliance were found to notably reduce infection prevalence, particularly during daily peaks. In another study,
Meijere et al. (de Meijere et al., 2023) examined the willingness of over 4594 participants across three countries to adhere to
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Fig. 1. Crux of WHO's Wilson-Jungner (WJ) screening criterion, developed from (Andermann et al., 2008; Maxwell Glover Wilson & Jungner, 1968). The petal-
diagram highlights four most important crux points of WJ screening proposal. The lower two petals are most concerning as one screening strategy must not be
applied once and for all, and that strategy should also be cost-effective in all aspects. Our model mainly tackles both of these issues.
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testing and isolation protocols. The majority showed strong willingness for testing ð >91%Þ and rapid isolation ð >88%Þ, with
variations in booster vaccination adherence (73% in France, 94% in Belgium, 86% in Italy). Using modeling, they estimated
substantial transmission reductions (17e24%) and decreases in the effective reproduction number (R0) from 1.6 to 1.3 in
France and Belgium, and to 1.2 in Italy, assuming declared adherence. Notably, they highlighted a potential challenge: a cost
barrier to testing might compromise adherence in France and Belgium, impacting the overall effectiveness of the proposed
protocols in metro cities. Indeed, to better handle the spread of the disease in a densely populated city like Hong Kong, the
modelers need to incorporate and balance the additional screening and treatment measures; we propose a new approach to
modeling such a situation by including additional screening based on infectious density and saturated treatment with relapse
and reinfection. This type of model can help to identify high-risk areas and predict how the disease may spread in the future.
We also establish an optimal control problem for the proposed model by inducting three time-dependent controls. To assess
the efficiency of inducted controls, we consider various strategies with different combinations of implemented controls and
perform an analysis for the cost-effectiveness of those strategies.

Cost-effectiveness analysis (CEA) is a method used to evaluate the relative efficiency of different interventions or strategies
for controlling the disease. The primary aim of CEA is to identify the intervention or strategy that provides the most health
benefit at the lowest cost. CEA is often used to inform decision-making in allocating resources for public health programs and
policies. The ‘gold-standard’ book “Cost-effectiveness in health and medicine” by Weinstein et al. (Gold et al., 1996) provides
an overview of the principles and methods of CEA, including the use of cost-effectiveness ratios and incremental cost-
effectiveness ratios (ICERs). Recently, performing CEA for optimal control strategies has become more popular due to its
ability to evaluate and compare the efficacy and efficiency of control interventions, making it particularly useful in third-
world countries to manage their healthcare systems effectively. We also conduct the CEA to compare the cost-
effectiveness of various strategies and determine the control intervention strategy that offers the highest cost-
effectiveness in mitigating the disease burden.

The paper is primarily structured into five sections: Introduction, Material and methods, Theory and calculations, Results
and discussion, and Conclusions. After giving an introduction and providing an extensive background to the research context
in this section, Section 2 on ‘Material and methods’ presents the foundational materials and methodologies. This includes a
detailed formulation of the mathematical model, as outlined in Sub-section 2.1, introducing a new concept named as in-
fectious density-induced additional screening (IDIAS) and treatment saturation. The explanation of these two primary rate
functions is presented in two separate sub-sections, leading to the subsequent derivation of the model rate equations. The
Sub-section 2.1 is complemented by the validation of the model through parameter estimation and characterization using
real data. Additionally, Sub-section 2.2 provides a brief summary of the methods utilized in the remaining sections of the
paper. Section 3 is primarily focused on theory and calculations, which consist of two subsections: Sub-section 3.1, where we
conduct an analysis of the model and reproductive threshold, including the biological feasibility of the model (3.1.1), the
computation of the basic reproduction number (3.1.2), and the existence and stability of disease-free and endemic equilibria
(3.1.3); while in Sub-section 3.2, we establish the optimal control problem, including the formulation of a cost functional
(3.2.1), the existence and characterization of optimal controls (3.2.2), and the optimality system and solution approach (3.2.3).
In section 4, we discuss the results and present a detailed discussion on numerical simulations, including the elasticity of
reproduction number and effect of screening on disease spread (Sub-section 4.1), the effect of optimal control strategies that
includes a detailed analysis of implementing different combinations of controls as intervention (Sub-section 4.2), cost-
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effectiveness analysis of control interventions (Sub-section 4.3), and a summary of the analysis and results obtained
emphasizing their public health significance (Sub-section 4.4). Finally, in Section 5, the paper is ultimately wrapped up with
conclusive remarks.
2. Material and methods

This section presents all necessary material and methods, which includes a detailed explanation of the formulated model
with its validation and parameter characterization, as well as a synopsis of the methods being used in the subsequent
sections.
2.1. Mathematical model with IDIAS and treatment saturation

We formulate a SI2HR model (I2 denotes two infectious classes) by partitioning the total population N into five com-
partments, viz. susceptible S, asymptomatic infectious Ia, symptomatic infectious Is, infective individuals under care H, and
recovered R. For ease of understanding and simplicity, we have chosen not to include an exposed class of individuals in our
model, as it will not significantly alter the dynamics of the disease. The population flow (see Fig. 2), in terms of the movement
of individuals within a population over time through different compartments under consideration, is as follows.

S(t): Susceptible individuals being recruited at the rate L, getting infected with the transmission rates bs (symptomatic)
and ba (asymptomatic).
Ia(t): Asymptomatic infectious individuals (mild to no symptoms), moving toHwith saturated screening rate function 4(Is)
and quarantine rate of g. Moving to Is with the rate of aa.
Is(t): Symptomatic infectious individuals (mild to severe symptoms), moving to H with saturated treatment rate function
j(Is) and quarantine rate of as.
H(t): Infective individuals under care (isolation, quarantine, treatment, hospitalization), moving to R with a recovery rate
of s.
R(t): Recovered individuals, being reinfected at a reduced rate of r by coming in contact with the infective and are moving
to Is. They are also moving back to S due to waning immunity with a rate h.

Incorporating immunity loss and reinfection in this population flow is crucial given the type of disease we are dealing
with. Now, beforewriting the rate flowequations inmathematical form, we first elaborate the twomain rate functions: 4(Is)e
the screening rate functionwith infectious density-induced additional screening (IDIAS) and j1(Is) e the saturated treatment
rate function.
Fig. 2. Compartmental diagram depicting population flow and dynamics of the model.
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2.1.1. Screening rate function with IDIAS
An additional screening prompted by the infectious density (we name it as IDIAS - infectious density-induced additional

screening) along with the baseline constant screening is considered in the screening rate function,

4ðIsÞ ¼ qþ 41ðIsÞ ¼ qþ rIs
1þmIs

;

where, q is constant baseline screening and 41ðIsÞ ¼ rIs
1þmIs

is the IDIAS, where r is screening rate andm is saturation constant.

Considering this type of screening rate function is crucial, particularly, in cases where the infectious population varies at its
density. To better deal the situation in cities with dense population, an additional screening dependent on the density of
infectious population along with the baseline constant screening is really important.

2.1.2. Saturated treatment rate function
The saturated treatment rate function is a commonly-used form of the treatment rate function that represents the

maximum achievable treatment rate, beyond which additional treatment efforts are no longer effective in reducing the
spread of the disease. The use of a saturated treatment rate function reflects the reality that there are limits to the number of
individuals who can be treated in a given time frame, due to resource constraints or other practical considerations. Therefore,
we incorporate the following saturated treatment rate function,

jðIsÞ ¼ aIs
1þ nIs

;

where, a is treatment rate and n is treatment saturation constant.

2.1.3. Compartmental flow diagram and rate equations
The mathematical model with IDIAS and treatment saturation is given by,

dS
dt

¼ Lþ hR� ðbsIs þ baIaÞS� mS;

dIa
dt

¼ eðbsIs þ baIaÞS� ðgþ 4ðIsÞÞIa � aaIa � mIa;

dIs
dt

¼ ð1� eÞðbsIs þ baIaÞSþ aaIa � ðasIs þ jðIsÞÞ þ rðbsIs þ baIaÞR� ðms þ mÞIs;

dH
dt

¼ ðasIs þ jðIsÞÞ þ ðgþ 4ðIsÞÞIa � sH � mH;

dR
dt

¼ sH � rðbsIs þ baIaÞR� hR� mR;

(1)

with an initial condition setting as ðSð0Þ; Iað0Þ; Isð0Þ;Hð0Þ;Rð0ÞÞT in positive R5. All the parameters with their values and
biological meaning are given in Table 1, given in the subsection below.
Table 1
Assumed and estimated parameters and their description, unit and values/range; we obtain R0 ¼ 2:129 for these parameters (P stands for ‘person’ and D
stands for ‘day’ in the unit column). The estimated parameters are as per the real data from Hong Kong during the NoveDec 2022 time-frame.

Parameters Description Unit Values/Range

L Recruitment rate P D�1 Varied
n Treatment saturation constant P�1 0.2e0.25 (Zhang et al., 2021)
m Natural death rate D�1 1

365� 60
(Assumed)

r, h Immunity loss rate D�1 1
30� 3

(Cristiane et al., 2021)

ba Disease transmission rate by asymptomatic P�1D�1 0.00002 (Assumed)
bs Disease transmission rate by symptomatic P�1D�1 0.0000001 (Estimated)
e Proportion constant for transmission (S / Ia) e 0.15e0.7 (Srivastav et al., 2021)
g Asymptomatic quarantine/self-isolation rate D�1 0.2e0.4 (Lin et al., 2020; Srivastav et al., 2021)
q Baseline screening rate D�1 0.001 (Assumed)
r Additional screening rate P�1D�1 0.005 (Estimated)
m Screening saturation constant P�1 0.0001 (Assumed)
aa Conversion rate (Ia / Is) D�1 0.01e0.08 (Aldila et al., 2020)
as Symptomatic quarantine/self-isolation rate D�1 0.07 (Assumed)
a Symptomatic hospitalized rate D�1 0.02e0.1 (Li et al., 2020; Srivastav et al., 2021)
s Recovery rate D�1 1

14
(Lamba et al., 2023; Srivastav et al., 2021)
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In infectious disease models, it is common to track the number of newly detected or infectious cases over time. However,
sometimes it is useful to consider an additional rate equation to separate cumulative newly detected/infectious cases from the
infectious cases that are still actively spreading the disease. Therefore, we also separate out cumulative newly detected/
infected cases (denoted byC(t)) by the following rate equation,

dC
dt

¼ ðasIs þjðIsÞÞ þ ðgþ4ðIsÞÞIa; (2)

where, 4(Is) is the IDIAS rate function and j(Is) the treatment rate function. The need for considering an additional rate
equation for C(t) arises when the infectious disease model needs to capture the fact that some individuals who are infected
may not be immediately detected or treated and may continue to spread the disease to others. This is especially true in the
case of diseases with long incubation periods or asymptomatic carriers. By separating out the cumulative newly detected/
infectious cases into a distinct rate equation, the infectious disease model can better account for the dynamics of disease
transmission and the effectiveness of detection and treatment measures. This can lead to more accurate predictions of the
disease spread and help in studying the impact of control measures in a better way.

2.1.4. Model validation with parameter estimation and characterization
In this subsection, we validate our model using data fitting and parameter estimation. We consider the COVID-19 cases in

Hong Kong as a case study (URL) and perform data fitting in order to estimate the model parameters. We use the least square
technique of data fitting. The data fitting is based on the cumulative new infective cases in Hong Kong fromNovember 1, 2022,
to December 29, 2022 (URL). Fig. 3aea bar plot, depicts the data day-wise. So, the rate equation of C(t) (i.e., equation (2)) is
fitted with the real data (see Fig. 3b).

2.1.4.1. Characterization of model parameters. Here, we discuss the rationale behind the values and biological essence of the
literature-sourced and estimated parameters being utilized in our model formulation.

The recruitment rate L for susceptibles is varied around the value taken in (Saha et al., 2023), as population in the sus-
ceptible compartment can be recruited by birth, by immigration or by other means, so it can't be fixed to one value. The
natural death rate m is assumed, while the immunity loss rates r and h, representing the propensity of the recovered pop-
ulation to re-contract the disease and become susceptible again, respectively, are adopted from (Cristiane et al., 2021). The
authors in (Cristiane et al., 2021) assume the immunity loss rate in a model formulated for Sao Paulo (one of the most
populous cities in Brazil), which resembles our case of Hong Kong. The assumption is made that immunity is not permanent,
and a reinfection rate of r or h ¼ 0.01 is adopted, meaning that a recovered individual becomes susceptible again or is
reinfected every 90 days by coming into contact with asymptomatic or symptomatic individuals.

The disease transmission rate by symptomatic individuals bs and the rate of additional screening r are estimated using the
data fitting, and to ensure the reliability of the estimates, we assumed and set the remaining parameters based on the
available literature, as shown in Table 1. Since the transmission rate by the asymptomatic population is not readily accessible,
we have assumed it to be higher than the transmission rate by symptomatic individuals, taking into account their higher
contact rate. The proportionality constant, denoted as e, signifies that e fraction (bsIs þ baIa)S susceptible individuals transition
Fig. 3. (a) Depicting day-wise cumulative infective cases as per the real data of Hong Kong taken from November 1, 2022 to December 29, 2022 (b) The solution to
the rate equation for C(t) (representing cumulative newly detected/infectious cases), i.e., solution to equation (2) is fitted with the real data.
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to the Ia class, while the remaining portion, (1 � e) fraction, moves to the Is class. Asymptomatic quarantine/self-isolation rate
g is sourced from (Lin et al., 2020; Srivastav et al., 2021), on the other hand, symptomatic quarantine/self-isolation rate as is
assumed to be higher than g. The baseline screening rate q is assumed to be lesser than that of previous COVID waves, as our
data is from the end of 2022. The screening saturation constant m and treatment saturation constant n represents the
maximum effectiveness or limit of the additional screening and treatment process as the number of symptomatic individuals
(Is) becomes very large, respectively. As Is becomes very large, the additional screening and treatment effectiveness ap-
proaches their maximum levels r

m and a
n, determined by the screening saturation constant m and treatment saturation

constant n, respectively. This implies that even with a substantial increase in the number of symptomatic individuals being
screened traditionally or treated, these processes may reach a saturation point where additional screening and treatment
efforts have limited impact on the overall effectiveness. aa represents the rate at which asymptomatic infectious individuals
transition to the Is class upon experiencing symptoms. On the other hand, a denotes the hospitalization rate for symptomatic
individuals and contributes to the formulation of the saturated treatment rate function j(Is). The recovery rate, denoted as s
and sourced from (Lamba et al., 2023; Srivastav et al., 2021), reflects the rate at which individuals in the H class either achieve
full recovery or acquire temporary or complete immunity.

2.2. Synopsis on methodologies

As mentioned in the model formulation, we have used a deterministic compartmental modeling approach, which is an
evolution of the pioneer KermackeMcKendrick SIR model. For the purpose of data fitting, we employ the least square
technique.We calculate the basic reproduction number using the next-generationmatrix method and determine its elasticity
through normalized forward sensitivity indices. The existence and stability of disease-free and endemic equilibrium points
are being established using standard methods. We apply Pontryagin's maximum principle to deduce the characterization of
the optimal control, and the forward-backward sweep method is employed to solve the corresponding optimality system,
with detailed information provided in Sub-section 3.2.3. The cost-effectiveness analysis of various intervention strategies is
primarily conducted using incremental cost-effectiveness ratios. References for all these methods are appropriately cited at
their respective locations of use in the manuscript.

3. Theory and calculation

This section focuses on theory and calculations related to model analysis and the optimal control problem. In the first sub-
section below we majorly establish theory related to the model, including its biological feasibility, calculation of the repro-
duction number, and stability of the equilibria. While the Sub-section 3.2 presents the formulation of the optimal control
problem with its objective cost functional and theory/calculation pertaining to the existence and characterization of the
optimal controls.

3.1. Model analysis and reproductive threshold

This subsection deals with a basic analysis of the model, including a discussion on biological feasibility, i.e., positivity and
boundedness of the solutions; we deduce a positively invariant set that guarantees non-negativity of the solutions. We also
compute the basic reproduction number using the next generation matrix (NGM) approach.

3.1.1. Biological feasibility of the model
Here, the main focus is to demonstrate the positive invariability and boundedness of the proposed model system. By

showing that the model remains within biologically meaningful ranges, we can ensure that it is a viable tool for studying the
behavior of the biological system of interest. This analysis is essential for assessing the model's ability to accurately reflect the
real-world phenomena it aims to represent. Following (SrivastavaSonu et al., 2022; Sun et al., 2011), we state and prove the
positive invariability and boundedness of the model system as.

Theorem 3.1. The model system (1) is positively invariant in R5 and bounded in the region

D ¼
�
ðS; Ia; Is;H;RÞ2R5 : S � 0; Ia � 0; Is � 0;H � 0;R � 0; Sþ Ia þ Is þ H þ R � L

m

�
:

proof. The proof is given in Appendix A.1.
3.1.2. The basic reproduction number
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System (1) has one infection-free equilibrium (IFE), denoted and given by E1 ¼ ðS0;0;0;0;0Þ ¼
�
L
m;0;0;0;0

�
. Using the next

generation matrix approach (Van den Driessche & James, 2002), the basic reproduction number is obtained by (details are
provided in Appendix A.2),

R0 ¼ eðas þ aþ ms þ mÞbaS0 þ ð1� eÞðgþ qþ aa þ mÞbsS0 þ eaabsS0
ðgþ qþ aa þ mÞðas þ aþ ms þ mÞ ;

¼ e

�
baS0

ðgþ qþ aa þ mÞ þ
aa

ðgþ qþ aa þ mÞ
bsS0

ðas þ aþ ms þ mÞ
�
þ ð1� eÞ bsS0

ðas þ aþ ms þ mÞ;
(3)

where, baS0
ðgþqþaaþmÞ þ aa

ðgþqþaaþmÞ
bsS0

ðasþaþmþmsÞ represents the infection caused by an individual which was initially asymptomatic

and bsS0
ðasþaþmþmsÞ represents the infection caused by an individual during its symptomatic infectious period. So, the number of

new infectious cases generated by a single infectious individual over the course of its life is denoted by R0.

Theorem 3.2. IFE E1 is locally stable for R0 <1 and unstable for R0 >1.
proof. The proof is given in Appendix A.3.

Theorem 3.3. At R0 ¼ 1, the backward bifurcation occurs for n > ncrit and forward (transcritical) bifurcation occurs for
n < ncrit, where ncrit is defined in the proof.

proof. The proof is given in Appendix A.4.

It is important to highlight that a larger value for n indicates the presence of a backward bifurcation, resulting in the
persistence of the disease. This underscores the crucial role played by the treatment saturation constant n in the eradication of
the disease whenR0 <1. This correlation makes sense, as a higher n is associated with a lengthier waiting time for treatment,
thereby amplifying the chances of infection spread and contributing to the sustained presence of the disease.

3.1.3. Existence and stability of endemic equilibria

System (1) has endemic equilibrium E*2 ¼ ðS*; I*a; I*s ;H*;R*Þ where,

H* ¼ asI*s þ jðI*s Þ þ ðgþ 4ðI*s ÞÞI*a
sþ m

; R* ¼ sH*

rðbsI*s þ baI
*
aÞ þ hþ m

; S* ¼ Lþ hR*

bsI
*
s þ baI

*
a þ m

: (4)
We express R* and S* of (4) in terms of I*a and I*s as follows,

R* ¼ sðasI*s þ jðI*s Þ þ ðgþ 4ðI*s ÞÞI*aÞ
ðsþ mÞðrðbsI*s þ baI

*
aÞ þ hþ mÞdg1ðI*a; I*s Þ; (5a)

mS0 hg2ðI* ; I*Þ
S* ¼
bsI

*
s þ baI

*
a þ m

þ a s

bsI
*
s þ baI

*
a þ m

dg2ðI*a; I*s Þ: (5b)
Substitute H*, R* and S* from (5) in differential equations dIa
dt

���
E*
2

¼ 0 and dIa
dt

���
E*
2

¼ 0 we have,

g3ðI*a; I*s ÞdeðbsI*s þ baI
*
aÞg3ðI*a; I*s Þ � ðgþ 4ðI*s Þ þ aa þ mÞI*a ¼ 0;

g4ðI*a; I*s Þdð1� eÞðbsI*s þ baI
*
aÞg3ðI*a; I*s Þ þ aaI*a � ðasI*s þ jðI*s ÞÞ þ rðbsI*s þ baI

*
aÞg2ðI*a; I*s Þ � ðms þ mÞI*s ¼ 0:
So, all S*; I*a; I
*
s ;H

*;R* are positive if g3ðI*a; I*s Þ ¼ 0 and g4ðI*a; I*s Þ ¼ 0 give positive real root. Therefore, either unique endemic

equilibrium or multiple endemic equilibria may exist, respectively, if g3ðI*a; I*s Þ ¼ 0 and g4ðI*a; I*s Þ ¼ 0 have one positive root or
many positive roots. Although we cannot prove the existence of endemic equilibrium for R0 >1, the numerical result for
specific parameter values (given in Sub-section 2.1.4) indicates the existence of an endemic equilibrium for R0 >1.

Theorem 3.4. The endemic equilibrium E*2 is locally stable if b0 > 0, b4 > 0, b4b3 � b2 > 0, b2(b4b3 � b2) � b4(b4b1 � b0) > 0, and

ðb2ðb4b3 � b2Þ � b4ðb4b1 � b0ÞÞðb4b1 � b0Þ� b0ðb4b3 � b2Þ2 >0, where b0, b1, b2, b3, and b4are given in (14).
proof. The proof is given in Appendix A.5.
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3.2. Establishment of optimal control problem

In this subsection, we formulate an optimal control problem for the model system (1) by introducing three time-varying
controls. After inducting the control variables u1(t), u2(t), and u3(t), we get the following corresponding dynamical system
with controls,

dS
dt

¼ Lþ hR� ð1� u1ðtÞÞðbsIs þ baIaÞS� mS;

dIa
dt

¼ eð1� u1ðtÞÞðbsIs þ baIaÞS�
�
gþ qþ ru2ðtÞIs

1þmIs

�
Ia � aaIa � mIa;

dIs
dt

¼ ð1� eÞð1� u1ðtÞÞðbsIs þ baIaÞSþ aaIa �
�
asIs þ au3ðtÞIs

1þ nIs

�
þ rðbsIs þ baIaÞR� ðmþ msÞIs;

dH
dt

¼
�
asIs þ au3ðtÞIs

1þ nIs

�
þ
�
gþ qþ ru2ðtÞIs

1þmIs

�
Ia � sH � mH;

dR
dt

¼ sH � rðbsIs þ baIaÞR� hR� mR;

(6)

with initial populations ðSð0Þ; Iað0Þ; Isð0Þ;Hð0Þ;Rð0ÞÞT2R5
þ. Given the financial constraints on the healthcare system, inter-
vention policies must also be limited (Gaff & Schaefer, 2009; Kumar et al., 2017a, 2017b). Therefore, we take all three controls
as bounded in [0, 1], where attaining the upper bound represents the maximum efforts required.

1. Precautionary measures u1(t) applied to susceptibles, which includes disease prevention efforts by sanitation, masking,
and social distancing. The term (1 � u1(t)) signifies the ultimate reduction in the transmission rate as an increase in u1(t)
implies a decrease in (1 � u1(t)).

2. Boosted screening u2(t) for asymptomatic infectives. The multiplication of u2(t) with the additional screening (IDIAS) rate
function 41(Is) represents a boost in the infectious density-induced additional screening for the infectives. The assignment
u2(t) ¼ 1 denotes screening efforts at full potential, while u2(t) ¼ 0 represents only a baseline constant screening is being
carried out, i.e., no additional screening.

3. Boosted treatment u3(t) for symptomatic infectives. The multiplication of u3(t) with the treatment rate function j(Is)
denotes treatment boost. The value u3(t) ¼ 0 quantify that treatment is not available.
3.2.1. Designing objective cost functional
Before establishing the existence and characterization of optimal controls, we first design the cost functional with various

cost components that are to be optimized (minimization of disease prevalence and cost incurred). The following is the
objective cost functional corresponding to system (6),

J ðu1ðtÞ;u2ðtÞ;u3ðtÞÞ ¼
Z tf

0

	
C1IaðtÞ þ C2IsðtÞ þ C3HðtÞ þ

1
2

�
C4u

2
1ðtÞ þ C5u

2
2ðtÞ þ C6u

2
3ðtÞ

�

dt: (7)
J ðu1ðtÞ;u2ðtÞ;u3ðtÞÞ represents the total cost incurred due to intervention policies, which is a weighted sum of different
components: the cost due to prevalence,Z tf

0
ðC1IaðtÞ þ C2IsðtÞ þ C3HðtÞÞdt;
we consider this as directly proportionate to the number of individuals who are infectious (including asymptomatic and
symptomatic individuals as well as those under medical care), which reflects the social and economic impact of the disease
prevalence. The cost incurred due to precautionary measures,

Z tf

0
C4u

2
1ðtÞdt;
the cost of boosting screening,
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Z tf

0
C5u

2
2ðtÞdt;
and cost of boosting treatment,Z tf

0
C6u

2
3ðtÞdt:
The second-order non-linearity in these cost components pertains to a non-linear increase in cost incurred due to
implementing these controls to cover a large population. Now on, wewill use u1, u2, and u3 instead of u1(t), u2(t), and u3(t) for
simplicity and denotation.

Our primary objective is to reduce disease prevalence while minimizing the cost. In other words, we aim to identify an
optimal set of controls ðu*1;u*2;u*3Þ that achieves this objective,

J ðu*1;u*2;u*3Þ ¼ minfJ ðu1;u2;u3Þ : u1;u2;u3 2AUg;

where, AU ¼ {(u1, u2, u3): u1, u2, u3 are measurable, 0 � u1, u2, u3 � 1, t 2 [0, tf]} is the set of admissible controls. The positive
coefficients in the integrand of (7), C1, C2, C3, C4, C5, and C6 are the constants that not only balance the weighted cost-sum but
also signify the importance of a particular component.

3.2.2. Optimal controls: existence and characterization
Here, we present the necessary and sufficient conditions for solving the optimal control problem. Prior to outlining the

characterization, we examine the sufficient condition for optimal controls, as outlined in Theorem 2.1. in (Lenhart &
Workman, 2007), Theorem 4.1 in (Wendell et al., 2012), Theorem 9 in (SrivastavaSonu et al., 2022), and related corollaries.
We utilize Pontryagin's maximum principle (PMP) (Lenhart&Workman, 2007) to deduce the characterization of the optimal
controls, i.e., necessary conditions. Since ui (for i ¼ 1, 2, 3) are bounded, therefore, the state variables si (for i ¼ 1, 2, 3, 4, 5) of
the model system (6) are also bounded in D, as discussed in Sub-section (3.1). We represent the vector s ¼ [si] as the vector of
state variables s1 ¼ S, s2 ¼ Ia, s3 ¼ Is, s4 ¼ H, s5 ¼ R and the vector u ¼ [ui] as the vector of control variables u1, u2, u3 2 AU.

Theorem 3.5. (Sufficient Condition) Consider Rðt; s;uÞ be the right hand side of the equations in system (6) and
Iðt; s;uÞ ¼ C1IaðtÞ þ C2IsðtÞ þ C3HðtÞ þ 1

2

�
C4u21ðtÞ þ C5u22ðtÞ þ C6u23ðtÞ

�
be the term under integral sign in the objective functional

(7) then a optimal triplet of controls ðu*1;u*2;u*3Þ exists if following criteria are met:

1. R is of class C1 and there exist positive constants P1, P2, P3 such that jRðt;0;0Þj � P1, jRsðt;s;uÞj � P2ð1 þ jujÞ, jRuðt;s;uÞj � P3,
2. The feasible solution set Dswith controls in AU is non-empty and bounded,
3. Rðt;s;uÞ ¼ Fðt;sÞþ Gðt;sÞu,
4. The set AU ¼ [0, 1] � [0, 1] is bounded, closed, and convex,
5. I is convex in AU.

Proof. Proof is done as per the approach followed in (SrivastavaSonu et al., 2022) and is omitted here.

Now, in order to make use of the PMP, we formulate the Hamiltonian Hðs;u;lÞ, which is a sum of the integrand Iðt; s;uÞ
and

P5
i¼1li

dsi
dt , given by,

Hðs;u; lÞ ¼ Iðt; s;uÞ þ l1
dSðtÞ
dt

þ l2
dIaðtÞ
dt

þ l3
dIsðtÞ
dt

þ l4
dHðtÞ
dt

þ l5
dRðtÞ
dt

;

6
where, l ¼ ðl1; l2; l3; l4; l5Þ2R is known as adjoint vector, elements of which satisfies,

dl1ðtÞ
dt

¼ �vH
vS

;
dl2ðtÞ
dt

¼ �vH
vIa

;
dl3ðtÞ
dt

¼ �vH
vIs

;
dl4ðtÞ
dt

¼ �vH
vH

; and
dl5ðtÞ
dt

¼ �vH
vR

; (8)
with transversality conditions l1(tf) ¼ 0, l2(tf) ¼ 0, l3(tf) ¼ 0, l4(tf) ¼ 0, and l5(tf) ¼ 0.

Theorem 3.6. (Necessary Condition) Given the existence of an optimal control triplet ðu*1;u*2;u*3Þ and the corresponding quintet

(S*, I*a, I
*
h, H, R*) that optimize the objective cost functional (7), there exist l1, l2, l3, l4, and l5, satisfying the adjoint system (8)with

transversality conditions, then the triplet of optimal controls can be characterized as ðu*1;u*2;u*3Þ, where,
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u*1 ¼ max
�
min

�ðel2 � ð1� eÞl3 � l1ÞðbsI*s þ baI
*
aÞS*

C1
;1

�
;0

�
;

u*2 ¼ max

(
min

(
ðl2 � l4ÞrI*s I*a
C5ð1þmI*s Þ

;1

)
;0

)
;

u*3 ¼ max

(
min

(
ðl3 � l4ÞaI*s
C6ð1þ nI*s Þ

;1

)
;0

)
:

(9)
Proof. Proof is done as per the approach followed in (SrivastavaSonu et al., 2022) and is omitted here.
3.2.3. Optimality system and solution approach
The optimality system for our model consists of the state equation (6) with initial conditions, the adjoint system (8) with

transversality conditions, and the optimality conditions (9). This optimality system, as a whole, is termed as the optimal
control problem. The solution approach for optimal control problems typically involves formulating a mathematical model
that describes the behavior of the system being controlled, defining an objective function that specifies the desired behavior
or performance of the system, and then using optimization algorithms to find the control inputs that optimize the objective
function subject to any constraints on the system. There are various techniques and algorithms for solving optimal control
problems, including direct methods (such as the shooting method and the collocationmethod) and indirect methods (such as
the Pontryagin's maximum principle and the Hamilton-Jacobi-Bellman equation). The choice of method depends on the
specific characteristics of the problem, such as the dimensionality of the system, the nature of the objective function and
constraints, and the desired accuracy and computational efficiency of the solution.

The forward-backward sweep method (FBSM) is a well known numerical optimization technique used for solving optimal
control problems. The method involves breaking the problem into two parts: the forward sweep, which involves simulating
the controlled system (6) forward in time to generate a guess for the control inputs, and the backward sweep, which involves
solving the adjoint system (8) backwards in time to obtain the sensitivities of the objective functional (7) with respect to the
state variables and control inputs. Using these sensitivities, the control inputs are updated in the forward sweep, and the
process is iterated until convergence is achieved. To solve the adjoint system and control system backward and forward in
time, respectively, we employ the fourth-order Runge-Kutta method, awidely-used numerical method for approximating the
solutions to differential equations with high accuracy. The FBSM has the advantage of being relatively simple to implement
and computationally efficient, particularly for problems with a large number of control variables.

4. Results and discussion

In this section, we present and discuss the results of our numerical simulations investigating the effects of various factors
on the reproduction number ðR0Þ and disease spread. Specifically, we explore the impact of screening and the variation of
other key parameters on R0 and disease spread. We present the results of our numerical simulations by using line and
contour plots to illustrate visually. These plots provide a clear representation of the relationship between different parameters
and the key outcomes of interest. Additionally, we show the effect of using different combination of optimal controls on the
disease spread. We also analyze the cost-effectiveness of various screening and control strategies, with the aim of identifying
the most efficient and effective approaches for managing the disease.

4.1. Elasticity of R0 and effect of screening on disease spread

Variation in transmission rate, screening rate, quarantine rates, and treatment rate can have a significant impact on the
reproduction number ðR0Þ and the spread of a disease. Elasticity is a measure of how sensitive a variable is to changes in
another variable. In this case, it refers to how sensitive R0 is to changes in factors like transmission rate, screening rate,
quarantine rates, and treatment rate. Knowing the elasticity ofR0 allows us to quantify the impact of changes in these factors
on the spread of a disease.

4.1.1. Elasticity of R0
We see in expression (3) that the symptomatic disease transmission rate (bs), screening rate (q), quarantine rates (g, as),

and treatment rate (a) all have an effect on the basic reproduction number. With respect to these parameters (bs, q, g, as, and
a), the normalized forward sensitivity index (also known as elasticity) is computed to quantify the change in basic repro-
duction number when the corresponding parameter changed. Following the approach given by Bonyah et al. (Bonyah et al.,
2017) elasticity of R0 with respect to parameter x is given by,
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Fig. 4. Normalized sensitivity index (elasticity) of R0 with respect to symptomatic disease transmission rate bs, baseline screening rate q, quarantine/self-
isolation rates g and as, and treatment rate a; among these parameter, g is the most sensitive. The negative sensitivity index of g shows that delaying
quarantine/self-isolation of asymptomatic individual will cause huge surge in the reproduction number. i.e., new infections.

Table 2
Effective R0 range with respect to the ranges of different control measures.

Control parameter range Effective R0 range for 60 days

u1 2 [0, 1], u2 ¼ 0, u3 ¼ 0 R02½0:9763;2:1739�
u2 2 [0, 1], u1 ¼ 0, u3 ¼ 0 R02½0:5381;2:8993�
u3 2 [0, 1], u1 ¼ 0, u2 ¼ 0 R02½0:8381;1:3138�
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ER0
x ¼ x

R0
,
vR0

vx
:

This expression measures the percentage change in R0 resulting from a 1% change in the parameter x, assuming all other
factors remain constant. For instance, in Fig. 4, the positive sensitivity index (þ0.015) of parameter bs implies that a 1% rise in
the bs value increases the R0 by 0.015%. So the basic reproduction number increases as the disease transmission rate by
symptomatic individuals grows. The negative sensitivity index of parameters g, as, and a indicates that raising the values of
these parameters decreases R0. This leads to the conclusion that delaying in screening, quarantining, or treating any indi-
vidual will raise the basic reproduction number.

4.1.2. Effective R0 (with respect to controls)
While the parameters appearing in the expression for R0 exert a significant influence on it (as seen in sensitivity analysis

given above), the control variables used in the model system 6 can also wield considerable impact. Here, we observe changes
in the reproductive threshold with respect to the ranges of different control measures. We used the approach given in (Lamba
et al., 2023) to calculateR0 in terms of control variables and to obtain the effectiveR0 ranges. As an example, to determine the
effective range of R0 with respect 0 � u1 � 1, we maintained other control variables at their minimum values and varied u1
from its lower to upper bounds over the duration of control implementation, i.e., 60 days, and derived a range for the effective
reproduction number. Similarly, effective ranges for R0 are determined for the other two control variables, as indicated in
Table 2 below.

Here, the upper limit of control variables signifies the maximum level of implementation efforts, while the lower limit
represents their absence in the model system. We observe that employing only u1, i.e., relying solely on precautionary
measures, leads to a reduction in theR0 value from 2.1739 to 0.9763; only boosting additional screening, i.e., using only u2 as a
control measure, results in a decrease in theR0 value from 2.8993 to 0.5381; and only boosted treatment efforts, i.e., only u3,
reduces the R0 value from 1.3138 to 0.8381. The average of the upper bounds of effective R0 corresponds to the basic
reproduction number (without controls), which is R0 ¼ 2:129, as indicated in the caption of Table 1.

4.1.3. Effect of screening
To see the effect of screening in slowing the disease spread, we assume that a baseline screening with the rate q and an

additional screening with the screening rate r and saturation constant m are both available. To quantify the screening effect
on the infective population, we vary the parameters q, r, and m.
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Fig. 5. Evolution in total number of infectives when screening saturation m, baseline screening q, and additional screening r are varied; (a) shows that stopping
baseline screening (q ¼ 0) causes increase in infectives, while providing linear screening (m ¼ 0) decreases the infectives level (b) shows that disease infection
may surge without additional screening.

Fig. 6. (a) Evolution in total number of infectives as per variation in additional screening rate r; the graph shows that increasing additional screening rate r can
reduce the infectives, while stopping it (r ¼ 0) may cause a sudden surge in cases, (b) depicts that increasing saturation level in IDIAS term may cause an
increased burden on hospitalization.
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Fig. 5a depicts the evolution of total infective individuals (Ia þ Is) as the above mentioned parameters vary. We investigate
four distinct cases of parameter variation. The red curve in Fig. 5a and b is plotted when both screenings are available. In
comparison to this red curve, we obtained that stopping the additional screening (i.e., r¼ 0) increases the infective individual
level (green curve in Fig. 5b), stopping the baseline screening (i.e., q ¼ 0) increases the infective individual level (magenta
curve in Fig. 5a), and providing linear additional screening (i.e., m ¼ 0) decreases the infective individual level (blue curve in
Fig. 5a).

The curve in Fig. 5b also suggests that the disease infection is very high without additional screening. This suggests that
disease control without the support of additional screening is not a viable option. Fig. 6a depicts the evolution of the total
number of infective individuals (Ia þ Is) as screening rate r varied. It shows that increasing the screening rate r of additional
screening reduces the infective individual level. While Fig. 6b shows that increasing saturation level m in the IDIAS term, i.e,
delay in additional screening induced by infectious density may cause an increased burden by surging the number of in-
dividuals under care H.
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Fig. 7. Contour plots depicting evolution in number of infectives when g, q, r, and a are varied; (a) increasing in baseline screening rate q and quarantine/self-
isolation rate g, however, increasing baseline screening rate is more impactful in comparison to the increase in quarantine/self-isolation rate (b) Shows increase in
additional screening rate r is quite impactful in decreasing infectives but increasing in hospitalization rate a is not much helpful in reducing number of infectives.

Fig. 8. Contour plot showing effect of varying additional screening rate r and the saturation level m on number of infectives; taking saturation level m 2 (0,
0.0002) and increasing the additional screening is beneficial in diseasing the number of infectives. Note that increasing the saturation level while keeping the
additional screening rate to the minimum shows intangible impact, on the other hand, increasing the additional screening while keeping the saturation level
below 1 � 10�4 has a huge impact on decreasing the disease burden by reducing number of infectives (Ia þ Is).
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Fig. 7a, a contour plot with respect to q and quarantine rate of asymptomatic individual g, depicts the total infective in-
dividuals, Ia þ Is, obtained for various values of q(2 (0, 0.001)) and g(2 (0.01, 0.05)). Fig. 7a illustrates that as q or g increases,
the number of infective individuals decreases. Fig. 7bea contour plot with respect to treatment rate a and screening rate in
additional screening r, depicts the total infective individuals, Ia þ Is, obtained for various values of a(2 (0, 0.8)) and r(2
(0.0045, 0.005)). Fig. 7b illustrates that as r or a increases, the number of infective individuals decreases.

Fig. 8 shows that increasing additional screening rate only (r only) is helpful in reducing the infectives (similar to Fig. 7b);
however, increasing only saturation level in the IDIAS term causes increase in infectives.

Thus, it is concluded that baseline screening rate, screening rate of additional screening, saturation level of additional
screening, and quarantine rate of the asymptomatic individuals have a major role in slowing the disease spread.
4.2. Effect of optimal control strategies

In order to numerically simulate the optimal control problem, we have chosen a specific set of parameters from Table 1:
L ¼ 30, ba ¼ 0.00002, m ¼ 0.0000425, h ¼ 0.01, g ¼ 0.4, e ¼ 0.4, s ¼ 1/14, aa ¼ 0.04, as ¼ 0.09, ms ¼ 0.0052, a ¼ 0.1, n ¼ 0.2,
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Fig. 9. (a) Optimal profile for u1, when only u1 is applied, i.e., implementation of only precautionary measures (b) Plot for asymptomatic infectives Ia(t) when only
u1 is applied as a control intervention (red curve is when no controls are applied), this suggests that there is a very little variation in the number of asymptomatic
cases when only precautionary measure are applied as intervention.

Fig. 10. (a) Plot depicting evolution symptomatic infectives Is(t) when only u1 is applied in comparison with the evolution when no control is employed (b) Plot
for evolution of hospitalized or individuals under care H(t), when only u1 is applied as a control intervention (red curves are when no control is applied). These
graphs shows that implementation of only precautionary measures as an intervention is more effective in the evolution of symptomatic infectives and individuals
under care than that of asymptomatic infectives.
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q¼ 0.001, r¼ 0.005,m¼ 0.0001, bs¼ 0.0000001, r¼ 0.01 with (2000, 800, 218,100, 0) as populations at the initial time. These
values have been selected based on a careful consideration of the nature of the system and the goals of the simulation. To
further optimize our simulation, we have also assigned weights to the objective functional. The weights for different com-
ponents of the objective functional are C1¼10, C2¼10, C3¼15, C4¼10, C5¼ 20, and C6¼ 10. Theseweights reflect the varying
importance of the cost-components and efforts required for each of the different control interventions. We consider the
control implementation for a time period of 60 days. Below is a detailed analysis of implementing different combinations of
control interventions, which helped us to draw some interesting conclusions.

4.2.1. The case when u1 s 0 and u2 ¼ 0 ¼ u3, i.e., application of only u1 as control
The implementation of only precautionary measure as a control intervention, although, keeps the green curves (with

application of control) below the red curves (without any control), but is not much effective for asymptomatic infectives (Ia)
and individuals under care (H) (see Figs. 9b and 10b). Fig. 9a depicts the optimal path for u1, that physically represents efforts
required for the implementation of u1 as control. It roughly requires around 17 days of full efforts before slowly coming down.
While Fig.10a represents that applying only precautionarymeasures as a control is helpful in taking the number symptomatic
infectives a little down, whichmight be reduce the disease burden up to some extent. This shows that implementation of only
u1 is very little helpful in reducing the disease burden and cost incurred (see Fig. 11).
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Fig. 11. Cost incurred with application of u1 (blue curve) and without control (green cure), graph shows that even application of only precautionary measures as
control can keep the cost incurred below the cost incurred when no control is applied.

Fig. 12. (a) Optimal profile for u2 when only u2 is applied, i.e., only boosted screening is considered as an intervention, which in comparison to the previous case
when only precautionary measures are applied requires around five days of full efforts before it slowly comes down (b) Plot for evolution of asymptomatic
infectives Ia(t), when only u2 is applied as a control intervention (red curve is when no control is applied). It can be observed that this strategy is quite helpful in
tumbling down even the asymptomatic infectives, unlike the previous case.

Fig. 13. (a) Plot (green curve) for symptomatic infectives Is(t) when only boosted screening is applied (b) Plot for individuals under care H(t) when only u2 is
applied as a control intervention (in comparison to the red curves when no control is applied).
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Fig. 14. Cost incurred with application of only u2 (magenta curve) and without control (green cure). It shows that implementation of only boosted screening is
quite helpful in keeping the cost incurred below the cost incurred due to disease burden when no control is applied.

Fig. 15. (a) Optimal profile for u3, when only boosted treatment is considered as an intervention, it requires even more number days with full efforts than that of
previous two cases (b) Plot for asymptomatic infectives Ia(t), when only u3 is applied as a control intervention (red curve is when no control is applied). It is
evident is that this control intervention is not much promising in reducing asymptomatic cases.

Fig. 16. (a) Plot for symptomatic infectives Is(t) (b) Plot for individuals under care H(t), when only u3 is applied as a control intervention (red curves are when no
control is applied). It shows that only boosted treatment as a control strategy has minute impact on symptomatic infective and almost ineffective on individuals
under care, unlike the previous two cases.
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Fig. 17. Cost incurred due to application of only u3 (dotted yellow curve) and without control (green cure). It shows that only boosting treatment cannot be a
viable option as it doesn't lower down the cost incurred due to the disease burden, therefore, it might need inclusion of other intervention or control measures.
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4.2.2. The case when u2 s 0 and u1 ¼ 0 ¼ u3, i.e., application of only u2 as control
The application of only boosted screening as a control intervention looks promising by looking at the simulation graphs.

Fig. 12a depicts that for achieving the possible objective goal, it requires full efforts of boosted screening for just 5 initial days
before the requirement slows down to zero after 20 days. Figs. 12b and 13a show that boosting screening is quite helpful in
tumbling down the number of asymptomatic and symptomatic infectives.

On the other hand, Fig. 13b represents a realistic fact that on boosting screening number of individuals under care
(quarantine or hospitalized) will defiantly increases initially before coming down (even below the red cure, i.e., when no
controls are applied) eventually. The cost profile for this case is shown in Fig. 14 above.

4.2.3. The case when u3 s 0 and u1 ¼ 0 ¼ u2, i.e., application of only u3 as control
Employing only boosted treatment as a control seems to be a redundant intervention because even after putting full efforts

for 37 days (as shown in Fig.15a) it does not havemuch impact on any of the infective populations, except a little decrement in
the symptomatic individuals (see Fig. 16b). One more reasonwhy we say it as a redundant strategy is that because it does not
contribute in decreasing the cost incurred due to disease burden and control application (see Fig. 17). However, we will
investigate benefits (if any) of this intervention in comparison with the other strategies in the cost-effectiveness analysis in
the subsequent section.

4.2.4. The case when u1 s 0, u2 s 0, and u3 ¼ 0, i.e., application of both u1 and u2 as control
The application of both u1, i.e., precautionary measures and u2, i.e., boosted screening seem to be effective to reduce the

disease burden to an extent. Fig. 18a and b show that simultaneous application of both controls extends the number of days
required with full efforts, here precautionary measures are needed to be employed for a longer period than that of
Fig. 18. Optimal path (a) for u1 (b) for u2, when both u1 and u2, i.e., simultaneous application of both precautionary measures and boosted screening.
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Fig. 19. (a) Plot for evolution of asymptomatic infectives Ia(t) (b) Plot for symptomatic infectives Is(t), green curves are when both u1 and u2 are applied (red
curves are when no control is applied). The graphs depicts that combining boosted screening with precautionary measures have even better impact on disease
prevalence in comparison with the case where application of only precautionary measures is considered as a control intervention.

Fig. 20. (a) Plot for evolution of individuals under care H(t), when both u1 and u2 are applied as a control intervention (red curve is when no control is applied) (b)
Cost incurred with (dotted green curve) and without control (green cure).

Fig. 21. Optimal control paths for (a) u1 and (b) u3, when both u1 and u3 are applied, i.e., combined implementation of boosted treatment and precautionary
measures.
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Fig. 22. Disease prevalence curves (a) For asymptomatic infectives Ia and (b) For symptomatic infectives Is, green curves are when both u1 and u3 are applied (red
curves are when no control is applied). These graph shows that inclusion of precautionary measures to the strategy when only boosted treatment was considered
as a control makes it more impactful for symptomatic infectious individuals.

Fig. 23. (a) Disease prevalence curve for individuals under care H and (b) Cost profile, when both u1 and u3 are applied in comparison with the case when no
controls are applied. It shows that there is a positive impact on individuals under care and cost profile when precautionary measures are considered in addition to
the boosted treatment.

Fig. 24. Optimal control paths for (a) u2 and (b) u3, when both u2 and u3 are applied, i.e., combined implementation of boosted screening and boosted treatment.
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Fig. 25. Disease prevalence curves (a) for asymptomatic infectives Ia and (b) For symptomatic infectives Is, green curves are when both u2 and u3 are applied (red
curves are when no control is applied).

Fig. 26. (a) Disease prevalence curve for individuals under care H, when both u2 and u3 are applied (green), red curve is when no control is applied and (b) Cost
profiles with (blue) and without controls (green). The cost profile shows that boosting both the screening and treatment have even better impact on reducing the
cost incurred due to disease prevalence and the cost of control implementation.
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employment of only u1 as control (see Fig. 9a). This because of the availability of same resources, therefore, to achieve the
optimality with application of two controls at time, efforts need to be increased. Fig. 19a, b, and 20a have similar argument to
the case when only u2 is applied and show that implementation of both u1 and u2 is quite helpful in reducing the number of
infective cases as well as the cost incurred (as shown in Fig. 20b).

4.2.5. The case when u1 s 0, u3 s 0, and u2 ¼ 0, i.e., application of both u1 and u3 as control
The graphs show that the combination of implementing precautionary measure and boosted treatment has some positive

impact on number of symptomatic infectives (as shown in Fig. 22b), in comparison with the separate implementation of u1
and u3, see Figs. 10a and 16a, respectively (see Fig. 23a for impact of this strategy on infectives under care H(t) and see Fig. 23b
for cost profile). The optimal control paths for this case are shown in Fig. 21.

4.2.6. The case when u2 s 0, u3 s 0, and u1 ¼ 0, i.e., application of both u2 and u3 as control
When both u2 and u3 are applied, it can be seen (in Fig. 24a) that the full efforts of boosted treatment (u3) are required for

longer period as compared to the boosted screening u2 (see Fig. 24b). This strategy seems to be promising in reducing both
asymptomatic and symptomatic infectives (see Fig. 25a and b). Also, the hospitalized populations goes to a peak initially but
then eventually comes below the curve (red) without control (see Fig. 26a), while keeping the cost mostly below the cost of
disease burden when no control is applied (see Fig. 26b).
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Fig. 27. Optimal control paths for (a) u1, (b) u2, and (c) u3, when all controls are applied at the same time.

Fig. 28. Disease prevalence curves (a) for asymptomatic infectives Ia (b) For symptomatic infectives Is, with all three controls (green) and without application of
controls (red).
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Fig. 29. (a) Disease prevalence curves for individuals under care H, when all controls are applied simultaneously (red curve is when no control is applied); and (b)
Cost profile with (green) and without application of controls (red).
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4.2.7. The case when u1 s 0, u2 s 0, u3 s 0, i.e., simultaneous application of all controls
One interesting observation is that whenever boosting screening is included as control in any intervention strategy, for

instance, in strategy when u2 is applied with u1 or u3 or both (last case), there is a sudden increment in the cost profile for
some initial days and then cost incurred goes down the curve when no controls are applied (as shown in Figs. 20b, 26b and
29b). But those increments come with a justification that whenever boosting screening is combined with any of the other
controls as an intervention, there are positive effects on disease prevalence as well (see Fig. 28 and Fig. 29). More proper
explanation is given in the next subsection. The optimal control paths for this case are shown in Fig. 27.

Through this discussion, we have gained an understanding of how various control interventions can have varying impacts
on both disease prevalence and associated costs. Nevertheless, determining the most effective control intervention strategy
from the range of cases analyzed can be challenging. As a result, wewill conduct a cost-effectiveness analysis in the following
subsection.

4.3. Cost-effectiveness analysis of control strategies

The primary aim of cost-effectiveness analysis (CEA) is to identify the intervention or strategy that provides the most
health benefit at the lowest cost. CEA is often used to inform decision-making in allocating resources for public health
programs and policies. There are three primary techniques (Agusto & ELmojtaba, 2017) for this analysis, which are described
below.

4.3.1. Averted infections ratio
The averted infections ratio (AIR) is given by,

AIR ¼ Number of averted infections
Number of recovered

:

The number of staved-off (averted) infections is the total infections that would have occurred without the implementation
of control measures, minus the total infections that occur after the implementation of control measures. The most effective
strategy is the one with the highest averted infection rate (AIR). This approach is limited to evaluating individual strategies
and does not allow for the analysis of the combination of strategies. Furthermore, this technique does not take into account
the costs incurred by the implementation of control measures, therefore, other methods may be needed to address this
limitation.

4.3.2. Average cost-effectiveness ratio
The average cost-effectiveness ratio (ACER) is appropriate for the cost analysis of one intervention strategy at a time. The

ACER is given by,

ACER ¼ Total cost incurred due to strategy implementation
Total number of cases averted by using that strategy

:
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Eradication and control of any disease(s) can be very expensive; therefore, determining the most cost-effective strategy or
combination of strategies is necessary. The lower value of the ACER implies better cost-efficiency of that particular strategy,
but to compare two or more strategies we need study the incremental cost-efficacy. For that purpose, we need the incre-
mental cost-effectiveness ratio.

4.3.3. Incremental cost-effectiveness ratio
The incremental cost-effectiveness ratio (ICER) is a measure of the additional cost per additional unit of health outcome,

and it is used to compare the relative efficiency of different strategies incrementally. When using ICER, an intervention is
compared with the next less efficient alternative, and then the next one, until the most cost-efficient intervention is iden-
tified. ICER helps to evaluate and compare competing strategies, typically two or more, and make trade-offs between costs
and health outcomes.

The ICER is given by,

ICER ¼ Difference of costs incurred due to intervention strategy j and k
Difference in total averted cases in intervention strategy j and k

:

The standard methodology of CEA typically involves four steps: first, defining the problem, the population of interest, and
the strategies under consideration; second, estimating the costs and health outcomes associated with each intervention or
strategy; third, assessing the cost-effectiveness of each intervention or strategy by comparing ICERs; and interpreting the
results and making recommendations.

Defining the problem in cost-effectiveness analysis means identifying the cost of interest in relation to the strategies being
evaluated. This includes determining the strategies by making various combinations of inducted controls. In this case, we
perform the CEA for the following strategies.

Strategy A: All three controls implemented at a time (u1 s 0, u2 s 0, u3 s 0).
Strategy B: Application of only precautionary measures (u1 s 0, u2 ¼ 0, u3 ¼ 0).
Strategy C: Boosting additional (IDIAS) screening only (u1 ¼ 0, u2 s 0, u3 ¼ 0).
Strategy D: Boosting treatment only (u1 ¼ 0, u2 ¼ 0, u3 s 0).
Strategy E: Implementing precautionary measures with boosted screening (u1 s 0, u2 s 0, u3 ¼ 0).
Strategy F: Implementing precautionary measures with boosted treatment (u1 s 0, u2 ¼ 0, u3 s 0).
Strategy G: Boosting both screening and treatment (u1 ¼ 0, u2 s 0, u3 s 0).

Our targeted population of interest includes the individuals who are infectious (with or without symptoms), i.e., a
combination of asymptomatic infectious, symptomatic infectious, and infectious individuals under care: I¼ Iaþ IsþH. We use
the ‘areal approach’ to evaluate the numerator and denominator of ICERs. For this population, with respect to each strategy,
Fig. 30. Illustrating the comparison of costs associated with various strategies, we observe that the green curve, representing the cost incurred by the disease
burden in the absence of any control measures, lies below the cost profiles of certain strategies during the initial period when controls are implemented.
However, it remains consistently higher than all other cost profiles thereafter. Although the partial overlapping of these cost profiles makes it challenging to
directly infer their effectiveness from the curves alone, so we conduct an ICER analysis to better evaluate their cost-effectiveness.
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we evaluate the cost incurred (area under the cost profile of I*(t)) and the health outcomes (number of total averted cases),
which is nothing but the difference between the area under the curve of I(t) and the curve I*(t), that is, number of infections
without implementation of any control minus the number of infections with a specific strategy of control application. A
simple observation tells us that the less the area under the curve I*(t) more the cases averted; on the other hand, the less the
area under the cost profile of the I*(t), the less cost incurred in averting those much cases. We arrange all the strategies in
increasing order of (their health-outcome efficacy) cases averted.

To evaluate the cost incurred, we use the objective cost functional defined in Sub-section 3.2,

J A ¼
Z tf

0

2
64C1IaðtÞ þ C2IsðtÞ þ C3HðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cost due to disease prevalence

þ 1
2

�
C4u

2
1ðtÞ þ C5u

2
2ðtÞ þ C6u

2
3ðtÞ

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Cost of control implementation 3
75dt; (10)

as per the different strategies, for example, the above equation (10) represents the cost of implementing strategy A, while the

cost incurred due to the implementation of strategy D would be the combination of cost due to disease prevalence and cost of
boosting treatment, that is,

J D ¼
Z tf

0

	
C1IaðtÞ þ C2IsðtÞ þ C3HðtÞ þ

1
2

�
C6u

2
3ðtÞ

�

dt:
In this way, we plot the cost profilesof different strategies (see Fig. 30) and evaluate the area under the curve of those cost
profiles to get the cost of infection aversion and control implementation. The following table has costs and infections averted
by the strategies under consideration.

Referring to Table 3, we can infer that a strategy's effectiveness improves with a higher number of averted cases. However,
the findings from Table 4 do not permit us to draw a similar conclusion, as the associated costs are also proportionally
increasing. At this point, CEA becomes essential in establishing the efficacy ranking of strategies based on their ICERs. We
denote the ICER for the jth strategy by ICER(j). We have that strategy A averted the least count of cases, followed by the others.
Therefore, ICER for different strategies is evaluated as,

ICERðAÞ ¼ 7:0598� 107

5:6489� 106
¼ 12:4976

7:1948� 107 � 7:0598� 107

ICERðEÞ ¼

5:8043� 106 � 5:6489� 106
¼ 8:6872

7:2621� 107 � 7:1948� 107

ICERðGÞ ¼

5:8296� 106 � 5:8043� 106
¼ 26:6007

7:3988� 107 � 7:2621� 107

ICERðCÞ ¼

5:9871� 106 � 5:8296� 106
¼ 8:6793

8:8480� 107 � 7:3988� 107

ICERðFÞ ¼

7:4412� 106 � 5:9871� 106
¼ 9:9663

8:9923� 107 � 8:8480� 107

ICERðBÞ ¼

7:6068� 106 � 7:4412� 106
¼ 8:7137

9:6952� 107 � 8:9923� 107

ICERðDÞ ¼

8:2045� 106 � 7:6068� 106
¼ 11:7600
Table 3
Strategies in increasing order of their health-outcome
efficacy.

Strategy Cases averted

A 5.6489 � 106

E 5.8043 � 106

G 5.8296 � 106

C 5.9871 � 106

F 7.4412 � 106

B 7.6068 � 106

D 8.2045 � 106
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Table 4
Strategies in increasing order of cases averted and cost incurred.

Strategy Cases averted Cost incurred

A 5.6489 � 106 7.0598 � 107

E 5.8043 � 106 7.1948 � 107

G 5.8296 � 106 7.2621 � 107

C 5.9871 � 106 7.3988 � 107

F 7.4412 � 106 8.8480 � 107

B 7.6068 � 106 8.9923 � 107

D 8.2045 � 106 9.6952 � 107

Table 5
Listing of strategies with their ICER values and cost-efficacy ranks, among the strategies considered, strategy C (focused on boosting only screening), strategy
E (incorporating precautionary measures alongside boosted screening), and strategy B (solely emphasizing precautionary measures) ranked as the top three.
However, strategy C is the most cost-effective intervention among all.

Strategy Cases averted Cost incurred ICER Rank

A 5.6489 � 106 7.0598 � 107 12.4976 Sixth
E 5.8043 � 106 7.1948 � 107 8.6872 Second
G 5.8296 � 106 7.2621 � 107 26.6007 Seventh
C 5.9871 � 106 7.3988 � 107 8.6793 First
F 7.4412 � 106 8.8480 � 107 9.9663 Fourth
B 7.6068 � 106 8.9923 � 107 8.7137 Third
D 8.2045 � 106 9.6952 � 107 11.7600 Fifth

Fig. 31. A bar plot for ICER values of different strategies reveals that strategy G (boosting both screening and treatment) has the highest ICER value indicating its
lack of cost-effectiveness. On the other hand, strategy C (boosting only screening) has the lowest ICER value, indicating that this is the most cost-effective
intervention.
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We determine the cost-efficacy ranks of all strategies based on their ICER, lowest ICER value corresponds to the best
strategy because lowest ICER value can only be obtained when increment in cases averted is maximumwhile keeping the cost
incurred at a minimum (see Fig. 31 and Table 5).

The following table has ICER value and the cost-efficacy ranks of the strategies.
This table ascertain that strategy C (only boosting IDIAS) has the lowest ICER value and therefore it is the most cost-

effective. However, the difference in ICER values of the strategises C, E, and B is not so distinctive and they stands at the
first, second, and third ranks, respectively, but at a larger prospective (more population or highly dense cities) boosting the
additional screening is the most cost-effective.
4.4. Summary and public health significance

This sub-section provides a concise overview of the modeling process, data fitting, optimal control analysis and the
associated outcomes, emphasizing their public health significance.
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4.4.1. Modeling method and process
We established the idea of infectious density-induced additional screening (IDIAS) to examine the feasible efficiency of

screening and treatment strategies in reducing the spread of COVID-19. We investigated a SI2HR compartmental model that
includes saturation treatment as well as non-pharmaceutical controls such as quarantine and screening. The model divides
the total population, denoted as N, into five compartments: susceptible individuals (S), asymptomatic infectious individuals
(Ia), symptomatic infectious individuals (Is), infective individuals under care (H), and recovered individuals (R). The population
flow among these compartments is described by a set of differential equations. The model incorporates two important rate
functions: the screening rate function with infectious density-induced additional screening (IDIAS) and the saturated
treatment rate function. The screening rate function, denoted as 4(Is), includes a baseline constant screening (q) and an
additional screening term (41(Is)) that depends on the density of infectious individuals. This additional screening, referred to
as IDIAS, is crucial for cases where the infectious population varies in density, especially in densely populated areas. The
saturated treatment rate function, denoted as j(Is), represents the maximum achievable treatment rate with a saturation
effect. This reflects real-world constraints on the number of individuals that can be effectively treated within a given time
frame due to resource limitations. The model also considers immunity loss and reinfection dynamics, highlighting their
importance in understanding the spread of certain diseases. Recovered individuals can be reinfected at a reduced rate, and
immunity loss can lead to individuals moving back to the susceptible compartment.

This SI2HR model provides a detailed framework for understanding and simulating the dynamics of disease spread. The
inclusion of IDIAS in the screening rate function acknowledges the impact of infectious density on screening efforts,
particularly relevant in densely populated areas. Additionally, the saturated treatment rate function reflects practical limi-
tations on the effectiveness of treatment efforts, aligning with real-world constraints in healthcare systems. The consider-
ation of immunity loss and reinfection dynamics adds a crucial layer of realism to the model, making it relevant for diseases
where these aspects play a significant role. This modeling approach contributes to the understanding of disease dynamics and
can aid public health efforts in planning interventions, resource allocation, and mitigation strategies.

4.4.2. Data fitting and parameter estimation
We validated the formulated model using data fitting and parameter estimation, with a focus on Hong Kong's cases.

Through the application of least square technique, the model is fine-tuned to align with the cumulative new infective cases
reported between November 1, 2022, and December 29, 2022. The rate equation for cumulative new cases C(t) is fitted to real
data, allowing the estimation of key parameters such as the disease transmission rate by symptomatic individuals (bs) and the
additional screening rate (r). This validation not only enhances the model's accuracy but also holds significant public health
implications, providing a reliable tool for understanding the progression and potentially managing the dynamics of COVID-19
transmission.

The model is then mathematically analyzed to determine the basic reproductive threshold. We discovered disease
persistence for R0 >1 as well as R0 <1 due to saturation treatment. Analytically, we estimated the basic reproduction
number, which demonstrates that the number of new infectious cases is sensitive to symptomatic disease transmission rate,
baseline screening rate, quarantine/isolation rate and treatment rate. Through sensitivity analysis of the basic reproduction
number, we observed that delaying quarantine/self-isolation of asymptomatic individuals results in a massive increase in
reproduction.

4.4.3. Optimal control and cost-effectiveness analysis
The mathematical model is further extended to form an optimal control problem (OCP) by incorporating three time-

varying control measures, namely, precautionary measures, boosted screening, and boosted treatment. We used numerical
techniques (mentioned in 3.2.3) to solve the OCP and simulated the different cases by setting a specific set of parameters and
weights. Our objective was to identify the optimal set of controls that simultaneously decreases the disease prevalence and
minimizes the costs associated with implementing control measures. We also conducted a comparison of the effectiveness of
different combinations of control measures, aiming to identify the intervention or strategy that yields the highest health
benefits while incurring the lowest cost. This assessment holds significance for any public health system. Our results
demonstrate that the combination of increased screening efforts with precautionary measures or treatment may be bene-
ficial. However, it's important to note that an elevated focus on screening alone can also represent a highly cost-effective
strategy as a stand-alone approach. While the adage “precaution is better than cure” holds true, an intermediary approach
exists e namely, additional screening at opportune moments e which can prove superior to both preventive measures and
treatment.

5. Conclusions

In this article, we proposed and analyzed a novel SI2HR model for COVID-19, which incorporates infectious-induced
additional screening and treatment saturation. The model was validated using data from Hong Kong, and we established
the biological feasibility of our model by proving the positivity and boundedness for the system solutions. Parameter esti-
mation was carried out to determine suitable parameters for the model. we obtained the expression for the reproduction
numberR0 corresponding to the infection-free equilibrium, which is locally stable forR0 <1 and unstable forR0 >1.We also
studied the elasticity of R0, and our analysis showed that the basic reproduction number increases as the disease
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transmission rate by symptomatic individuals grows. The negative sensitivity index of parameters g, as, and a demonstrated
that an increase in the values of these parameters reduces R0, indicating the importance of effective screening, quarantine,
and treatment measures in controlling the spread of COVID-19. We demonstrated that delaying screening, quarantining, or
treating individuals can increase the basic reproduction number of the disease, which indicates the importance of prompt
action in controlling the spread of COVID-19. The effective reproductive range is also obtained for all three control measures
separately, which shows that boosting additional screening may be helpful in attaining a significant range difference, i.e.,
lowest value of R0. We also analyzed the effect of screening on disease spread, and our results showed that additional
screening is necessary to control the infection. Specifically, stopping additional screening and baseline screening can increase
the number of infective individuals, while providing linear additional screening can decrease the number of infective in-
dividuals. This highlights the importance of implementing effective screening measures to control the spread of COVID-19.

In addition to our proposed SI2HRmodel, we extended our analysis by establishing an optimal control problem (OCP) that
considers three control measures: precautionary interventions, boosted IDIAS, and boosted treatment. The OCP was solved
using Pontryagin's minimum principle and forward-backward sweep method, and numerical simulations showed that
boosted screening and treatment with preventive interventions may benefit sustainable disease control. However, we also
conducted a cost-effectiveness analysis (CEA) to identify the most cost-effective strategy. Our CEA results suggested that only
boosting IDIAS is the most cost-effective strategy among all control measures. We identified specific strategies based on their
cost-efficacy rank, which can be implemented to maximize the impact while minimizing costs.

Overall, our analysis not only provides valuable insights into the dynamics of COVID-19 incorporating the effect of
infectious-induced additional screening and treatment saturation but also highlights the importance of considering cost-
effectiveness in implementing control measures.
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Appendices

A.1 Positive invariability and boundedness (proof of Theorem 3.1)

Proof. From themathematical model (1), considering that S vanishes at time t0 before other states become zero, we deduce
that at time t0,

dS
dt

����
S¼0

¼ Lþ hR � 0;
this indicates that S is a non-decreasing time dependent function. Thus, S is non-negative. Following this, similarly, we obtain
non-negativity for other state variables also,

dIa
dt

����
Ia¼0

¼ ebsIsS � 0;
dIs
dt

����
Is¼0

¼ ð1� eÞbaIaSþ aaIa þ rbaIaR � 0;

dH
�� dR

��

dt

��
H¼0

¼ ðasIs þjðIsÞÞ þ ðgþ4ðIsÞÞIa � 0;
dt

��
R¼0

¼ sH � 0:
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Thus we have established non-negativity for all five states and it is evident thatR5
þ is an invariant set for the model system

(1). Besides, the total population N(¼ S þ E þ Ia þ Is þ H þ R) satisfies the differential equation,

dN
dt

¼ L� mN;

which implies,
NðtÞ ¼ L

m
ð1� e�mtÞ þ Nð0Þe�mt � max

�
L

m
þ
�
Nð0Þ �L

m

�
e�mt

�
¼

8>>><
>>>:

L

m
if

L

m
>Nð0Þ

Nð0Þ if
L

m
<Nð0Þ:
If we define a region:

D ¼
��

S; Ia; Is;H;RÞ2R5 : S � 0; Ia � 0; Is � 0;H � 0;R � 0; Sþ E þ Ia þ Is þ H þ R � L

m

�
;

� � � � �

so for any initial condition from region D, we have dS

dt
��
S¼0

>0, dIadt
��
Ia¼0

¼ 0, dIsdt
��
Is¼0

¼ 0, dHdt
��
H¼0

¼ 0, dRdt
��
R¼0

¼ 0, and also

dN
dt

���
N¼L

m

¼ 0. Thus, all solutions of system (1) remain inside D if the initial condition lies in D. Hence, D is the basic feasible

region of system (1).

A.2. Computation of the basic reproduction number

We express the new infection terms and transition terms of system (1) respectively as follows

F ¼
	

eðbsIs þ baIaÞS
ð1� eÞðbsIs þ baIaÞS



; V ¼

	 ðgþ 4ðIsÞÞIa þ aaIa þ mIa
�aaIa þ asIs þ jðIsÞ � rðbsIs þ baIaÞRþ ðms þ mÞIs




Following (Van den Driessche & James, 2002) we get

F ¼
	

ebaS0 ebsS0
ð1� eÞbaS0 ð1� eÞbsS0



; V ¼

	
gþ qþ aa þ m 0

�aa as þ aþ ms þ m



:

Which implies,
FV�1 ¼

2
6664

e
baS0

gþ qþ aa þ m
þ eaabsS0
ðgþ qþ aa þ mÞðas þ aþ ms þ mÞ

ebsS0
as þ aþ ms þ m

ð1� eÞ baS0
gþ qþ aa þ m

þ ð1� eÞaabsS0
ðgþ qþ aa þ mÞðas þ aþ ms þ mÞ

ð1� eÞbsS0
as þ aþ ms þ m

3
7775;

and the spectral radius of the matrix FV�1 is as follows
R0 ¼ rðFV�1Þ ¼ e
baS0

ðgþ qþ aa þ mÞ þ e
aa

ðgþ qþ aa þ mÞ
bsS0

ðas þ aþ ms þ mÞ þ
ð1� eÞbsS0

ðas þ aþ ms þ mÞ:
A.3. Local stability of IFE (proof of Theorem 3.2)

The Jacobian matrix at IFE E1 is given by

JjE1 ¼

2
66664
d11 d12 d13 0 d15
0 d22 d23 0 0
0 d32 d33 0 0
0 d42 d43 d44 0
0 0 0 d54 d55

3
77775; (11)

where, d11 ¼ �m, d12 ¼ �baS0, d13 ¼�bsS0, d15 ¼ h, d22 ¼ ebaS0 � (g þ q þ aa þ m), d23 ¼ ebsS0, d32 ¼ (1 � e)baS0 þ aa, d33 ¼ (1 �
e)bsS0 � (as þ a þ ms þ m), d42 ¼ g þ q, d43 ¼ as þ a, d44 ¼ �(s þ m), d54 ¼ s, d55 ¼ �(h þ m).

The corresponding characteristic equation is,
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ðl�d11Þðl� d44Þðl�d55Þðl2 �ðd22 þd33Þlþðgþ qþaa þmÞðas þaþms þmÞð1�R0ÞÞ ¼ 0: (12)
AsR0 <1 implies that d22 < 0 and d33 < 0, so all roots of characteristic equation (12) are negative whenR0 <1. One root of
characteristic equation (12) is positive when R0 >1. Hence, the IFE E1 is locally stable for R0 <1 and unstable for R0 >1.

A.4. Bifurcation at R0 ¼ 1 (proof of Theorem 3.3)

It is noted that the matrix JjE1 in (11) has one zero eigenvalue and remains all negative at R0 ¼ 1. Also, R0 ¼ 1 gives

m ¼ m*d. In order to study the occurrence of bifurcations at ðE1; b*s Þ we follow the Sotomayor theorem (Lawrence, 2013) and
perform the below computation:

D1 ¼ YT ½0;0;0;0; 0 �T ¼ 0;

D2 ¼ YT

2
6666664

0 0 �S0 0 0
0 0 �eS0 0 0
0 0 �ð1� eÞS0 0 0
0 0 0 0 0
0 0 0 0 0

3
7777775X ¼ ½0;0;�eS0y2 � ð1� eÞS0;0;0�X ¼ �x3ðeS0y2 þ ð1� eÞS0Þ;

D3 ¼ 2YT

0
BBBBBB@

2
6666664

�ba
eba

ð1� eÞba
0
0

3
7777775x1x2 þ

2
6666664

�bs
ebs

ð1� eÞbs
0
0

3
7777775x1x3 þ

2
6666664

0
�r

0
r

0

3
7777775x2x3 þ

2
6666664

0
0
rba
0

�rba

3
7777775x2x5 þ

2
6666664

0
0
rbs
0

�rbs

3
7777775x3x5 þ

2
6666664

0
0

�an

an

0

3
7777775x

2
3

1
CCCCCCA;

¼ 2ððebay2 þ ð1� eÞbaÞx1 þ ðebsy2 þ ð1� eÞbsÞx1x3 � rx3y2 þ rbax5 þ rbsx3x5 � anx23Þ;

where, Xd½x1; x2; x3; x4; x5�T ¼ ½�ðd12d23�d13d22Þd44d55þd15d54ðd42d23�d43d22Þ
d11d44d55d23

;1;�d22
d23

; d43d22�d42d23
d23d44

;
d54ðd42d23�d43d22Þ

d23d44d55
�T and Y ¼

½y1; y2; y3; y4; y5�T ¼ ½0;�d32
d22

;1;0;0�T , respectively are the right and left eigenvectors of JjE1 with respect to zero eigenvalue.

Since d22 < 0, d23 > 0 and d32 > 0 for R0 ¼ 1, x3 and y2 are positive. Hence, D2 is positive. However, D3 is positive if n< ncritd

ðebay2þð1�eÞbaÞx1þðebsy2þð1�eÞbsÞx1x3�rx3y2þrbax5þrbsx3x5
ax23

and negative if n > ncrit.

A.5. Local stability of endemic equilibrium (proof of Theorem 3.4)

The Jacobian matrix at endemic equilibrium E*2 is given by

JjE*
2
¼

2
66664
a11 a12 a13 0 a15
a21 a22 a23 0 0
a31 a32 a33 0 a35
0 a42 a43 a44 0
0 a52 a53 a54 a55

3
77775;

where, a11 ¼ � ðbsI*s þ baI
*
a þ mÞ, a12 ¼ �baS*, a13 ¼ �bsS*, a15 ¼ h, a21 ¼ eðbsI*s þ baI

*
aÞ, a22 ¼ ebaS* � ðg þ q þ rI*s

1þmI*s
þ aa þ

mÞ, a23 ¼ ebsS* � rI*a
ð1þmI*s Þ

2, a31 ¼ ð1 � eÞðbsI*s þ baI
*
aÞ, a32 ¼ (1 � e)baS* þ aa þ rbaR*, a33 ¼ ð1 � eÞbsS* � ðas þ a

ð1þnI*s Þ
2 þ m þ

msÞþ rbsR*, a35 ¼ rðbsI*s þ baI
*
aÞ, a42 ¼ gþ qþ rI*s

1þmI*s
, a43 ¼ as þ a

ð1þnI*s Þ
2 þ rI*a

ð1þmI*s Þ
2, a44 ¼ �(s þ m), a52 ¼ �rbaR*, a53 ¼ �rbsR*,

a54 ¼ s, a55 ¼ � rðbsI*s þ baI
*
aÞ� ðh þ mÞ.

The corresponding characteristic equation is,

l5 þ b4l
4 þ b3l

3 þ b2l
2 þ b1lþ b0 ¼ 0; (13)
where,
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b4¼ �a11�a22�a33�a44�a55;
b3¼ a11a22�a12a21þa11a33�a13a31þa11a44þa22a33�a23a32þa11a55þa22a44þa22a55þa33a44þ

a33a55�a35a53þa44a55
b2¼ a11a23a32�a11a22a33þa12a21a33�a12a23a31�a13a21a32þa13a22a31�a11a22a44þa12a21a44�a11a22a55

�a11a33a44þa12a21a55þa13a31a44�a15a21a52�a11a33a55þa11a35a53þa13a31a55�a15a31a53�a22a33
a44þa23a32a44�a11a44a55�a22a33a55þa22a35a53þa23a32a55�a23a35a52�a22a44a55�a33a44a55�

a35a43a54þa35a44a53;
b1¼ a11a22a33a44�a11a23a32a44�a12a21a33a44þa12a23a31a44þa13a21a32a44�a13a22a31a44þa11a22a33a55�

a11a22a35a53�a11a23a32a55þa11a23a35a52�a12a21a33a55þa12a21a35a53þa12a23a31a55þa13a21a32a55�
a13a21a35a52�a13a22a31a55�a15a21a32a53þa15a21a33a52þa15a22a31a53�a15a23a31a52þa11a22a44a55�
a12a21a44a55�a15a21a42a54þa15a21a44a52þa11a33a44a55þa11a35a43a54�a11a35a44a53�a13a31a44a55�
a15a31a43a54þa15a31a44a53þa22a33a44a55þa22a35a43a54�a22a35a44a53�a23a32a44a55�a23a35a42a54þ

a23a35a44a52;
b0¼ a11a22a35a44a53�a11a22a33a44a55�a11a22a35a43a54þa11a23a32a44a55þa11a23a35a42a54�a11a23a35a44a52þ

a12a21a33a44a55þa12a21a35a43a54�a12a21a35a44a53�a12a23a31a44a55�a13a21a32a44a55�a13a21a35a42a54þ
a13a21a35a44a52þa13a22a31a44a55�a15a21a32a43a54þa15a21a32a44a53þa15a21a33a42a54�a15a21a33a44a52þ

a15a22a31a43a54�a15a22a31a44a53�a15a23a31a42a54þa15a23a31a44a52:

(14)
We get the Routh array:

1 b3 b1
b4 b2 b0
a* b* 0
c* b0 0
d* 0 0
b0 0 0

where, a* ¼ b4b3�b2
b4

, b* ¼ b4b1�b0
b4

, c* ¼ b2a*�b4b*

a* , and d* ¼ c*b*�b0a*
c* . So by Routh-Hurwitz criterion, all roots of equation (13) will

be negative if b0 > 0, b4 > 0, b4b3 � b2 > 0, b2(b4b3 � b2)� b4(b4b1 � b0) > 0, and ðb2ðb4b3 � b2Þ � b4ðb4b1 � b0ÞÞðb4b1 � b0Þ�
b0ðb4b3 � b2Þ2 >0.
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