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a b s t r a c t
a r t i c l e i n f o
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th
largest cause of death in theworld. Importantly,muchof the disease burden and health care utilisation in COPD is
associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cog-
nitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological
treatments for COPD are relatively ineffective and the development of effective therapies has been severely ham-
pered by the lack of understanding of themechanisms andmediators underlying COPD. Since comorbidities have
a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European
Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the
pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD pa-
tients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome
is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD pa-
tients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms
linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential
mechanisms linkingMetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbid-
ity of COPD.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a major incurable
global health burden and is currently the 4th largest cause of death in
the world (Vogelmeier et al., 2017). In 2010, COPD incurred a total of
$50 billion in economic cost to the US community (Guarascio, Ray,
Finch, & Self, 2013). Importantly, much of the disease burden and health
care utilisation in COPD is associated with the management of its co-
morbidities (e.g. skeletal muscle wasting, ischemic heart disease, cogni-
tive dysfunction) and infectious viral and bacterial acute exacerbations
(AECOPD) (Vogelmeier et al., 2017). Many patients with COPD also
presentwithmetabolic syndrome (MetS) a cluster of conditions includ-
ing diabetes and prediabetes (insulin resistance), abdominal obesity,
high cholesterol and high blood pressure. It is estimated that over a
quarter of the world’s adult population have metabolic syndrome
(International Diabetes Federation, 2017) and they are twice as likely
to die from and three times as likely to have a heart attack or stroke
compared with people without the syndrome (Alberti et al., 2009).
The morbidity and motility rate are amplified when MetS is coupled
with COPD (Alberti et al., 2005; Sin & Man, 2003b). In this review, we
discuss themechanisms of cross-talk, clinical significance and therapeu-
tic strategies for COPD and MetS.

1.1. Definition of COPD

COPD is a disease characterised by persistent respiratory symptoms
and poorly-reversible airflow limitation that is usually progressive. The
airflow limitation is associatedwith a chronic inflammatory response in
the airways and the lungs to noxious particles and gases. Cigarette
smoking is the major cause of COPD and accounts for more than 95%
of cases in developed countries (Vogelmeier et al., 2017). COPD encom-
passes large airways bronchitis with mucus plugging, chronic obstruc-
tive bronchiolitis with fibrosis and obstruction of small airways, and
emphysema with enlargement of airspaces and destruction of lung
parenchyma, loss of lung elasticity, and closure of small airways. Many
patients with COPD have all three pathological conditions (i.e. bronchi-
tis, chronic obstructive bronchiolitis and emphysema), but the relative
extent of emphysema, obstructive bronchiolitis and overall disease
manifestation can vary within individual patients. Airflow limitation is
diagnosed using spirometry according to The Global Initiative for
Chronic Obstructive Lung Disease (GOLD), 2018 and the World Health
Organization (WHO) criteria. Based on the calculated forced expiratory
volume in one second (FEV1), the severity of COPD is classified into four
stages (GOLD 1-4) with respect to deterioration lung function and
symptoms (Global Strategy for the Diagnosis, Management and Preven-
tion of COPD: 2018 Report). The ABCD GOLD assessment tool combines
spirometry, patient symptoms (assessed usingmodified BritishMedical
Research Council [mMRC] questionnaire and the COPD assessment test
score [CAT]) and history of exacerbations to facilitate therapeutic strat-
egies at an individual patient level (Vogelmeier et al., 2017; Global Strat-
egy for the Diagnosis, Management and Prevention of COPD: 2018
Report). Alternative assessments, such as the BODE Index (Body mass
index, airflow Obstruction, Dyspnoea and Exercise capacity index in
COPD), have been proposed andmay offer a more comprehensive mea-
sure of severity as they also take into account systemic manifestations
that are not reflected by the FEV1 (Celli et al., 2004).

1.2. Health burden of COPD: an escalating problem with limited treatment
options

Patients with COPD develop a myriad of symptoms such as cough,
sputum production, and progressive exertion breathlessness. As the
disease progresses, patients at intermediate (GOLD 2) disease stage or
beyond tend to experience more frequent and severe worsening of
the respiratory symptoms (i.e. exacerbations), which are largely attrib-
uted to bacterial and viral chest infections, as well as pollutants(Barnes
& Celli, 2009). These exacerbations not only constitute a major cost in
patient care, but also greatly increase the rate of mortality and morbid-
ity. Over the past decade, there has been a growing body of evidence
suggesting COPDas a systemic disease and that its pathologicalmanifes-
tations are not restricted to pulmonary inflammation and airway re-
modelling (Barnes, 2010; Barnes & Celli, 2009; Decramer et al., 2008).
In fact, the majority of patients with COPD die of non-respiratory disor-
ders making them co-morbidities to COPD (McGarvey et al., 2007). The
best recognized systemic manifestations of COPD include systemic in-
flammation, cardiovascular diseases (CVD), muscle wasting and dys-
function, osteoporosis, anaemia, and clinical depression and anxiety
(Barnes & Celli, 2009; Wouters, 2005). Importantly, there is increasing
evidence to suggest metabolic syndrome (MetS) as a critical clinical
component associated with COPD, as one or more features of MetS,
such as obesity and diabetes are frequently found in those individuals
admitted for hospitalisation (Crisafulli et al., 2010; Fabbri, Luppi,
Beghe, & Rabe, 2008).

1.3. Causes and pathophysiology of COPD

Cigarette smoking is the major risk factor for COPD (Vogelmeier
et al., 2017) and is one of themost important risk factors for the chronic
diseases and COPD-associated comorbidities (Fabbri & Rabe, 2007).
Other reported causes for COPD include occupational factors (e.g.
miners and workers of the textile industry), respiratory infections, at-
mospheric pollution and passive smoking (Salvi & Barnes, 2009).
Repeated exposure to these irritants promotes local inflammation of
the airways leading to obstruction and reduction in FEV1, which is not
completely reversible even with bronchodilator treatment (Qureshi,
Sharafkhaneh, & Hanania, 2014). If unresolved, chronic inflammation
of the airways may be amplified and gives rise to more severe condi-
tions limiting airflow. Chronic bronchitis is a condition characterized
by inflammation of the bronchial wall, associated with hyperplasia of
the goblet cells, enlargement of the tracheobronchic submucosa and
the mucus hypersecretion (Lahousse et al., 2017). The development of
emphysema is due to destruction of thewalls of the terminal bronchiole
driven by an imbalanced proteases and anti-proteases in the lung by
cigarette smoking (Abboud & Vimalanathan, 2008; Kersul et al., 2011).
Bronchiolitis is another lung pathology that may develop when small
airways in the lungs become permanently damaged and persistently in-
flamed from repeated exposure to cigarette smoking or irritant fumes.
As the disease progresses, a variety of cell types includingmacrophages,
neutrophils and T-cells become hyper-activated and release pro-
inflammatory mediators including tumour necrosis factor-α (TNF-α),
monocyte chemotactic protein-1 (MCP-1), reactive oxygen species
(ROS), and neutrophil chemotactic factors, such as leukotriene B4

(LTB4) and interleukin-8 (IL-8) in response to the irritants, in particular
cigarette smoke (Vlahos & Bozinovski, 2014). These mediators serve to
perpetuate the inflammatory response through the recruitment of pe-
ripheral blood monocytes, neutrophils and CD8+ cytotoxic T-cells into
the airways. These recruited cells, particularly activated macrophages
and neutrophils, release proteases resulting in tissue destruction and
emphysema (Barnes, 2017; Fabbri & Rabe, 2007). Simultaneously, ROS
generated by themacrophages constitute anoxidative insult that causes
lung inflammation and tissue injury. COPD patients are also susceptible
to viral and bacterial infections, which amplifies lung inflammation and
ROS production that causes a rapid decline in lung function during re-
peated episodes of acute exacerbation COPD (AECOPD) (Barnes &
Celli, 2009; Decramer et al., 2008).

Recent genome-wide association studies have also identified genetic
predisposition, in particular alpha-1 antitrypsin deficiency, as an impor-
tant factor in the development of COPD (Ding et al., 2015; Jiang et al.,
2016; Siedlinski et al., 2013). There is clear heterogeneity in the clinical
manifestations of COPD, which are greatly attributed to these environ-
mental and genetic cues. For example, small airway limitations are
more commonly found in COPDpatientswith cigarette smokinghistory,
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whereas non-smokers mainly develop emphysema-dominant pheno-
types characterized by increased alveolar space and destruction
(Burgel et al., 2010; Castaldi et al., 2014). Other factors that might im-
pact on disease presentation and progression include age, gender,
other pre-existing conditions (e.g. asthma) and ethnicity. It is well
established that lung function declines with increasing age (Fletcher &
Peto, 1977). Moreover, female COPD patients tend to bemore suscepti-
ble to the toxic effects of cigarette smoking (Han et al., 2007). Asthma
appears to be a major underlying risk factor for COPD evidenced by
the finding that up to 30% of COPD patients are asthmatics(Soriano
et al., 2003) and that a more rapid decline in lung function is observed
in smokers with asthma than those without(Lange, Parner, Vestbo,
Schnohr, & Jensen, 1998). Finally, population groups with poorer
social-economic status tend to have a greater risk of developing COPD
and its complications than their wealthier counterparts (Fragoso,
2016; Lawlor, Ebrahim, & Davey Smith, 2004; Sahni, Talwar, Khanijo,
& Talwar, 2017; Shohaimi et al., 2004), which is likely to be related to
poor nutritional status, living standard, exposure to pollutants and
high smoking rate along with poor access to health care.
1.4. Comorbidities of COPD

Cardiovascular disease (CVD), skeletal muscle wasting, and meta-
bolic abnormalities are classic comorbidities that are found in COPD pa-
tients (Austin, Crack, Bozinovski, Miller, & Vlahos, 2016; Vogelmeier
et al., 2017). The co-existence of these conditions not only contributes
to ill health but also greatly increases the risk of mortality at all stages
of COPD, as well as incidence of hospitalisation (Franssen & Rochester,
2014). Hypertension and peripheral vascular disease are likely to be
the most frequently occurring CVD-related comorbidities in COPD,
which affects up to 50% of the patients (Divo et al., 2012).With the pro-
gression of the disease, COPD patients are at increasing risk of develop-
ing arrhythmias, ischemic myocardial damage and even heart failure
(Bhatt & Dransfield, 2013). Hence, impaired FEV1 has been demon-
strated to be a powerful predictor of cardiovascular mortality (Young,
Hopkins, & Eaton, 2007). Meanwhile, the severity of airflow obstruction
has been reported to promote arterial stiffness (Sabit et al., 2007)which
in turns can exacerbate cardiovascular-related comorbidities in COPD.

Skeletal muscle wasting and dysfunction is another common condi-
tion associated with COPD,which severely impacts on patient quality of
life and survival (Passey et al., 2016). Loss of muscle mass is found in up
to 40% of COPD patients, the prevalence as well as the extent of the
wasting are worsened in patients with advanced COPD (Schols,
Broekhuizen, Weling-Scheepers, & Wouters, 2005; Sergi et al., 2006;
Vestbo et al., 2006). Skeletal muscle wasting is a powerful predictor of
mortality in COPD, independent of lung function impairment (Schols,
Slangen, Volovics, & Wouters, 1998). Patients with severe COPD who
have reduced mid-thigh cross-sectional area (less than 70cm2) have
an approximately 4-times higher odds ratio for mortality than patients
with a similar degree of airflow limitation but with preserved muscle
size (Marquis et al., 2002). Low Fat FreeMass Index (FFMI) and reduced
quadriceps strength have been identified as predictors of COPDmortal-
ity, independent of lung function decline (Schols, 2010; Swallow et al.,
2007), highlighting the importance of muscle mass and function in the
overall pathologyof COPD. Clinically, rapid deteriorations in leanmuscle
mass have been described following acute exacerbations causing both
loss of strength and endurance (Allaire et al., 2004; Gosker et al.,
2002). In addition to loss of muscle mass and strength, phenotypic
changes occur in the muscle of COPD patients. A shift in the fibre
types has been observed, with an increase in the proportion of fast gly-
colytic Type II fibres and a reduction in slow, oxidative Type I fibres
(Debigare, Cote, Hould, LeBlanc, & Maltais, 2003; Jobin et al., 1998;
Vogiatzis et al., 2011; Whittom et al., 1998). While the lung pathology
in COPD is largely irreversible, the inherent adaptability ofmuscle tissue
offers therapeutic opportunities to tackle muscle wasting and
potentially reverse or delay the progression of this aspect of the disease,
to improve patients’ quality of life.

Patients with COPD often have one or more physiological abnormal-
ities that are features of the metabolic syndrome(Cebron Lipovec et al.,
2016). Obesity has emerged to be an important feature of the MetS
found in early stages of COPD (GOLD 1 and 2)(ten Hacken, 2009), and
that abdominal obesitywas found to be a reliable predictor of lung func-
tion impairment(Leone et al., 2009). More importantly the presence of
MetS imposes further limitation on exercise capacity which could in
turn hamper lung function and generalwellbeing of COPD patients, pre-
disposing them to more severe comorbidities and/or clinical complica-
tions such as lung cancer(Hartman, Boezen, de Greef, Bossenbroek, &
ten Hacken, 2010).

2. Metabolic syndrome (MetS) in COPD

MetS is a complex disorder that is recognised clinically by the pres-
ence of a cluster of risk factors including excess abdominal obesity or
body mass index (BMI) N30 kg/m2, elevated blood pressure, pro-
atherogenic blood lipid profile, impaired fasting blood glucose with or
without insulin resistance (Alberti et al., 2005; Saltiel & Olefsky,
2017). Eachmetabolic risk factor is associatedwith one another, and to-
gether these risk factors promote atherosclerosis (Hutcheson & Rocic,
2012). According to the International Diabetes Federation (IDF), the
general consensus is that neither cigarette smoke nor COPD are canon-
ical risk factors for MetS and vice versa, and that there is no clear mech-
anistic data for the causal relationship. However, recent clinical findings
suggest a strong association of COPD and MetS.

Firstly, MetS is found to be twice more common in COPD patients
when compared to the general population. Several studies have demon-
strated a prevalence of 21- 62 % (see Table 1). Notably, almost 50% of pa-
tients with COPD manifest with one or more components of the MetS
(Marquis et al., 2005). MetS confers a 5-fold increase in the risk of
type 2 diabetes mellitus (T2DM) and double the risk of developing
CVDover the next 5 to 10 years (Alberti et al., 2009).Moreover,MetS in-
creases the risk of stroke by 2- to 4-fold, risk of myocardial infarction by
up to 4-fold, and doubles the risk of mortality compared with those
without the syndrome (Alberti et al., 2005). When both COPD and
MetS coexist, the occurrence of these comorbidities and complications
are amplified (Sin & Man, 2003b). COPD patients with MetS present
with a more severe form of the disease reflected by more dyspnoea, a
lower FEV1 and require more medication (e.g. inhalation of glucocorti-
coids) to control the disease (Diez-Manglano, Barquero-Romero,
Almagro, et al., 2014). The prevalence of MetS and its comorbidities
were originally thought to be associated with COPD severity and age
(Hildrum, Mykletun, Hole, Midthjell, & Dahl, 2007). However, recent
data demonstrated that MetS is present in a large proportion of COPD
patients of younger age groups and in those with a less severe form of
COPD (Minas et al., 2011). COPD patientswithMetS have greater insulin
resistancewhich favours the development of T2DM (Minas et al., 2011).
Currently, the exact cause of MetS in COPD patients remains poorly un-
derstood triggering an urgent call by both the American Thoracic Soci-
ety and European Respiratory Society for further studies to elucidate
the pathobiological mechanisms linking COPD to its comorbidities
(Celli et al., 2015).

Development of MetS in COPD is multifactorial in origin, but shares
several common contributing factors including oxidative stress, inflam-
matory cytokines, and physical inactivity (Clini, Crisafulli, Radaeli, &
Malerba, 2013) (Fig. 1). There is compelling evidence that increased ox-
idative stress in COPD and the ‘spill over’ of lung inflammation into the
systemic circulation plays an important role in the pathophysiology of
COPD and its comorbidities such as MetS (Barnes & Celli, 2009;
Bernardo, Bozinovski, & Vlahos, 2015). Lung inflammation during
COPD leads to a rise in a number of biomarkers associated with neutro-
philic inflammation (MMP9, elastase, calprotectin, and bronchoalveolar
lavage neutrophils) and pro-inflammatory cytokines (IL-6, IL-1β, IFNα,



Table 1
Reported prevalence of metabolic syndromes amongst COPD patients

Subject characteristics Prevalence Feature(s) of MetS
found

Ref Note

114 male current/past
smokers with COPD
without significant
co-morbidities

Overall prevalence was 21%, more
prevalent in earlier
stages of COPD

BMI N30
Fasting
hyperglycaemia
Hypertriglyceridemia
↑plasma leptin
↓plasma adiponectin
Insulin resistance

(Minas et al., 2011) Not age-matched

38 COPD patients and 34
controls

47% in COPD patients,
21% in controls

Abdominal obesity
Hypertension
Hypertriglyceridemia

(Marquis et al., 2005) Controls are age- and gender- matched

Small sample size
170 COPD patients and 30
controls

Overall prevalence was 47.5%, GOLD
stages I, II, III, and IV, were 53%, 50%, 53%,
37%, and 44%, respectively

Abdominal obesity
Fasting
hyperglycaemia
Hypertension
Hypertriglyceridemia

(Watz et al., 2009) Age- and gender-matched

COPD patients with MetS had increased systemic
inflammation and reduced physical activity
independent of pulmonary function impairment

7,358 adults aged N or =50
years

22.6% in COPD patients,
19.8% in controls

BMI N30
Abdominal obesity
Hypertriglyceridemia

(Lam et al., 2010) Subjects are age-adjusted and gender-matched

70 Stable COPD patients and
20 control subjects

32.9% in COPD patients,
5% in the controls

Fasting
hyperglycaemia
Hypertriglyceridemia
↓HDL

(Ameen, Mohamed,
Abd El Mageed, & Abd
El Wahab, 2016)

Gender-matched but not age matched

98 consecutive stable COPD
patients

Overall prevalence was 37.8%, GOLD
stages I, II, III, and IV were 33.3 %, 48.8 %,
31.6 %, and 23.1 %, respectively

BMI N30
Abdominal obesity
Hypertension
Hypertriglyceridemia
Fasting
hyperglycaemia
↓HDL

(Vujic, Nagorni, Maric,
Popovic, & Jankovic,
2016)

Age- and gender-matched

COPD patients with MetS had higher systemic
inflammatory markers (↑leukocyte count and CRP)
than patients without MetS

28 male patients with stable
COPD

50% in COPD patients BMI N30
Abdominal obesity
Hypertension
Fasting
hyperglycaemia
Fasting
hyperinsulinaemia
Insulin resistance
↓HDL
Coronary artery
disease
Cerebrovascular
accident

(Poulain et al., 2017) Age-matched

COPD patients with MetS had higher systemic
inflammatory markers (↑TNFα, IL-6, leptin & ↑
adiponectin) than patients without MetS

Small sample size

228 clinically stable COPD
patients and 156 contorls

57% in COPD patients,
40% in controls.

Abdominal obesity
↓HDL
Fasting
hyperglycaemia
Hypertriglyceridemia

(Breyer et al., 2014) Groups were stratified for BMI and gender

76 consecutive COPD
patients

62% in COPD BMI N30
Abdominal obesity
Hypertension
Fasting
hyperglycaemia
Fasting
hyperglycaemia
Insulin resistance
↓HDL
Hypertriglyceridemia

(Piazzolla et al., 2017) Age- and gender-matched
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C-reactive protein (CRP) and TNF-α) in the peripheral blood (Ropcke
et al., 2012). Chronic elevation of inflammatory molecules in the circu-
lation constitutes low-grade systemic inflammation which is the key
mediator of MetS. For example, IL-6, IL-1β, TNF-α and CRP promotes
whole-body insulin resistance, a central feature of MetS (de Luca &
Olefsky, 2008). Moreover, continued systemic inflammation promotes
the formation of atherosclerotic plaques, giving rise to cardiovascular
comorbidity in COPD patients (Fabbri et al., 2008; Mizuno, Jacob, &
Mason, 2011). Adipose tissue inflammation has been proposed to be an-
other important mechanism linking COPD to MetS. In obese COPD pa-
tients, the expansion of adipose tissue leads to adipocyte hypertrophy
and hyperplasia and that large adipocytes outstrip the local oxygen sup-
ply leading to cell autonomous hypoxia with activation of local
inflammation within the adipose tissue (Clini et al., 2013; Diez-
Manglano, Barquero-Romero, Almagro, et al., 2014). Strikingly, several
markers of inflammation such as IL-6, CRP and TNF-α are further ele-
vated when COPD and obesity coexist (Rana et al., 2004) suggesting
the adipose tissue may be another major contributor of inflammation
during COPD.

2.1. COPD and obesity

The prevalence of obesity in COPD patients was first reported by
Steuten, Creutzberg, Vrijhoef, & Wouters (2006) to be 18% in the
Netherlands population with the highest prevalence in subjects with
mild tomoderate COPD (16–24% inGOLD stages 1 and 2) and the lowest



Fig. 1.Development of metabolic syndrome (MetS) in COPD. Repeated cigarette smoking and/or exposure to noxious particles (e.g. occupational dust, air pollution, biomass combustion)
evoke an inflammatory response with increased macrophage and neutrophil infiltration into the lungs. Meanwhile, oxidants may also enter the pulmonary compartment via direct
inhalation of cigarette smoke and noxious particles. The combination of endogenous and inhaled oxidants causes oxidative damage to DNA, lipids, carbohydrates and proteins, and
thereby mediates an array of downstream processes that contribute to the development and progression of COPD. Oxidative damage activates resident cells in the lung (e.g. epithelial
cells and alveolar macrophages), to generate chemotactic molecules that recruit additional inflammatory cells and perpetuate oxidative stress in the lung. Collectively, these events
lead to a vicious cycle of persistent inflammation, accompanied by chronic oxidative stress, which lead to disturbances in the protease-anti-protease balance, defects in tissue repair
mechanisms, accelerated apoptosis and tissue destruction resulting in the spill over of pro-inflammatory mediators into the systemic circulation. Systemic inflammation promotes the
manifestation of cardiovascular disease, metabolic abnormalities and other extra-pulmonary comorbidities which are interconnected in nature. Impaired pulmonary function
decreases oxygen-exchange efficiency which in turn would trigger hypoxemia and limit physical activity. Both hypoxemia and physical inactivity per se are capable of directly and
indirectly promoting the development of metabolic syndrome and other comorbidities.
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in severe COPD (5.9% in GOLD stage 4). A subsequent study by Eisner
et al. (2007) in a multi-ethnic cohort of patients found 54% of the
COPD patients were found to also suffer from obesity, which is defined
as a BMI of greater than 30 kg/m2. In patients with COPD, obesity is gen-
erally associated with increased risk of mortality, however, surprisingly
a number of studies have demonstrated that being overweight or obese
may confer a survival advantage over a leaner phenotype (Bonsaksen,
Fagermoen, & Lerdal, 2016; Cebron Lipovec et al., 2016; Maatman
et al., 2016). In fact, COPD patients with a lower BMI tend to have a
higher mortality rate when compared with patients of normal BMI,
and that subjects who were overweight or obese had a lower risk of
mortality (Cao et al., 2012), which constitute the “obesity paradox”.
However, it is important to view this paradox in reference with the pro-
gression of COPD, as the majority of patients suffering from lung disor-
ders have a progressive loss of muscle mass (Vestbo et al., 2006) which
is a likely result of physical inactivity. BMI is a simple indicator of weight
for height and cannot differentiate between lean muscle mass that are
metabolically and functionally active, and fat mass. Therefore, BMI can
be a misleading indicator for survival or health outcomes in COPD pa-
tients. On this note, a study byMarquis et al. (2002) have demonstrated
increased mortality risk in COPD patients with low mid-thigh cross-
sectional area which is indicative of loss of lean muscle mass. In line
with this, a subsequent study by Schols et al. (2005) on 412 patients
with moderate-to-severe COPD also confirmed that lean mass can
serve as an independent predictor of mortality irrespective of fat mass.
Muscle is an important tissue not only for the mechanical contraction
to producemovement, but it is also an active metabolic tissue responsi-
ble for energy storage and utilization. Moreover, muscles are capable of
secreting systemic factors (i.e. myokines) which act on distal target tis-
sues including the lungs. Disruption to such tissue cross-talk as a result
of muscle wasting has been postulated to negatively impact on lung
function (Cheung, Joham, Marks, & Teede, 2017; Zhi, Xin, Ying,
Guohong, & Shuying, 2016). Given the capacity of physical activity is di-
rectly related to the amount of leanmusclemass, and increased fatmass
is known to negatively impact on respiratory mechanics and lung vol-
umes (DeLorey, Wyrick, & Babb, 2005; Hedenstierna & Santesson,
1976; Pelosi, Croci, Ravagnan, Vicardi, & Gattinoni, 1996), it is possible
that the protective effect of obesitymay be coming from the leanmuscle
mass. This highlights the importance of body composition assessment in
the clinical management of COPD patients.

The concomitant increase in fat mass and loss of muscle mass repre-
sent two arms ofmetabolic abnormalities thatmay be relate to systemic
inflammation (Tkacova, 2010). Systemic inflammation not only is the
hallmark of COPD but it is also a key mechanism responsible for disease
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progression and the consequential increased rate of comorbidities
(Wouters, 2005). There are two main sources of pro-inflammatory me-
diators that are considered to be important for the systemic inflamma-
tion seen during COPD: the lungs and peripheral organs in particular
adipose tissue (Akpinar, Akpinar, Ertek, Sayin, & Gulhan, 2012;
Magnussen & Watz, 2009; Sin & Man, 2003b; Tkacova, 2010). As COPD
is increasingly recognized as a more complex systemic disease rather
than solely an airway and lung disease, the source of systemic inflam-
mation in COPD patients has been a subject of intense discussion
(Chung & Adcock, 2008; Kim, Rogers, & Criner, 2008; Vogelmeier
et al., 2017). The critical points of discussion are whether systemic in-
flammation is due to spill over from inflammation arising predomi-
nantly in the lungs or to an up regulated production of inflammatory
mediators in non-pulmonary tissue(s) as well. In support of the “spill
over” concept, studies have demonstrated that cigarette smoke and
COPD are associated with increased permeability of pulmonary vessels,
the leakiness of which contributes directly to the spill over of the local
pro-inflammatorymediators from the lungs into the systemic compart-
ment. In human bronchial epithelium, Olivera et al. (Olivera, Boggs,
Beenhouwer, Aden, & Knall, 2007) demonstrated transient loss of epi-
thelial barrier function upon exposure to cigarette smoke which re-
sulted in macromolecular permeability. In murine models of lung
injury, similar loss of epithelial barrier functionwas observed which re-
sulted in increased leak of surfactant protein D, a lung specific protein
(Fujita et al., 2005) as well as the pro-inflammatory cytokine IL-6
(Tamagawa et al., 2009) into the circulation favouring the development
of systemic inflammation. In humans, increased alveolar-capillary
membrane permeability was observed in cigarette smoke compared
to nonsmokers (Kennedy, Elwood, Wiggs, Pare, & Hogg, 1984). Im-
provements of FEV1 by steroid therapy was associated with restoration
of alveolar-capillary membrane permeability(Chou, Chen, Chuang, Kao,
& Huang, 2006), as well as reduction of systemic surfactant protein D
levels in COPD patients (Antoniu, 2008; Man et al., 2009).

At a glance, the findings from the above studies are suggesting pul-
monary inflammation as a prevailing mechanism for the systemic in-
flammation during COPD. However, upon closer examination, the
inverse relationship between FEV1 and pulmonary vessel permeability
demonstrated by these studies is also indicative that this lung-to-circu-
lation spill over of pro-inflammatory mediators may not be prominent
in patients with early stages of COPD or prior to the onset of severe pul-
monary dysfunction. Indeed, the coexistence of obesity and metabolic
syndrome have been demonstrated to positively correlate with
increased systemic inflammation aswell as reduced physical activity in-
dependent of lung function impairment (Watz et al., 2009).Meanwhile,
the decline in pulmonary function with COPD limits physical activity
which increases the propensity for weight gain exacerbating obesity.
To make matters worse, excess obesity not only accelerates pulmonary
function loss but together they pose further restriction on physical ac-
tivity (Franssen, O'Donnell, Goossens, Blaak, & Schols, 2008) forming a
vicious cycle.

2.2. COPD and dyslipidaemia

Cigarette smoking is known to cause an increase in circulating levels
of very low density lipoprotein (VLDL), low density lipoprotein (LDL),
and triglycerides and low levels of high density lipoprotein (HDL)
(Craig, Palomaki, & Haddow, 1989). While the alteration of this panel
of circulatory factors is generally believed to be pro-atherosclerotic,
studies on dyslipidaemia in COPD are limited and the lipid profile has
yet to be well characterized in COPD. A study conducted in a Spanish
population involving 1500 subjects found dyslipidaemia in 48.3% of
COPD patients with various stages of the disease (de Lucas-Ramos
et al., 2012). Amore recent study has reported the detection of elevated
levels of oxidised LDL in current smokers (Wada et al., 2012) and that
the levels of oxidised LDLwere rapidly reduced upon smoking cessation
(Komiyama et al., 2015). Lipoprotein particles like VLDL and LDL are
prone to oxidative modifications, which are inhibited by HDL under
healthy state. Oxidised LDL is predominant at sites of atherosclerotic
lesions, and the levels of oxidised LDL in the blood is reflective of the ac-
tivity of foam cells in atherosclerotic lesions (Mashiba et al., 2001). On
one hand, the altered circulatory profile in COPD patients renders LDL
more easily oxidized. On the other hand, a number of steps in the re-
verse cholesterol transport pathway have been found to be impaired
by systemic inflammation (Athyros, Katsiki, Doumas, Karagiannis, &
Mikhailidis, 2013; Goldklang et al., 2012). Of interest, treatment of the
underlying disease leading to a reduction in inflammation results in
the returnof the lipid profile towards normal (Dessi et al., 2013) indicat-
ing dyslipidaemia might be a key mediator for comorbidities stemming
from systemic inflammation.

Another important aspect of dyslipidaemia lies in the pro-
inflammatory properties of certain lipid species. First of all, elevating
levels of circulating non-esterified lipids (NEFA) have been demon-
strated to promote inflammation (Gordon, 2007; Johnson, Milner, &
Makowski, 2012; Kosteli et al., 2010). Like triglycerides, NEFA is
transported out of the liver into the circulation in the form of lipopro-
tein. Uptake of these lipid-rich VLDL and LDL particles by macrophages
leads to lipid deposition which triggers a cascade of intracellular signal-
ling mediated by mitogen activated protein kinases (MAPK; ERK1/2,
JNK & p38) resulting in the production of inflammatory proteins
(Saraswathi & Hasty, 2006). In line with this, VLDL has been shown to
trigger pro-inflammatory response in vascular endothelial cells (Dichtl
et al., 1999). This evidence suggested that apart from spill over of pro-
inflammatory mediators from the lungs, systemic inflammation may
also arise from dyslipidaemia. In support of this, diets rich in cholesterol
and fat have been demonstrated to promote pulmonary inflammation
(Tilton et al., 2013) and emphysema development (Goldklang et al.,
2012). Cigarette smoke exposure is also known to impact on key organs
including liver, muscle, and white and brown adipose tissue, that are
important in lipid and lipoprotein metabolism (Hutcheson & Rocic,
2012). Hence, dyslipidaemia arising from MetS or cigarette smoke
may serve as an important mechanistic link not only to COPD but also
its comorbidities.

2.3. COPD and non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is recognized as a hepatic
manifestation of MetS (Fargion, Porzio, & Fracanzani, 2014). NAFLD is
a collective term that encompasses non-alcoholic hepatic steatosis
(modest lipid accumulation within the liver) to non-alcoholic steato-
hepatitis (NASH), which often precedes liver fibrosis, cirrhosis, and he-
patocellular carcinoma (Fargion et al., 2014). NAFLD has also been iden-
tified as an independent risk factor for atherosclerosis and CVD
(Hamaguchi et al., 2007; Targher et al., 2005). To date, the molecular
mechanism underlying the conversion from the modest fatty liver to
NASH remains poorly understood. However, experimental evidence in-
dicates cigarette smoking may be a major risk factor for such patholog-
ical conversion. Firstly, increased serum cholesterol and lipid levels
arising from cigarette smoke has been shown to be a risk factor for
liver disease (Corey & Cohen, 2000; Mizoue, Ueda, Hino, & Yoshimura,
1999) in which elevation of serum lipids greater than 5% of normal
level is a dividing line between simple steatosis to more severe forms
of NAFLD (Tannapfel et al., 2011). Secondly, cigarette smoking has
been shown to exacerbate hepatocellular lipid accumulation in labora-
tory rodent and cell culture by modulating the activity of adenosine
monophosphate-activated protein kinase (AMPK) and sterol response
element binding protein-1c (SREBP-1c) (Yuan, Shyy, & Martins-Green,
2009). AMPK is a master regulator of energy metabolism, while
SREBP-1c is a basic-helix-loop-helix-leucine zipper transcription factor
responsible for transcriptional activation of lipogenic genes (Postic &
Girard, 2008). Activation of AMPK inhibits SREBP-1c thereby blocking
energy-consuming biosynthetic pathways such as lipogenesis and acti-
vates energy-producing catabolic pathways such as fatty acid oxidation
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(Long & Zierath, 2006). Exposure to cigarette smoke rapidly inhibits
AMPK phosphorylation, and its function, leading to the activation of li-
pogenesis driven by SREBP-1c (Yuan et al., 2009). Thirdly, cigarette
smoke exposure has also been demonstrated to perturb the cellular
pro-oxidant to anti-oxidant balance giving rise to oxidative stress.
Data from our laboratory showed increased oxidative stress in response
to cigarette smoke (Duong et al., 2010).

In the liver, cigarette smoke stimulates the production of hepatocel-
lular ROS which induces DNA damage (Chen et al., 2015) and liver in-
jury that worsens the severity of NAFLD in the setting of obesity
(Azzalini et al., 2010). In addition to inducing oxidative stress, cigarette
smoke may contain high levels of chemical toxins which could have
profound effects onNAFLD and are linked to the formation of hepatocel-
lular carcinoma. For example, benzopyrenehas been shown to cause ox-
idative stress and apoptotic cell death in primary rat hepatocytes (Collin
et al., 2014). Aldehydes found in cigarette smoke have been shown to
increase histone 3 phosphorylation via the hyper-activation of prolifer-
ative pathways including the phosphatidylinositol-3 kinase (PI3K) /
protein kinase B (PKB/Akt) (Ibuki, Toyooka, Zhao, & Yoshida, 2014)
and MAPK pathway (Lee & Shukla, 2007). Histone modifications are
an important mechanism in chromatin remodelling which regulates
gene expression. Histone 3 phosphorylation has been reported to pro-
mote malignant transformation and cancer development (Choi et al.,
2005; Kim et al., 2008). In an obesitymousemodel, nicotinehas additive
effects on the severity of hepatic steatosis induced by high fat feeding
(Friedman et al., 2012). The liver tissue of these mice had greater lipid
deposition, level of oxidative stress, incidence of hepatocellular apopto-
sis than those fed a high fat diet alone, which may be attributed to the
negative impact of nicotine on AMPK activation (Friedman et al.,
2012). Collectively, these findings suggest cigarette smoking is capable
of causing liver injury by driving excessive oxidative stress, dysregu-
lated lipid metabolism and hyperactivation of growth signals which
may serve as an important trigger for the pathological conversion of
fatty liver to NASH.

Despite the consistency, the clinical relevance of these experimental
findings is more controversial. A randomized, placebo-controlled trial
conducted on a cohort in Israel reported no significant relationship be-
tween cigarette smoking and liver function (Sofer, Boaz, Matas,
Mashavi, & Shargorodsky, 2011). Moreover, post hoc analysis of the
GREek Atorvastatin and Coronary Heart Disease Evaluation (GREACE)
study also revealed no association between cigarette smoking
and NAFLD (Athyros, Tziomalos, et al., 2013). Paradoxically, a cross-
sectional study involving 8,500 participants demonstrated both passive
smoking and active smoking are positively correlated with prevalent
NAFLD inmiddle-aged and elderly populations (Liu et al., 2013). The ap-
parent controversy is likely to be explained by a number of concurrent
factors such as obesity, smoke history, gender, age and genetic predis-
position. Hence these factors should be taken into consideration in fu-
ture clinical studies. Of interest, cigarette smoking has been reported
to accelerate NAFLD pathology and liver injury only when obesity is
present (Azzalini et al., 2010) suggesting the deleterious effects of CS
in the liver may require additional metabolic insults, which further
strengthens the connection between cigarette smoking and metabolic
derangement in COPD.

2.4. COPD and diabetes

Although the exact prevalence varies between studies (Bitar, Ghoto,
Dayo, Arain, & Parveen, 2017; Makarevich, Valevich, & Pochtavtsev,
2007; Parappil, Depczynski, Collett, & Marks, 2010), patients with
COPD in general tend to have a greater chance of developing diabetes
(type 2) with a prevalence of 18.7% in COPD patients versus 10.5% in
the general population (Cazzola, Bettoncelli, Sessa, Cricelli, & Biscione,
2010; Yin et al., 2017). Persistent systemic inflammation appears to be
an important mechanistic factor responsible for the progression of
the two diseases (Akpinar et al., 2012; Tkacova, 2010; Yanbaeva,
Dentener, Creutzberg, & Wouters, 2006), greatly increasing an individ-
ual’s risk for comorbidities such as cardiovascular complications
(Barnes & Celli, 2009; Cazzola et al., 2010; Vogelmeier et al., 2017).
Noteworthy is the mutual relationship that existed between these two
diseases, in that not only patientswith COPD are at risk of developing di-
abetes, but that COPD is also found to be a common comorbidity of dia-
betes (Cazzola et al., 2017). First of all, cigarette smoking doubles the
risk of developing diabetes which is likely to be attributed to the wors-
ened insulin resistance driven by systemic inflammation and/or oxida-
tive stress by cigarette smoke (Oh & Sin, 2012). Moreover, the risk of
developing diabetes is further increased in overweight/obese subjects
(Cravo & Esquinas, 2017; Lambert et al., 2017). Secondly, experimental
evidence demonstrated that airway inflammation blunts the metabolic
actions of insulin on liver (supress glucose production) and peripheral
tissues (glucose uptake) such as muscle and adipose tissue leading to
impairment of glucose metabolism (Cyphert et al., 2015). Importantly,
the blunted insulin action in these tissues occurred without detectable
defects in insulin receptor signalling. In line with this, inflammation of
the airway epithelium has been shown to negatively regulate glucose
metabolism via limitation of muscle blood flow and microvascular re-
cruitment without impairment of insulin signalling (Clerk et al., 2006).
Thirdly, the use of corticosteroid therapy for COPD has been reported
to be associated with increased blood glucose levels (Barnes, 2010)
and this association appears to be dose-dependent (Price et al., 2016).
However, controversy exists regarding the adverse effects of corticoste-
roid therapy on diabetes as several studies have reported no evidence of
such an association (Dendukuri, Blais, & LeLorier, 2002; Flynn,
MacDonald, Hapca, MacKenzie, & Schembri, 2014; O'Byrne et al., 2012).

On the contrary, impaired lung function is one of the most common
comorbidities found in diabetic patients (Cazzola et al., 2017). There is a
strong correlation between severity of diabetes and decline in FEV1 and
forced vital capacity (FVC) (Kinney et al., 2014), particular in the elderly
population (Caughey et al., 2010) which is likely to be a result of reduc-
tions in activity-related quality of life (Cecere et al., 2011; Mekov et al.,
2016). The consequences of a reduced FEV1 goes far beyond the effects
of hyperglycaemia on lung function as recently demonstrated. In a
10-year follow up study involving 27,000+ non-smokers, Zaigham,
Nilsson, Wollmer, and Engstrom (2016) reported that low FEV1 pre-
cedes and significantly predicts the onset of diabetes. This heightens
the notion that reduced FEV1 could pose significant risk on an individual
for developing diabetes which could arisemany years following the ini-
tial decline in lung function independent of smoking history.

The association of diabetes and decline in lung function are linked at
multiple levels namely systemic inflammation, glucotoxicity and insulin
resistance. A large body of evidence has demonstrated systemic inflam-
mation to be themajor culprit underlying the impairment of lung func-
tion by diabetes (Akpinar et al., 2012). Diabetes is associated with a
persistent elevation of inflammatory mediators such as IL-6, TNF-α,
and CRP (Saltiel & Olefsky, 2017), which in turn could act to increase
vascular permeability in the lung (Sedgwick, Menon, Gern, & Busse,
2002). In addition to the induction of inflammatory mediators, the
hyperglycaemia and insulin resistance play important roles in lung pa-
thology. On one hand, the increased blood glucose levels may lead to a
rise in glucose concentration in the airway secretion lining fluid
(Wood, Brennan, Philips, & Baker, 2004). It has been shown that glucose
remains at undetectable levels under normoglycaemic conditions, but
can be as high as 9 mM in airways secretions isolated under conditions
of hyperglycaemia indicating an airway glucose threshold may exist
(Wood et al., 2004).Moreover, the increased glucose levels in airway se-
cretions has been shown to contribute to impairment of lung function
(McKeever, Weston, Hubbard, & Fogarty, 2005). On the other hand,
hyperglycaemia may also result in the formation of glycosylation end-
products (AGEs) which are pro-inflammatory in nature and may accel-
erate complications in the lungs (Sparvero et al., 2009).

Insulin resistance is predominant at the onset of diabetes resulting in
a chronic elevation of circulating basal insulin levels, to overcome the



167S.M.H. Chan et al. / Pharmacology & Therapeutics 198 (2019) 160–188
reduced sensitivity. Over time, the hypersecretion of insulin exhausts
pancreaticβ-cells leading to a decline in cell mass. Type 2 diabetesman-
ifests when the β-cell is no longer able to hypersecrete insulin to main-
tain a normal concentration of glucose in the blood (euglycemia) (de
Luca & Olefsky, 2008). Hence, insulin resistance is an important feature
of the MetS whichmarks pre-diabetes. In the pulmonary compartment,
insulin exerts a number of remodelling effects on airway smooth
muscle cells by stimulating proliferation, collagen release, as well as
their contractions via β-catenin signalling contributing to airway
hyperresponsiveness (Singh et al., 2016). In the context of COPD, a de-
cline in pulmonary function as the disease progresses increases the
risk of alveolar hypoxia and consequential hypoxemia (systemic hyp-
oxia) (Vogelmeier et al., 2017). Tissue hypoxia has been proposed to
be responsible for many of the maladaptive processes and extra-
pulmonary comorbidities that characterize COPD (Kent, Mitchell, &
McNicholas, 2011). Indeed, chronic hypoxia produces profound changes
in cellular metabolism and insulin sensitivity (Gileles-Hillel,
Kheirandish-Gozal, & Gozal, 2016). In adipose tissues, hypoxia creates
a state of insulin resistance via the action of hypoxia-inducible factor
(HIF), which is a basic helix-loop-helix transcription factor composed
of -α and -β subunits (Wang, Jiang, Rue, & Semenza, 1995). Under
normoxic conditions, HIF-α is subjected to proline hydroxylation, lead-
ing to degradation by the proteasome. Hypoxia inactivates the proline
hydroxylases, leading to HIF-α accumulation and formation of a func-
tional heterodimeric transcription factor (Kim, Tchernyshyov,
Semenza, & Dang, 2006). HIF activation by hypoxia decreases the phos-
phorylation of the insulin receptor which subsequently blunts the
downstream signalling mediated by Akt, resulting in a reduced glucose
transport in response to insulin stimulation (Regazzetti et al., 2009).

In the liver, the role of hypoxia appears to be more complex. Activa-
tion of HIF has been reported to increase hepatic insulin sensitivity via
induction of insulin receptor substrate 2 (IRS2) (Wei et al., 2013), de-
spite exacerbated hepatic lipid accumulation attributable to induction
of lipogenic genes (Qu et al., 2011; Taniguchi et al., 2013). In skeletal
muscle, exposure to hypoxia tends to have differential outcomes on in-
sulin sensitivity. Intermittent hypoxia has been demonstrated to induce
insulin resistance (Thomas et al., 2017) but chronic hypoxia tends to in-
crease insulin action (Gamboa, Garcia-Cazarin, & Andrade, 2011). The
apparent differences are likely to be related to the severity of hypoxia
(Lecoultre et al., 2013) and muscle composition (Gamboa et al., 2011)
which may determine the adaption outcome of skeletal muscle. On
this note, augmentation of the skeletal muscle AMPK pathway has
been shown to counteract the detrimental effects of intermittent hyp-
oxia on whole-body glucose tolerance (Thomas et al., 2017) suggesting
the AMPK pathway may be a key adaptation mechanism. Taken to-
gether, these findings offer an explanation, at least in part, to the posi-
tive correlation observed on insulin sensitivity and lung function
(Forno, Han, Muzumdar, & Celedon, 2015).

2.5. COPD and CVD

CVD is one of the most common comorbidities of chronic inflamma-
tory diseases and it is regarded as the leading cause of morbidity and
mortality in COPD patients (Divo et al., 2012; Schols et al., 2005; Sin,
Anthonisen, Soriano, & Agusti, 2006). Coronary artery disease, hyper-
tension, pulmonary hypertension, and heart failure are probably the
most frequently occurring cardiovascular disorders amongst patients
with COPD (Bhatt & Dransfield, 2013). These conditions can sometimes
overlap and the presence of one or more of these conditions greatly im-
pacts on quality-of-life as well as the survivability of COPD patients ac-
counting for 20%–30% of death in patients with mild to moderate COPD
(Bhatt & Dransfield, 2013; Dalal, Shah, Lunacsek, & Hanania, 2011; de
Lucas-Ramos et al., 2012).

Although different in their clinical manifestations, CVD conditions
are related to atherosclerosis which is the stiffening of the vasculature
due to the builds up of plaques. The oxidised LDL that is deposited in
the plaques is taken up by macrophages, turning them into lipid-laden
foam cells resulting in the stabilization of a collagen-rich fibrous cap
with large lipid core on the vessel wall (Dessi et al., 2013; Mizuno
et al., 2011). Over time, the fibrous cap encapsulating the enlarged
lipid-rich thrombogenic core becomes vulnerable to rupture. Rupture
of an atherosclerotic plaque leads to formation of a thrombus which is
associatedwith partial or complete vessel occlusion in a coronary artery
resulting in a heart attack or stroke (Bhatt & Dransfield, 2013).

Cigarette smoke exposure is an important risk factor for atheroscle-
rosis initiation and progression due to is oxidative stress-inducing and
pro-inflammatory characteristics (Athyros, Katsiki, et al., 2013). Chronic
low grade systemic inflammation is present in both COPD and CVD,
meanwhile oxidative stress is a major contributor to COPD progression,
has also been shown to implicate in CVD (Zampetaki, Dudek, & Mayr,
2013). Indeed, the increased systemic inflammation due to cigarette
smoking has been demonstrated to disrupt the stability of vulnerable
plaques shifting the vasculature towards a pro-thrombotic state
(Man, Van Eeden, & Sin, 2012; Mirrakhimov & Mirrakhimov, 2013).
Importantly, cigarette smoking not only promotes systemic inflamma-
tion but also promotes dyslipidaemia as aforementioned. Both
dyslipidaemia and inflammation are key events for the pathogenesis
of atherosclerosis, dyslipidaemia results in increased availability of
oxidised LDL for the development of atherosclerotic plaques, sustained
systemic inflammation and pulmonary impairment, while in turn sys-
temic inflammation favours the exacerbation of dyslipidaemia forming
yet another viscous cycle (Athyros, Katsiki, et al., 2013; Dessi et al.,
2013). To make matters worse, hypoxia may arise from cigarette
smoking, decline in pulmonary function and/or vessel occlusion due to
atherosclerosis which has been shown to alter pulmonary blood flow,
resulting in right ventricle hypertrophy and left ventricular diastolic
dysfunction which impacts on cardiac function (Larsen et al., 2006).
On this note, acute exacerbations of COPD due to secondary infections
or exposure to airborne irritants have also been reported to promote
myocardial ischemia (Mills et al., 2007).

3. Development of metabolic syndrome in COPD

Both cross-sectional and longitudinal studies have demonstrated
that MetS in people with COPD worsens respiratory symptoms and
lung function and that this is due to amplified systemic inflammation
(Cebron Lipovec et al., 2016; Price et al., 2016; Stanciu et al., 2009).
This amplified systemic inflammation can feed forward to exacerbate
metabolic abnormalities such as dyslipidaemia and insulin resistance
(Saltiel & Olefsky, 2017). It is likely that Mets is a consequence of
COPD based on the following observations: 1)MetS is a life style and di-
etary related disorder and no experimental evidence so far exists to sup-
port that dietary and/or life style factors can directly cause COPD in the
absence of smoking or airborne irritants; 2) cigarette smoking is an im-
portant modifiable risk factor for MetS where smoking cessation has
been shown to exert beneficial effects on MetS and its individual com-
ponents (Chen et al., 2008; Heggen, Svendsen, & Tonstad, 2017;
Ishizaka et al., 2005). The next part of this review will focus on the
most plausible pathogenic mechanisms linking COPD to MetS.

3.1. Systemic inflammation: the spill over hypothesis

In amulticentre 3-year observational study, the ECLIPSE study inves-
tigated systemic inflammation as a distinct phenotype amongst 2164
clinically stable COPD patients (Faner et al., 2014). The study found
that COPD is a complex and heterogeneous disease in which not all pa-
tients with COPD display elevated markers of inflammation. In fact,
about one-third of these patients manifested with no evidence of sys-
temic inflammation during the follow up (Faner et al., 2014). For the
majority of the patients manifested with systemic inflammation, the
systemic elevation of IL-8 and TNF-α were better correlated with ciga-
rette smoking rather than COPD (Vestbo et al., 2008). The study also
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identified a distinctive pattern of systemic inflammation termed
“inflammome” which is consisted of elevated white blood cell count,
plasma CRP, IL-6 and fibrinogen, that may be used as good biomarkers
for mortality and exacerbations in COPD (Agusti et al., 2012). Impor-
tantly, 16% of patients with COPD from the study had persistent sys-
temic inflammation, and this was associated with much worse
outcomes reflected by a six-fold increase in all-cause mortality in the
3 year of follow up (Agusti et al., 2012). Taken together, the findings
from the ECLIPSE study support systemic inflammation as an important
driver for the extra-pulmonary complications.

Several theories have been proposed regarding the underlying
mechanisms driving the systemic inflammation during COPD. The
predominating theory is that the inflammatory process originates in
the airways and lung parenchyma, then “spill over” into the systemic
circulation (Bernardo et al., 2015; Oh & Sin, 2012). Indeed, several
studies have reported an association between COPD and low-grade sys-
temic inflammation. A meta-analysis of these studies (Gan, Man,
Senthilselvan, & Sin, 2004) has found that patients with stable COPD
have an increased number of activated leukocytes, increased levels of
CRP, cytokines (IL-6, TNF-α and their soluble receptors), as well as fi-
brinogen. The intensity of this systemic manifestation is further aug-
mented during exacerbations (Gan et al., 2004; Wedzicha et al., 2000).
While this spill over of the local inflammation into the circulation is pri-
mary attributed to the increasedmembrane permeability asmentioned
previously, direct damage can also occur in the pulmonary compart-
ment due to the oxidants found in cigarette smoke and from excessive
levels of ROS and reactive nitrogen species (RNS) produced as a result
of both pulmonary and systemic inflammation (Bernardo et al., 2015).

As cellular inflammation is an important cue for themanifestation of
systemic inflammation (Editorial, 2017), hence identifying the cellular
source of inflammationmay be a key to arrest the systemic pathologies.
An important cellular source of inflammatory mediators in COPD
are resident and recruited macrophage populations in COPD. The
monocyte-macrophage lineage is a heterogeneous population of cells
with significant phenotypic plasticity to acquire the functional pheno-
types depending on the microenvironment (Vlahos & Bozinovski,
2014). The M1 phenotype produces pro-inflammatory cytokines (eg.
IL-6, TNF-α & IL-1β), and RNS and ROS that exhibit strong microbicidal
and tumoricidal activity. In contrast, the M2 phenotype induces the ex-
pression of anti-inflammatory cytokines (eg. IL-10 & IL-1ra), and mole-
cules (eg. VEGF & MMP9) implicated in tissue repair and remodelling
(Gordon & Taylor, 2005). In general, glycolytic metabolism supports
M1 polarization, whereasM2macrophage predominantly rely onmito-
chondrial oxidative phosphorylation for energy metabolism. For this
reason, changes in metabolism have been proposed to govern the phe-
notype of immune cells by controlling transcriptional and post-
transcriptional events that are central to activation (O'Neill & Pearce,
2016). At a glance, this may lead us to think that cigarette smoking
may be driving systemic inflammation by predominantly influencing
glycolytic metabolism in immune cells residing in the lung, particularly
the alveolar macrophages (AM). However, AM isolated from smokers
exhibit a coordinated down-regulation of a considerable number of
genes typical for M1 polarization, with a concomitant induction of a
panel of genes that are typical of the M2 phenotype (Shaykhiev et al.,
2009), suggesting cigarette smoke may induce reprogramming of AM
towardM1-deactivated, andM2-polarized. In linewith this, experimen-
tal evidence in a rodent COPD model found increased deposition of M2
AM (He, Xie, Lu, & Sun, 2017). Intriguingly, a recent study also observed
attenuated glycolytic reserve and spare respiratory capacity in AM from
smokers leading to impairment of glycolytic response to infection
(Gleeson et al., 2018). Although counter intuitive, the findings are not
entirely surprising particularly from a host defence perspective. As sup-
pression of M1-activation and glycolytic metabolism in smokers is con-
sistent with the epidemiologic data that smokers with/without COPD
are more susceptible to respiratory tract infection than non-smokers
(Murin & Bilello, 2005). It is therefore possible that persistent lung
infectionmight develop in smokers with advanced COPD, due to deacti-
vation of the M1 polarization program in AM. This in turn may trigger a
compensatory inflammatory response that is maladaptive in nature,
leading to excessive production of pro-inflammatory mediators and
chronic inflammation.

Chronic low-grade inflammation is a hallmark feature of obesity,
dyslipidaemia, insulin resistance and type 2 diabetes, which are key fea-
tures of theMetS (Fabbri & Rabe, 2007; Saltiel &Olefsky, 2017). Over the
past decade, it has become increasingly evident that systemic inflam-
mation is a major contributor to the pathogenesis of MetS leading to
more life-threatening diseases such as CVD and cancer(Hotamisligil,
Budavari, Murray, & Spiegelman, 1994; Pothiwala, Jain, & Yaturu,
2009; Roytblat et al., 2000; Sartipy & Loskutoff, 2003; Serino et al.,
2007; Straczkowski et al., 2002). Elevated levels of TNF-α, IL-6, IL-8
and CRP have all been reported in COPD patients with various degrees
of MetS (Cazzola et al., 2017; Kupeli et al., 2010; Stanciu et al., 2009).
Systemic elevation of TNF-α (Uysal, Wiesbrock, Marino, &
Hotamisligil, 1997) and IL-6(Cai et al., 2005) have been shown to pro-
mote insulin resistance particularly in the context of obesity. IL-8 is a
chemotactic cytokine responsible for amplification of inflammation via
the recruitment and activation of mononuclear cells. Similar to TNF-α
and IL-6, IL-8 has been demonstrated to directly attenuate themetabolic
actions of insulin by inhibiting its receptor signal transduction (Kobashi
et al., 2009). Moreover, IL-8 is a chemotactic cytokine responsible for
amplification of inflammation via the recruitment and activation of
mononuclear cells which could also result in the worsening of insulin
resistance states (de Luca & Olefsky, 2008). The release of pro-
inflammatory cytokines like TNF-α and IL-6 into systemic compart-
ments can mediate distal inflammatory effects, including activation of
hepatic genes encoding acute phase reactants including fibrinogen,
CRP, and serum amyloid A which constitute an important cue for the
onset of systemic inflammation (Gabay & Kushner, 1999). CRP is prob-
ably the best characterised acute phase reactants of all and is commonly
reported to be elevated under conditions of MetS (de Luca & Olefsky,
2008). CRP stimulates further cytokine release, as well as the synthesis
of cell adhesionmolecules and tissue factors inmonocytes and endothe-
lial cells which in turn could activate the extrinsic coagulation cascade
(Koh, 2002). Meanwhile, our laboratory has shown that serum amyloid
A is highly elevated during AECOPDwhich is capable of causing skeletal
muscle atrophy by eliciting a robust pro-inflammatory response driven
by Toll-like receptor 2 (TLR2) which may explain the common meta-
bolic and CVD comorbidities of these two diseases. On the contrary, im-
provement of pulmonary function (Zhang et al., 2017), regular physical
activity (Balducci et al., 2010), recovery from events of exacerbation
(Perera et al., 2007), as well as improvements in body mass index
(McDonald et al., 2016) via dietary and exercise interventions are asso-
ciated with a reduction of systemic inflammation and better disease
outcomes for both COPD and MetS patients.

3.2. Adipose tissue: a critical source of inflammatory mediators

As described above, elevated inflammatory markers such as IL-6,
TNF-α, and CRP are a common feature of both COPD and MetS. How-
ever, these markers are elevated to a greater extent in obese patients
(Rana et al., 2004) which heightens the importance of obesity in the
process of inflammation. Indeed, abdominal obesity has been shown
to have the strongest association with lung function impairment
(Leone et al., 2009). Obesity is regarded as a state of inflammation char-
acterized by low-grade, chronic inflammation orchestrated by meta-
bolic tissues/cells in response to excess nutrients and energy (Gregor
& Hotamisligil, 2011; Hotamisligil, 2010). Adipose tissue can respond
rapidly and dynamically to nutrient availability particularly in the con-
dition of excess, through adipose tissue expansion, thereby fulfilling
its major role in whole-body energy homeostasis.

Adipose tissue is not just a fat depot, but rather an endocrine organ
that is actively involved in a wide range of metabolic processes
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including inflammation, insulin sensitivity, lipid metabolism and blood
pressure regulation (Kajimura, 2017). The adipose tissue is comprised
of adipocytes, macrophages and endothelial cells which are capable of
synthesizing and secreting proteins (i.e. adipokines) such as pro-
inflammatory cytokines (TNF-α, IL-6, IFNγ), metabolic hormones
(adiponectin, resistin, adipsin, leptin), growth factors (vascular
endothelial growth factor [VEGF]) and blood pressure regulators (Plas-
minogen activator inhibitor-1 [PAI-1] and components of the renin-
angiotensin system) which may exert local and systemic effects
(Kajimura, 2017). Adipose tissue expansion is an important physiologi-
cal process in response to nutritional surplus allowing for the storage of
excess energy as fat. Healthy adipose tissue expansion is a highly or-
chestrated process with effective recruitment of precursor cells, ade-
quate angiogenesis and appropriate remodelling of the extracellular
matrix. However, rapid weight gain seen in obesity can lead to patho-
logical adipose tissue expansion characterised by massive enlargement
(hypertrophy) of existing adipocytes (Sun, Kusminski, & Scherer, 2011).
This rapid rate of expansion often outpaces the rate of angiogenesis
resulting in poor oxygenation and local hypoxia within deeper parts of
the tissue (Halberg et al., 2009; Kabon et al., 2004). Adipose tissue hyp-
oxia is a form of cellular stress which stimulates the production of pro-
inflammatory mediators IL-6, TNF-α, macrophage migration inhibitory
factor, VEGF, tissue inhibitor ofmetalloproteinases-1, leptin, andmono-
cyte chemotactic proteins, while concomitantly downregulating the ex-
pression of adiponectin, a renowned anti-inflammatory adipokine
resulting in an overall shift of balance towards inflammation (Hosogai
et al., 2007; Lolmede, Durand de Saint Front, Galitzky, Lafontan, &
Bouloumie, 2003). In line with this concept, acute exacerbations of
COPD have been reported to associate with increased levels of serum
leptin and an increased ratio of leptin to adiponectin, as well as eleva-
tions of the classic pro-inflammatory markers such as IL-6, TNF-α and
their soluble receptors in the circulation (Krommidas et al., 2010;
Yamauchi et al., 2001). On the contrary, increased circulatory levels of
adiponectin were detected upon resolution of the exacerbation
(Krommidas et al., 2010) suggesting adipose tissue might be an impor-
tant source of inflammation in COPD patients with weight gain issues.

In addition to promoting systemic inflammation, these adipocyte-
released cytokinesmay exert negative effects onmetabolism. For exam-
ple, TNF-α may increase systemic insulin resistance by promoting the
release of fatty acids from adipose tissue into the bloodstream to act
on tissues such as muscle and liver (Gregor & Hotamisligil, 2011;
Hotamisligil, Shargill, & Spiegelman, 1993). TNF-α is also a potent stim-
ulus for the production and release of IL-6 and IL-8 from adipocytes
(Bruun, Pedersen, Kristensen, & Richelsen, 2002) which in turn pro-
motes further release of fatty acids from adipose tissue lipolysis
(Greenberg et al., 1992). Furthermore, TNF-α has also been demon-
strated to promote the synthesis of leptin from adipose tissue
(Zumbach et al., 1997). Leptin has strong immunoregulatory activity
which up-regulates expression of pro-inflammatory cytokines
(Loffreda et al., 1998). On this note, increased circulatory leptin levels
correlate with impairment of lung function (Sin & Man, 2003a). Previ-
ous experimental and clinical research indicates the involvement of lep-
tin in body weight homeostasis. Leptin is a hormone produced by the
adipose tissue responsible for regulating energy balance in a feedback
mechanism involving the hypothalamus. The normal leptin feedback
mechanism can be disturbed by several factors. In rodents, administra-
tion of endotoxin or pro-inflammatory cytokines like TNF-α resulted in
a dose-dependent up-regulation of leptin mRNA in adipose tissue and
elevation of circulating leptin concentrations(Grunfeld et al., 1996;
Sarraf et al., 1997). In stable patients with emphysema, leptin was
found to be positively associated with soluble TNF receptor-55 (Schols
et al., 1999). Hence, a disturbed leptin feedback mechanism might
offer an explanation, at least in part for the augmented leptin levels par-
ticularly during episodes of exacerbationwhere the systemic inflamma-
tory response may be more pronounced than in stable patients (Saetta
et al., 1994).
In contrast to leptin, adiponectin is probably the only adipocyte-
derived factor with demonstrated anti-inflammatory properties.
Adiponectin reduces the production and activity of TNF-α, inhibits
IL-6 production, and induces the production of anti-inflammatory cyto-
kines in epithelial cells and monocytes/macrophages (Takeda,
Nakanishi, Tachibana, & Kumanogoh, 2012; Wolf, Wolf, Rumpold,
Enrich, & Tilg, 2004). In human and animal models, adiponectin pro-
motes whole-body insulin sensitivity and glucose homeostasis
(Kadowaki et al., 2006). The angiogenic effect of adiponectin also
helps to improve vascularization during adipose tissue expansion,
preventing the onset of inflammation due to local hypoxia (Kim et al.,
2007). A growing body of evidence demonstrates that adiponectin
may also act on the endothelial cells to maintain vascular homoeostasis
and offer protection against vascular dysfunction commonly associated
with COPD andMetS (Kim et al., 2007). Indeed, adiponectin is inversely
associated with both smoking and diabetes incidence and that it may
also be themost probable mediator for the association between current
smoking and MetS (Hilawe et al., 2015).

Of interest, several animal studies have detected the expression of
the leptin receptor in lung tissue (Chelikani, Glimm, & Kennelly, 2003;
Henson et al., 2004; Hoggard et al., 1997). In humans, the different lep-
tin receptor isoforms are found to be expressed in airway smooth mus-
cle cells (Nair et al., 2008), epithelial cells and submucosa of the lung
(Bruno et al., 2005). Although the functional significance of these recep-
tors is presently unknown, the existence of leptin receptors indicates
that the lung may also be a target organ for leptin signalling (Malli,
Papaioannou, Gourgoulianis, & Daniil, 2010). In support of this, not
just leptin, but receptors for adiponectin have been found to be
expressed in the lung (Miller, Cho, Pham, Ramsdell, & Broide, 2009). Im-
portantly, leptin expression is increased in the bronchial mucosa of
COPDpatients and a functional leptin signalling pathwayhas been dem-
onstrated to exist in lung epithelial cells (Vernooy et al., 2009). More-
over, experimental evidence indicates that adiponectin may attenuate
airway inflammation and airway hyperresponsiveness in mice follow-
ing allergen exposure (Shore, Terry, Flynt, Xu, & Hug, 2006). These find-
ings suggest the existence of a cross-talk between adipose tissue and
lungs which may serve as a mechanistic link for the inflammatory
basis of COPD and MetS.

In addition to local adipose tissue hypoxia, systemic hypoxia
resulting from reduced pulmonary function is also believed to be an im-
portant cue for pro-inflammatory cytokine expression (Bernardo et al.,
2015). It is however presently unclearwhether systemic hypoxia exerts
additional or multiplicative effects on adipose tissue in patients with
COPD and concurrent obesity (Tkacova, 2010). Perhaps experimental
evidence derived from sleep apnoea may shed light upon this. It is
well-established that intermittent systemic hypoxia resulting from
sleep apnoea is associated with systemic inflammation (da Rosa et al.,
2012; Gileles-Hillel et al., 2017; Perrini et al., 2017). More importantly,
intermittent systemic hypoxia may profoundly impact on metabolic
homeostasis. Chronic intermittent hypoxia promotes dysregulation of
lipid (Li et al., 2005) and cholesterol biosynthesis (Li et al., 2007), im-
pairment of insulin sensitivity (Murphy et al., 2017), as well as disrup-
tion to the normal diurnal rhythm leading to hyperglycaemia and
raising susceptibility of pancreatic β-cells to hypoxia-induced death
(Yokoe et al., 2008). There is also evidence to suggest that adipose tissue
becomes inflamed in response to intermittent hypoxia which in turn
drives the onset of insulin resistance (Murphy et al., 2017). These find-
ings are suggestive of adipose tissue dysfunction as an important mech-
anism for disease development and that further studies are warranted
to analyse adipose tissue inflammation during stable COPD and acute
exacerbations.

3.3. Oxidative stress: an under recognized link between COPD and MetS

Oxidative stress is an imbalance between the oxidant and antioxi-
dant levels in favour of a pro-oxidant environment in cells and tissues
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(Srinivasan et al., 2013). In COPD patients, oxidative stress may arise
from inhalation of oxidants by cigarette smoke or airborne irritants, or
as a result of the host inflammatory response where activated leuko-
cytes release ROS (Bernardo et al., 2015). If uncontrolled, these oxidants
can cause direct damage to the lung through oxidation of cellular com-
ponents and molecules. This can lead to the activation of signalling
pathways such as those mediated by NFκB, resulting in the production
of pro-inflammatory mediators as aforementioned which favours the
development of systemic inflammation (Cyphert et al., 2015; Man
et al., 2012; Oh & Sin, 2012). Oxidative stress is also apparent in MetS.
Unlike COPD, oxidative stress in this context mainly arises from activa-
tion of specific biochemical pathways (e.g. oxidative metabolism in mi-
tochondria), increased cellular production as a result of inflammation,
exhaustion of cellular antioxidant mechanisms, as well as lipid peroxi-
dation which is typically seen during obesity (Furukawa et al., 2004).
Due to its pro-inflammatory nature, the presence of oxidative stress
has been suggested to be the most probable link for the increased car-
diovascular comorbidity risk in COPD and MetS (Hutcheson & Rocic,
2012).

On one hand, a prolonged increase in oxidative stress due to ciga-
rette smoking has been shown to promote the development of diabetes
via the upsurge of insulin resistance. On the other hand, oxidative stress
by MetS may cause further impairment of pulmonary function by acti-
vating inflammation(Cyphert et al., 2015; Kim et al., 2010; Kobashi
et al., 2009; Minas et al., 2011). The close inter-relationship between
COPD andMetS discussed this far may be in favour of cigarette smoking
being a link for these diseases. Indeed, the oxidative properties of ciga-
rette smoke is crucial for the initiation of COPD (Vogelmeier et al.,
2017) and at the same time, cigarette smoking is also an independent
and modifiable risk factor for MetS (Willi, Bodenmann, Ghali, Faris, &
Cornuz, 2007). However, cigarette smoking itself is currently not a rec-
ognized link between COPD and MetS (Cazzola et al., 2010) indicating
further work is needed in this area.

3.4. Physical inactivity: a cause or a consequence?

Regular physical activity offersmany health benefits and reduces the
risk of various comorbidities (Dietz, Douglas, & Brownson, 2016). How-
ever, COPD patients are reported to have reduced physical activity,
which is further hampered in the presence of concurrent MetS (Clini
et al., 2013). It is well recognised that loss of fat-free mass contributes
to muscle weakness and reduced exercise capacity, a condition known
as muscle wasting in patients with moderate to severe COPD (Passey
et al., 2016). In obese patients with COPD, increased contractile muscle
effort is required to sustain ventilation during exercise to overcome the
serious mechanical constraints from airflow obstructions. As a result of
this, these patients present with more severe incapacitating dyspnoea
when they exercise compared to non-obese patients with COPD
(Monteiro et al., 2012). Therefore, having COPD may increase the pro-
pensity ofweight gain and obesity by limiting physical activity thus pre-
disposing the patients to developMetS. In return,MetS can place further
constraint on physical activity which in turn would contribute to a
decline in pulmonary function and promote the progression of COPD se-
verity (Hartman et al., 2010).

On the contrary, regular physical activity is well documented to
counteract systemic inflammation, pulmonary dysfunction and muscle
wasting (Passey et al., 2016). Increasing levels of physical activity are as-
sociated with reduced levels of CRP, a negative prognostic factor for
the development of cardiovascular comorbidities in COPD patients
(Abramson & Vaccarino, 2002; Ford, 2002). Furthermore, in patients
with MetS, modest exercise can reduce peripheral markers of inflam-
mation namelyMCP-1 and IL-8 (Troseid et al., 2004). Importantly, exer-
cise training has been proven to be beneficial in COPD patients in terms
of pulmonary function and quality of life owing to, at least in part by the
improved peripheral muscle function (Passey et al., 2016). From the
perspective of glucose homeostasis, muscle is a major organ for glucose
utilization and energy expenditure. Increased exercise capacity due to
improved muscle function restores glucose metabolism via means of
insulin-dependent and -independent mechanisms (Holloszy, 2005).
Regular physical activity has been demonstrated to exert protective ef-
fects against oxidative stress via induction of antioxidant pathways (de
Sousa et al., 2017). When combined with proper dietary regime, exer-
cise training is also effective in combating obesity, achieving better
weight-control, as well as restoring endothelial function which greatly
reduces individual’s risk of cardiovascular comorbidities (Johansson,
Neovius, & Hemmingsson, 2014; Moien-Afshari et al., 2008). Mean-
while, better weight-control also confers better quality of life in COPD
patients. Taken together, both experimental and epidemiological evi-
dence demonstrates that impaired physical activity is a key factor in
the pathogenesis of MetS in COPD patients.

3.5. Inadequacy of steroids for COPD management

Inhaled and oral glucocorticoids are used frequently but are inade-
quate to treat patients with COPD.

In a multicentre study involving 912 mild COPD patients, the
EUROSCOP (Pauwels et al., 1999) demonstrated inhaled glucocorticoids
offer no long-term benefits on lung function decline over the three year
follow up, despite small short-term benefits. In the 751 moderate-
severe COPD cohort, the ISOLDE study (Burge et al., 2000) reported glu-
cocorticoids did not affect the rate of FEV1 decline but was associated
with fewer exacerbations and a slower decline in health status. On the
contrary, the TORCH study (Calverley et al., 2007) conducted on 6,112
patientswithmoderate-severe COPDpatients, found that glucocorticoid
therapy was associated with a slower decline in FEV1. However, such
benefit did not translate into better survival rate, and that patients re-
ceiving glucocorticoid medication containing fluticasone were at
greater risk of having pneumonia.

Overall, the short-term improvement in lung function may help
shorten hospital stays which may provide support for the use of gluco-
corticoid therapy on patients experiencingAECOPD.However, excessive
use of glucocorticoids has profound effects onmost of the parameters of
the metabolic syndrome (Di Dalmazi, Pagotto, Pasquali, & Vicennati,
2012). Firstly, glucocorticoids can impair pancreatic β-cell function by
disrupting the uptake and the metabolism of glucose (van Raalte,
Ouwens, & Diamant, 2009). Secondly, glucocorticoids have been
shown to exert anti-insulin action in liver, skeletal muscle and adipose
tissue (Mazziotti, Gazzaruso, & Giustina, 2011) which are key organs
for maintaining metabolic homeostasis. Disruption of insulin’s actions
in these organs has profound metabolic consequences particularly in
the postprandial states. Insulin promotes the uptake and storage of glu-
cose as glycogen in muscle and triglycerides in adipose tissue, while li-
polysis is concomitantly repressed via the inhibition of fatty acid
releasing enzymes. Importantly, insulin also supresses hepatic gluco-
neogenesis and glycogenolysis to aid glycaemic control under fed states
(Petersen, Vatner, & Shulman, 2017). Failure to do sowill render the de-
velopment of insulin resistance. The anti-insulin action of glucocorti-
coids on one hand dampens the activity of key signalling molecules
upon insulin receptor activation namely the insulin receptor
substrate-1 (IRS-1), PI3K/Akt pathway resulting in impaired transloca-
tion of glucose transporters to the cell surface and a decrease in glucose
uptake by these tissues (Mazziotti et al., 2011; Petersen et al., 2017).
While on the other hand, glucocorticoids stimulate activation of rate-
limiting enzymes involved in gluconeogenesis, such as phosphoenol-
pyruvate carboxykinase (PEPCK) (Cassuto et al., 2005).

Thirdly, glucocorticoids oppose the suppressive effect of insulin and
stimulate lipolysis in adipose tissues causing elevation of free fatty acids
which contribute to the impairment of glucose uptake into peripheral
tissues contributing to hyperglycaemia (Mazziotti et al., 2011). The lipo-
lytic effect of glucocorticoids also promotes the abnormal distribution of
body fat towards the visceral depot (Mazziotti et al., 2011) creating
central/abdominal-obesity. Central-obesity is the most prevalent
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manifestation of MetS and reflective of dysfunctional adipose tissue
which favours the development of insulin resistance (Despres &
Lemieux, 2006). Strikingly, cigarette smoking itself is linked to the pref-
erential deposition of visceral fat in that smokers often have more ab-
dominal adipose mass than non-smokers even after adjustments for
total adiposity (Barrett-Connor & Khaw, 1989; Shimokata, Muller, &
Andres, 1989). Finally, glucocorticoids may interfere with the expres-
sion and activity profiles of adipose tissue-derived cytokines (i.e.
adipokines) such as adiponectin, leptin which in turn may impair insu-
lin sensitivity (Bianco et al., 2013; Mazziotti et al., 2011; Takeda et al.,
2012).

In addition to exogenous administration, endogenous biosynthesis
and degradation of steroid hormones also appear to play a role in the
development of MetS. Tobacco contains 11β-hydroxysteroid dehydro-
genase type 2 inhibitor - glycyrrhizic acid which can inhibit the conver-
sion of cortisol to inactive cortisone (Gilbert & Lim, 2008) leading to a
prolonged bioavailability and extended activity. Moreover, persistent
hypoxia may increase catecholamine output (Kanstrup et al., 1999)
leading to the development of hyperglycaemia via inhibition of the
actions of insulin (Barth et al., 2007). Regardless of the source,
hypercortisolism resulting from either exogenous or endogenous ori-
gins causes proximal muscle weakness (Mazziotti et al., 2011) which
may pose additional constraints on an individual’s daily activity levels,
increasing the propensity of further complications. As a whole, this evi-
dence suggest abnormalities in steroid hormonemetabolism and action
are likely to be the missing links connecting COPD to MetS.

3.6. Hyperglycaemia: an intersection for COPD and MetS

Hyperglycaemia is a condition characterized by an elevated blood
glucose concentration N11.1 mmol·L-1 and a diagnostic feature of type
2 diabetes. The first evidence to suggest the concept that alterations in
pulmonary function may precede the onset of MetS come from a pro-
spective study on lung function in diabetic adults (Yeh et al., 2008). Fol-
lowing that, using a mouse model in which the pro-inflammatory
cytokine IL-18 was specifically overexpressed in the lung, Takenaka
et al. (Takenaka et al., 2014) observed severe emphysematous changes,
pulmonary hypertension and pulmonary dysfunction in thesemice, fea-
tures which are seen in human COPD. Importantly, these mice went on
to develop glucose intolerance later in life which provides compelling
evidence to support a direct causal relationship between pulmonary
inflammation and metabolic disturbance. Essentially, all of the afore-
described mechanisms can directly cause or contribute to the manifes-
tation of hyperglycaemia. Pro-inflammatory cytokines, leptin, oxidative
stress, use of steroid medications and endogenous hormonal imbalance
disrupts glucose homeostasis by interfering with insulin actions
(Mirrakhimov, 2012). In fact, hyperglycemia is amajor side effect of glu-
cocorticoid medications use in AECOPD (Baker et al., 2006). While di-
minished physical activity arising from these conditions may offer
another plausible mechanism for the continuation of hyperglycaemia,
as regular physical activity and less sedentary time are associated with
reduced risk of such comorbidities (Park & Larson, 2014).

Hyperglycaemia is the golden hallmark for the onset of diabetes
(WHO, 2006). Moreover, persistent hyperglycaemia can give rise to
more serious complications such as CVD, neuropathy and nephropathy
resulting in mortality. The impact does not end here, once developed,
hyperglycaemia may in turn potentiate the pathogenesis and clinical
course of COPD. Experimental evidence in humans demonstrated that
hyperglycaemia stimulates pro-inflammatory cytokines, including
TNF-α, IL-6 and IL-18 in the circulation (Esposito et al., 2002). In sepa-
rate studies, increased levels of CRP were detected in individuals with
impaired fasting glucose levels (Andreozzi et al., 2007; Choi et al.,
2004)which is suggestive of systemic inflammation by hyperglycaemia.
In line with this, diabetic patients with AECOPD are reported to fre-
quently display hyperglycaemia (up to 80% of the studied cases) during
their hospital stay, which is also associated with extended length of
hospitalization and mortality when compared to non-diabetic patients
(Baker et al., 2006; Parappil et al., 2010). Moreover, blood glucose levels
of ≥ 7 mM have been found to significantly correlate with adverse
AECOPD outcomes (Chakrabarti, Angus, Agarwal, Lane, & Calverley,
2009). Moreover, this relationship is marked by a 15% increase in risk
of death and/or long inpatient stay for every 1 mmol•L-1 increment in
blood glucose (Baker et al., 2006). A retrospective study of administra-
tive claims data from the Australian Government Department of Vet-
erans’ Affairs also revealed that COPD patients with diabetes are at
significantly increased risk of diabetes-related hospitalizations upon
high-dose corticosteroid therapy (Caughey, Preiss, Vitry, Gilbert, &
Roughead, 2013).

In addition to systemic inflammation, in vivo studies have demon-
strated that chronic hyperglycaemia can trigger endothelial dysfunction
in blood vessels of diabetic patients via the excessive generation of ROS
(Ceriello, 2006). Nevertheless, the most significant consequence of
hyperglycaemia still lies with its impact on pulmonary function. The in-
creased levels of ROS induced by hyperglycaemia can lead to the activa-
tion of cellular stress pathways such as those mediated by MAPK and
NFκB to impair pulmonary function (Tiengo, Fadini, & Avogaro, 2008).
In isolated human bronchi, high glucose concentrations can lead to en-
hance responsiveness of airway smooth muscle cells to a contractile
agent via a specific cellular pathway mediated by Rho-kinase (Cazzola
et al., 2012). Enhanced airway hyperrresponsiveness is a major risk fac-
tor for the accelerated decline in pulmonary function seen in COPD pa-
tients. Furthermore, hyperglycaemia may also increase the risk of
pulmonary infections by rendering the appearance of glucose in airway
secretion, making the respiratory tracts vulnerable to infectious exacer-
bations (Cazzola et al., 2012; McKeever et al., 2005). Finally,
hyperglycaemia may also target the diaphragm which is a major respi-
ratory muscle. The oxidative stress and inflammation inflicted by
hyperglycaemia can result in sarcomeric injury via activation of proteo-
lytic machinery, leading to contractile protein wasting and, conse-
quently, a loss of force generating capacity of diaphragm fibers in
patients with COPD (Ottenheijm, Heunks, & Dekhuijzen, 2008). This
finding is strengthened by the striking observation that, pulmonary
function impairment is more prominent in patients with poorly con-
trolled blood glucose levels independent of obesity and age (Rogliani,
Calzetta, Segreti, Barrile, & Cazzola, 2014).

3.7. Aging and hypogonadism

Hypogonadism is a condition of androgen deficiency combinedwith
otherwise unexplained fatigue or diminished energy, a diminished
sense of vitality, or a diminished sense of well-being which are com-
monly experienced by patients with COPD (Laghi et al., 2005).
Hypogonadism arises from a decline in serum testosteronewhich is fre-
quently associated with aging and chronic illness (Rhoden &
Morgentaler, 2004). The prevalence of hypogonadism in COPD patients
ranges from 22% to 69% and has been associated with several other sys-
temic manifestations including osteoporosis, depression, and muscle
weakness (Balasubramanian & Naing, 2012). In addition to aging, the
potential causes of hypogonadism in COPD includes systemic hypoxia,
hypercapnia and glucocorticoid therapy (Balasubramanian & Naing,
2012) with systemic inflammation being the underlying driver
(Agusti, 2007; Barnes & Celli, 2009) indicating COPD conditions might
give rise to hypogonadism. However, a lack of correlation was reported
between testosterone levels and severity of airway obstruction suggest-
ing hypogonadismmay not directly contribute to respiratory symptoms
(Van Vliet et al., 2005). As aging, muscle weakness, systemic hypoxia,
glucocorticoid use and systemic inflammation are all pathogenic cues
for MetS, it is possible that MetS might serve as a connecting piece to
this puzzle. In a longitudinal study involving 1,296 male patients with
various stages of the disease and without additional intervention for
three years found that low testosterone levels strongly correlated with
higher BMI (Spearman's r = -0.47) meanwhile no correlation was
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foundbetween testosterone level and FEV1 (Wang et al., 2012). In a sep-
arate study involving 101 middle-aged men with stable COPD, greater
BMI was also observed in patients with hypogonadismwhen compared
to thosewithout (Laghi et al., 2005).Moreover, it has been reported that
hypogonadism is closely linked toMetS. Hypogonadal individuals are at
risk of diabetes due to the unfavourable change in body composition
which promotes the accumulation of body fat while decreasing muscle
masswith a concomitant decrease in insulin sensitivity,muscle strength
and oxygen consumption capacity (Bojesen, Host, & Gravholt, 2010).
Meanwhile, MetS has also been shown to promote the development
of hypogonadism (Gautier et al., 2013). For this reason, hypogonadism
has been proposed to be a fundamental component ofMetS. Indeed, tes-
tosterone therapies have been shown to have great potential in slowing
or halting the progression ofmetabolic syndrome tomore overt compli-
cations such as full-blown diabetes or cardiovascular disease via benefi-
cial effects on insulin regulation, lipid profile and blood pressure
(Makhsida, Shah, Yan, Fisch, & Shabsigh, 2005). This evidence suggests
that the level of testosteronemay play a pivotal role in the development
ofMetS, particularly in agingpatientwithCOPD. On the contrary, female
sex-hormones also appear to impact on lung physiology as chronic ex-
posure of mice to cigarette smoke has been reported to induce
emphysematous-like changes in the alveolar structure more rapidly in
females than in males (Carey et al., 2007). This was partly explained
by an observation that estradiol may up-regulate cytochrome P450 en-
zymes which in turns makes the female lungs more susceptible to oxi-
dant damage in response to cigarette smoke (Van Winkle, Gunderson,
Shimizu, Baker, & Brown, 2002).
Fig. 2. Summary of therapeutic strategies that may benefit MetS and COPD outcomes. Systemic
profound impact on metabolic homeostasis. At the cellular level, these events promote impairm
which depletes cellular antioxidant defence giving rise to oxidative stress. Oxidative stress i) inh
pro-inflammatory pathwaysmediated byNFκB, iii) damages cells by oxidativemodification of p
nature. The NFκB-driven inflammation generates cytokines which exacerbate systemic inflam
onset of metabolic derangements which may accelerate the systemic manifestation of COPD
the various contributory aspects of COPD and MetS. So far, experimental and clinical evide
treating COPD comorbidities which may benefit the outcome of COPD.
4. Clinical implications of MetS and COPD

Several key pieces of evidence have recently suggested that the co-
existence of MetS can worsen the progression and prognosis of COPD.
First of all, the negative impact of diabetes on COPDwas clearly demon-
strated by the ECLIPSE study, which is a largemulti-centre investigation
that sought to define distinct phenotypes and identify biomarkers that
predict the progression of COPD. In a cohort consisting of 2,164 clinically
stable COPD subjects, aswell as 337 smokers and245 non-smokerswith
normal lung function, the study identified that diabetes increased the
odds ofmortalitywhen coexistentwith COPD (Faner et al., 2014).More-
over, diabetes was also found to be associated with greater dyspnoea
scores and reduced 6-min walking distance which are indicative of pul-
monary function decline. On this note, pulmonary function decline evi-
denced by reduced FEV1 is also related to increased requirement for
inhalational glucocorticoids to control the disease (Cecere et al., 2011)
which in turns favours the continuation of MetS. Moreover, pulmonary
hypertension has been found to bemore severe in patientswith concur-
rent COPD and diabetes (Makarevich et al., 2007). The coexistence of
MetS, particularly hyperglycaemia that is typically seen in poorly con-
trolled diabetes greatly increases the length of hospitalization and risk
of mortality in patients with AECOPD (Baker et al., 2006; Parappil
et al., 2010) and this association is exacerbated with advancing age
(Stojkovikj et al., 2016; Vogelmeier et al., 2017). Importantly, there is
an increasing prevalence of MetS amongst the younger population
(Zimmet & Alberti, 2008). Despite having less severe COPD, these youn-
ger patients with MetS had higher circulating levels of leptin, lower
inflammation, hypoxemia, physical inactivity resulting from cigarette smokingmay have a
ent of mitochondrial function and biogenesis, leading to the excessive production of ROS
ibitsmajormetabolic pathways such as glucosemetabolism by insulin, ii) activates cellular
rotein, DNA and lipids, and iv) activates adaptive pathwayswhich are generally catabolic in
mation, causing amplification of the disease. The coexistence of obesity may enforce the
and related comorbidities. Hence, a number of strategies have been developed to target
nce support the reversal of metabolic derangement as a viable therapeutic strategy for
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levels of adiponectin and increased insulin resistance reflected by Ho-
meostatic Model Assessment (HOMA) index, compared with patients
without MetS (Minas et al., 2011). Conversely, the literature also indi-
cated COPD may be an important risk factor for the onset and continu-
ation of MetS (Breyer et al., 2014; Cebron Lipovec et al., 2016). Taken
together, MetS represents an important mechanism for the negative
outcomes seen in COPD patients, and for this reason patients with con-
current existence of these conditions should be treated as “high-risk”
and should be placed under close monitoring.

4.1. Therapeutic strategies that may benefit MetS and COPD outcomes:
targeting smoking

As cigarette smoking is a recognized modifiable risk factor for MetS
(Harris, Zopey, & Friedman, 2016) and COPD (Vogelmeier et al., 2017),
early smoking cessation should in theory address much of the patholo-
gies arising from these diseases. Indeed, smoking cessation is regarded
as the first-line of treatment for avoiding or reducing the progression
of COPD (Vogelmeier et al., 2017). Smoking cessation is most effective
at lowering the risk for cardiovascular comorbidities and lung cancer
(Fig. 2). The benefits on CVD are almost immediate. Within 24 hours
of smoking cessation, there are significant improvements in blood pres-
sure and heart rate.Within one year of abstinence, the risk of cardiovas-
cular events such as myocardial infarction and stroke is reduced by half
when compared to those continuing smoking. Between 5 and 15 years
post-smoking, the risk of stroke and coronary heart disease is “normal-
ized” to that of never smokers (Wu & Sin, 2011). However, the full ben-
efits of tobacco treatment may not be realized until many years of
abstinence. For example, the benefits of smoking cessation on the risk
of lung cancer might not be evidenced until after about 10 years of ab-
stinence (Anthonisen et al., 2005). This is probably partly explained by
the presence of ongoing airway inflammation in ex-smokers
(Godtfredsen et al., 2008). Indeed, controversy exists whether the pa-
thologies of airway inflammation may benefit from smoking cessation
due to opposing findings in the literature (Gamble et al., 2007; Turato
et al., 1995; Willemse et al., 2005) which are likely to be influenced by
smoking history, cessation compliance, ethnicity, and other underlying
factors such as genetic susceptibility (Yang, Holloway, & Fong, 2013).
Nonetheless, smoking cessation in COPD patients is generally associated
with slower rate of pulmonary function decline, lung inflammation and
oxidative stress (Anthonisen et al., 2005; Athyros, Katsiki, et al., 2013;
Godtfredsen et al., 2008) which in turns leads to improved survival
rate compared with continuing smokers (Godtfredsen et al., 2008).

On the metabolic front, smoking cessation is known to have benefi-
cial effects on insulin sensitivity. However, this is often accompanied by
a paradoxical body weight gain which could render the subsequent re-
emergence of insulin resistance (Harris et al., 2016). This is due to the
profound effects of nicotine exposure on metabolism. Nicotine stimu-
lates the activation of lipoprotein lipase that breaks down triglycerides
to form free fatty acids. At the same time, nicotine promotes energy ex-
penditure and the production of leptin from adipose tissue by stimulat-
ing the release of catecholamines (Liu, Mizuta, & Matsukura, 2003).
Nicotine also activatesα3β4 nicotinic acetylcholine receptors in the hy-
pothalamus leading to activation of pro-opiomelanocortin (POMC) neu-
rons. POMC neurons and subsequent activation of melanocortin 4
receptors lead to suppression of appetite (Mineur et al., 2011). The ap-
petite suppressive effect of nicotine is reinforced by the high level of lep-
tin in the circulation (Wynne, Stanley, McGowan, & Bloom, 2005).
Weight loss is generally associated with improved metabolic parame-
ters such as insulin sensitivity (Gregor & Hotamisligil, 2011; Monteiro
et al., 2012; Sun et al., 2011), however, theweight loss mediated by nic-
otine is attributed to a loss of skeletal muscle mass (Passey et al., 2016)
and redistribution of fat mass in favour of visceral accumulation
(Audrain-McGovern & Benowitz, 2011) resulting in metabolic distur-
bances. During smoking cessation, thewithdrawal of nicotine decreases
metabolic expenditure and restores appetite leading to a positive
energy balancewhich increases the propensity of post-cessationweight
gain (Harris et al., 2016). Although undesirable, post-cessation weight
gain is manageable by dietary and exercise interventions that empha-
size on caloric control and energy expenditure (Johansson et al., 2014;
Maatman et al., 2016). Despite its impact on metabolism, it must be
pointed out that post-cessation weight gain is still far less harmful
than smoking, the benefits associatedwith individual’s health and social
economy of quitting clearly outweigh that of the counterpart (U.S.
Department of Health and Human Services, 2014).

4.2. Targeting local and systemic inflammation

The inflammatory nature of both MetS and COPD had attracted
much interest in cytokine-neutralisation therapy as a possible treat-
ment for these diseases. In genetically obese rats, neutralization of
TNF-α restored insulin-stimulated glucose uptake (Hotamisligil et al.,
1993) and insulin sensitivity in peripheral tissues (Hotamisligil et al.,
1994). TNF neutralization in humans was associated with reduced sys-
temic inflammation, however its efficacy on insulin sensitivity appears
to be inconclusive with some studies reporting improvement (Kiortsis,
Mavridis, Vasakos, Nikas, & Drosos, 2005; Oguz, Oguz, & Uzunlulu,
2007; Stagakis et al., 2012; Stavropoulos-Kalinoglou et al., 2012; Tam,
Tomlinson, Chu, Li, & Li, 2007), while others showed little or no effect
(Ferraz-Amaro et al., 2011; Rosenvinge, Krogh-Madsen, Baslund, & Pe-
dersen, 2007; Seriolo, Ferrone, & Cutolo, 2008). The reasons behind
such discrepancies are not fully-understood, however it is likely to be
influenced by the degree and severity of insulin resistance before the
onset of therapy, as well as the co-existence of other underlying condi-
tions such as obesity (Wascher et al., 2011). In the COPD context, TNF-α
neutralization therapy by infliximab failed to improve the disease out-
comes for patients including symptom score, pulmonary function, exer-
cise capacity, dyspnoea score, health status, and rate of acute
exacerbations (Rennard et al., 2007), despite the marked efficacy dem-
onstrated in experimental cigarette smoke models (Churg et al., 2004).
Moreover, TNF-α neutralization therapies have been shown to be inef-
fective at reducing local and systemic inflammation in COPD patients
(Loza, Watt, Baribaud, Barnathan, & Rennard, 2012) with a lack of over-
all clinical benefit on lung pathology (Rennard et al., 2007). This lack of
clinical efficacy on one hand may be related to the timing of the thera-
peutic intervention in relation to disease severity (Passey et al., 2016).
Meanwhile, TNF-α appears to be more of a marker of cigarette smoking
rather than COPD (Faner et al., 2014) suggesting TNF-α may not be a
suitable target for treating COPD. Noteworthy, chronic TNF-α neutrali-
zation was also associated with an increased risk for pneumonia and
lung malignancies in COPD patients (Durham, Caramori, Chung, &
Adcock, 2016).

While not currently used for treatment of MetS or COPD, IL-6
neutralisation therapies have shown promise in the treatment of cancer
cachexia. Bayliss et al. (Bayliss, Smith, Schuster, Dragnev, & Rigas, 2011)
reported the use of a humanised anti-IL-6 monoclonal antibody,
ALD518, which has a high affinity for binding IL-6 in clinical trials fo-
cused on non-small cell lung cancer. The antibody therapy waswell tol-
erated and ameliorates keys pathologies arising from thedisease such as
anaemia and cachexia which contributed to better survival rate. Mean-
while, an IL-6 receptor antibody, Tocilizumab has been shown to be
beneficial for cachexia in cancer patients (Ando et al., 2013). Given
IL-6 has been demonstrated to be a bona fide biomarker for COPD and
AECOPD, neutralisation of this cytokine should benefit COPD and MetS
(Fig. 2). Likewise, neutralising antibody for IL-1α has also been devel-
oped and tested in clinical trial. Hong et al. (2014) demonstrated that
the anti-IL-1α antibody therapy was effective in reducing markers of
systemic inflammation with no dose-limiting toxicities experienced
amongst the test subjects. Importantly, 70% of the cancer patients re-
ceiving the therapyhad a gradual increase in lean bodymasswith a con-
comitant reduction in fat mass assessed by dual energy X-ray
absorptiometry (DEXA) scan. These patients also experienced
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improvements in overall energy levels and general quality of life scores
which indicate that the therapy may benefit muscle mass and function.
As both muscle mass and function are of critical importance in main-
taining metabolic homeostasis and pulmonary physiology, these find-
ings strengthen the rationale for the use of IL-1α neutralising therapy
in patients with MetS or COPD. In support of this, IL-1α neutralising
therapy has been shown to be effective in attenuating inflammation
resulting from virus-induced exacerbations in cigarette smoke-
exposed mice (Botelho et al., 2011).

Metformin is the recommended first-line treatment for type 2
diabetic patients (American Diabetes Association, 2017; Sonne &
Hemmingsen, 2017). Metformin is an anti-hyperglycaemic agent,
which improves glucose tolerance in patients with type 2 diabetes by
lowering both basal and postprandial plasma glucose levels. It belongs
to the biguanides class and its pharmacological mechanisms of action
include suppression of hepatic glucose production, reduction of intesti-
nal absorption of glucose, and improvement in insulin sensitivity by in-
creasing peripheral glucose uptake and utilization (Viollet et al., 2012).
In addition, the use of this drug has also been found to reduce risk of car-
diovascular events and mortalities (Holman, Paul, Bethel, Matthews, &
Neil, 2008), despite the occurrence of lactic acidosis in rare cases (Frid
et al., 2010). Given that pulmonary function decline in COPD may pro-
mote poor oxygenation to metabolic tissues which favours the produc-
tion of lactic acid from anaerobic metabolism of glucose (Hitchings,
Archer, Srivastava, & Baker, 2015), this raised safety concerns for the
use of metformin in COPD. The British National Formulary and the US
Federal Drug Administration advised that metformin should be with-
held promptly in the presence of any conditions associatedwith hypox-
emia. In light of this, a recent study conducted by Hitchings et al.
(Hitchings et al., 2015) investigated the safety of metformin in a COPD
retrospective cohort with 130 patients. The study found that metformin
therapy among patients with COPD at high risk for lactate accumulation
was associatedwith aminor elevation of lactate concentration of doubt-
ful clinical significance suggesting the safety of metformin use in COPD.

In addition to the pro-inflammation, hyperglycaemia also mediates
increased glucose in airway surface liquid, making the respiratory tracts
of COPD patients vulnerable to infectious exacerbations (Cazzola et al.,
2012; McKeever et al., 2005). Metformin treatment has been shown to
have a direct effect on glucose flux across the airway epithelium to
limit hyperglycaemia-induced bacterial growth that is responsible for
respiratory infections (Garnett et al., 2013). In a retrospective investiga-
tion involving patients with concurrent COPD andMetS, treatmentwith
hypoglycaemic agents was independently associated with improve-
ments in FVC (Kim et al., 2010). Moreover, in a prospective observa-
tional study, metformin administration improves dyspnoea and
respiratory muscle strength in COPD patients with diabetes (Sexton,
Metcalf, & Kolbe, 2014). Metformin has also been found to possess im-
portant anti-inflammatory and anti-oxidative properties whichmay ac-
count for some of the efficacies observed. At a cellular level, metformin
has been shown to directly inhibit TNF-αmediated NFκB signalling and
IL-6 production via the activation of AMPK (Huang et al., 2009). In type
2 diabetic subjects, metformin administration reduced the appearance
of urinary 8-iso-PGF(2alpha), a biomarker for oxidative stress
(Formoso et al., 2008). Metformin might, therefore, be of additional
benefit in the prevention and treatment of respiratory disorders (Fig. 2).

Given the observation that newly diagnosed diabetic patients,
characterised by diminishing endogenous insulin production and fre-
quently having impaired pulmonary function (Tiengo et al., 2008), and
that insulin therapy has been demonstrated to improve alveolar-
capillary membrane gas conductance (Guazzi, Oreglia, & Guazzi,
2002), the possibility of insulin administration for the treatment of re-
spiratory disorders has been explored. Disappointingly, inhalation of
human insulin was associated with respiratory symptoms, including
cough and mild dyspnoea, along with reductions in FEV1 and diffusing
capacity of the lung for carbon monoxide, a surrogate marker for the
alveolar-capillary membrane function (Ceglia, Lau, & Pittas, 2006).
This mode of insulin delivery itself also presented with a number of un-
desirable effects including difficulties in dosage control and tendency of
hypoglycaemia, which could be fatal. Hence, more research is needed to
determine the safety and benefits of inhaled insulin therapy for diabetic
patients with COPD.

Since the abnormal inflammatory response from cigarette smoke
may arise from the reprogramming of AM toward M2 polarization,
and that the M1/M2 phenotype polarization is closely dependent on
the state of cellular metabolism, metabolic reprogramming of macro-
phages and other immune cells may be a plausible therapeutic strategy
to disconnect COPD from MetS and other comorbidities. On this note,
modulation of glycolysis (Tan et al., 2015) and mitochondrial oxidative
phosphorylation (Vats et al., 2006) via geneticmanipulations have been
demonstrated to be sufficient to produce a phenotypic switch of macro-
phages. In addition to the conventional genetic and pharmacological ap-
proaches, a more recent study by Saborano et al. (Saborano et al., 2017)
demonstrated metabolic reprogramming of macrophages is achievable
with nanoparticles of specific diameters. However, the benefits of
thesemanipulations on systemic inflammation andCOPD comorbidities
remain to be determined.

4.3. Targeting oxidative stress

As oxidative stress is attributed to the imbalance between the oxi-
dants and antioxidants, restoring this balance offers hope in preventing
and treating multiple diseases. For this reason, therapeutic approaches
are aimed at: replenishing the depleted non-enzymatic defences
through dietary or pharmacological means or increasing the endoge-
nous antioxidant enzyme activity via enzyme modulators/mimetics
(Bernardo et al., 2015). Given the renowned radical scavenging proper-
ties of vitamins, vitamins have been extensively studied. However, dis-
appointing results were obtained on vitamin supplementation and
other alike dietary antioxidants which demonstrated little-to-no effects
on metabolic parameters including body weight, glycaemia and plasma
lipid profiles in patients with MetS (Avignon, Hokayem, Bisbal, &
Lambert, 2012;Manning et al., 2013). Vitamin supplementation also ap-
pears to be insufficient to have benefits on cardiovascular complications
associated with MetS (Debreceni & Debreceni, 2012). Likewise, admin-
istration of vitamins and other dietary antioxidants have also shown
minimal improvements in either COPD or its comorbidities (Rahman
& MacNee, 2012).

In contrast to vitamins, flavonoids and polyphenols supplementa-
tion have been shown to be efficacious in counteracting metabolic ab-
normalities as well as cardiovascular dysfunction in human or animals
with the MetS. Resveratrol is a naturally-occurring polyphenol found
in red wine and grape skin/seed. Administration of resveratrol or its de-
rivative (S17834) to mice normalised left ventricular hypertrophy, in-
terstitial fibrosis, and diastolic dysfunction induced by diet high in fat
and sugar. These beneficial effects were associated with decreases in
oxidant-mediated protein modifications and hyperinsulinemia with a
concomitant increase in plasma adiponectin which are indicative of im-
proved insulin sensitivity (Qin et al., 2012). Similarly, resveratrol sup-
plementation lowered adiposity, serum cholesterol, and C-reactive
protein levels, along with improved glucose tolerance and endothelial
function in a swine model for MetS and myocardial ischemia (Robich
et al., 2011). Moreover, eight weeks administration of resveratrol to
high-fructose fed rats resulted in a remarkable improvement in glucose
tolerance, plasma insulin and lipid levels, as well as enhanced hepatic
catalase and superoxide dismutase (SOD) enzyme activities which are
reflective of attenuated oxidative stress in these animals (Bagul et al.,
2012). Importantly, the attenuated oxidative stress was only found in
the resveratrol-treated group but not the metformin-treated group
(Bagul et al., 2012) suggesting a different mode of action, despite both
agents appearing to activate AMPK. In humans,moderate red-wine con-
sumption has been suggested to have protective effects against the de-
velopment of MetS and its related cardiovascular complications (Liu,
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Wang, Lam, & Xu, 2008). In obese individuals withMetS, 30 days of res-
veratrol supplementation markedly enhanced energy metabolism, re-
storing insulin sensitivity and glycaemic control, while normalising
blood pressure and plasma lipid profile. This was accompanied by an
enhanced mitochondrial function in skeletal muscle as a result of in-
creased AMPK activity and expression of the NAD+-dependent
deacetylase, SIRT1 resembling that in calorie restriction (Timmers
et al., 2011). The beneficial effects of resveratrol appear to be AMPK-
dependent, as mice deficient of this metabolic sensor are no longer
protected frommetabolic derangement induced by high fat feeding de-
spite the administration of resveratrol (Um et al., 2010). In the context
of COPD, resveratrol administration tomice has been shown to alleviate
Haemophilus influenzae-induced inflammation of the airway by up-
regulating the negative regulator of inflammation MyD88 short
(MyD88s) (Andrews, Matsuyama, Lee, & Li, 2016). In a separate
study, treatment with resveratrol reduced the expression of pro-
inflammatory cytokines (IL-17, IL-6, TNF-α, and TGF-β) in the broncho-
alveolar lavage fluid (BALF) of mice exposed to cigarette smoke. Along
with this, resveratrol treatment also attenuated the cigarette smoke-
induced fibrotic response and mucus hypersecretion in the lungs
(Andrews et al., 2016). A recent study in rats also confirmed the efficacy
of resveratrol in COPD, and that the beneficial effect of resveratrol may
be exerted via the SIRT1 and PGC-1α axis (Wang, Li, Li, Miao, & Xiao,
2017). Resveratrol therapy is currently in phase 3 clinical trials for
use in COPD patients (CARMENS-trial; ClinicalTrials.gov Identifier
NCT02245932). Overall, human and animal studies suggest a great
potential for resveratrol use to treatMetS, and possibly COPD comorbid-
ities (Fig. 2). Flavonoids like anthocyanin was shown to have
anti-oxidative stress properties (Guo et al., 2008) which may lower
LDL cholesterol and other metabolic parameters in dyslipidemic pa-
tients (Qin et al., 2009). Quercetin is another flavonoid that has been
shown to benefit cardiovascular health by lowering blood pressure
and plasma oxidized LDL concentrations in overweight subjects (Egert
et al., 2009). Other natural agents such as genistein, triterpenoid,
naringenin and curcumin have also displayed potent in vitro activity
against various aspects of MetS (Xia & Weng, 2010), however further
studies are needed to verify their benefits on COPD.

Although short-lived, free-radicals like hydroxyl-radicals and
peroxynitrite are extremely reactive and indiscriminative to a point
that they would attack the first substrate they come into contact with
resulting in impairment of cellular functions and damage (Bernardo
et al., 2015). Since the mitochondria is a major site for substrate metab-
olism, this means that it is also amajor source of ROS duringMetSwhen
substrate availability is in excess. For this reason,mitochondria-targeted
antioxidant compounds have been developed and examined for efficacy
in animal models of MetS. Pharmacological mimetics of SOD such as
Tempol, has been shown to be effective in attenuating oxidative stress,
restoring mitochondrial function and metabolic derangement (Ahmed,
Shehata, Abdelkader, & Khattab, 2014; Mariappan, Soorappan, Haque,
Sriramula, & Francis, 2007). Likewise, administration of the SOD mi-
metics in animal models of COPD also appears to be beneficial. Treat-
ment with SOD mimetic M40419 in rats reduced the expression of
markers for oxidative stress and the development of emphysema
(Tuder et al., 2003). In a similar COPDmodel, administration of a differ-
ent SODmimetic AEOL 10150was found to reduce airway inflammation
by cigarette smoke evidenced by the significant reduction in BALF cell
number (Smith et al., 2002). In line with this, Gongora et al. (Gongora
et al., 2008) have demonstrated that acute ablation of SOD3 via gene de-
letion results in severe respiratory distress syndrome resembling that of
advanced COPD with high risk of mortality (Gongora et al., 2008). On
the contrary, overexpression of SOD attenuates airway inflammation
and respiratory disorders following hyperoxia, which in turn may re-
duce the risk of mortality highlighting the exciting potential of SOD as
a therapeutic agent. Metalloporphyrin (MnTBAP) is another SOD mi-
metic with peroxynitrite scavenging properties. Treatment of geneti-
cally obese (ob/ob) mice with MnTBAP improved glucose tolerance
and insulin sensitivity with amaximum effect comparable to that of an-
imals treatedwith the anti-diabetic agent rosiglitazone (Houstis, Rosen,
& Lander, 2006). Administration of MnTBAP in mice has been shown to
antagonize the detrimental effects of cigarette smoke partly by
inhibiting the RhoA–Rho kinase pathway which ultimately resulted in
enhanced clearance of apoptotic cells by alveolar macrophage
(Richens et al., 2009).

CoenzymeQ10 (CoQ10) is a vitamin-like lipid-soluble component of
the mitochondrial electron transport chain (ETC). Due to its role as
an electron carrier in the mitochondrial ETC, CoQ10 possesses potent
redox properties which can be utilised as an antioxidant (Lenaz, Fato,
Formiggini, & Genova, 2007). In contrast to vitamin E, exogenous sup-
plementation of CoQ10 is readily taken up by cells leading to its mito-
chondrial localization and enrichment (Saito et al., 2009) where free-
radicals are generated. Along this line, diabetic animals are found to
have increased oxidative stress from lipid peroxidation and reduced
levels of CoQ10 in key metabolic tissues such as heart, liver and skeletal
muscle (Kucharska, Braunova, Ulicna, Zlatos, & Gvozdjakova, 2000). In
genetically obese mice, treatment of CoQ10 reduced the elevated
plasma lipid profiles and decreased the expression of pro-
inflammatory cytokines, while enhancing the expression of the anti-
inflammatory and insulin-sensitizing adipokine, adiponectin
(Carmona et al., 2009). The same study also demonstrated additional
benefits of CoQ10 therapy in neutralising the unwanted side-effects of
rosiglitazone on body weight and adiposity. In diabetic rats, CoQ10 sup-
plementation markedly increases antioxidant enzyme activity of SOD,
catalase, and glutathione in the liver of diabetic rats alongwith reduced
lipid peroxidation (Modi, Santani, Goyal, & Bhatt, 2006). This is accom-
panied by improved hyperglycaemia and glucose intolerance without
noticeable changes in circulating insulin levels (Modi et al., 2006) sug-
gesting enhancement of insulin sensitivity and its potential in treating
MetS in humans. However, 6 months CoQ10 therapy did not have ap-
parent benefits on glycaemic control or plasma lipid profiles of over-
weight type-2 diabetic subjects (Eriksson, Forsen, Mortensen, &
Rohde, 1999). Likewise, in type-1 diabetics, 3 months CoQ10 therapy
resulted in no improvements on glycated haemoglobin (HbA1c),
mean daily blood glucose concentrations, insulin requirement, number
of hypoglycaemic episodes or circulatory cholesterol concentrations
compared to the control group (Henriksen et al., 1999). There is also
a lack of evidence to substantiate its role in cardiovascular health, as
the CoQ10 supplementation was unable to ameliorate hypertension in
patients with MetS (Bjelakovic, Nikolova, Gluud, Simonetti, & Gluud,
2012; Young et al., 2012). The apparent discrepancy in efficacy of
CoQ10 supplementation remains unknown, however the poor water
solubility and lipophilic nature of CoQ10 (Alam & Rahman, 2014)
might constitute poor oral bioavailability. Given this, future studies
may wish to explore the use of CoQ10 as an adjunct therapy to existing
medications. This notion is supported by the finding that addition of
CoQ10 to regular medications improved diastolic function in children
with dilated cardiomyopathy (Kocharian, Shabanian, Rafiel-Khorgami,
Kiani, & Heidari-Bateni, 2009).

Limited studies have assessed pulmonary benefits of CoQ10 supple-
mentation. Eight weeks of CoQ10 administration to patients with
COPD was associated with significantly elevated serum CoQ10 levels
and improvement in hypoxemia at rest. These subjects displayed no dif-
ferences in oxygen consumption during exercise, however, their arterial
oxygen saturation was markedly improved with a lower heart rate
when exercised. In line with this, CoQ10 administration also resulted
in a trend of enhanced exercise performance and lactate production
was concomitantly suppressed (Fujimoto, Kurihara, Hirata, & Takeda,
1993). Amore recent study demonstrated that dietary supplementation
with creatine and CoQ10 increased lean body mass and exercise toler-
ance, while reducing dyspnoea and exacerbations associated with
COPD which in turn improves quality of life for the patients (Marinari,
Manigrasso, & De Benedetto, 2013). These data suggested that CoQ10

may exert favourable effects on cardiovascular system and energy
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metabolism in patients with COPD via the attenuation of hypoxemia
(Fig. 2).

In attempt to overcome the limitations, derivatives of CoQ10 have
been developed and explored. MitoQ is a triphenylphosphonium-
conjugated antioxidant with improved oral bioavailability, cell-
permeability with several hundred-fold enhanced localization affinity
to the mitochondria than its parental molecule, CoQ10 (Murphy &
Smith, 2000). MitoQ also displays protective effects against mitochon-
drial oxidative damage with no effects in laboratory rodents
(Rodriguez-Cuenca et al., 2010). In rodents, oral administration of
MitoQ decreased adiposity, hypercholesterolemia and hypertriglyc-
eridemia associated with MetS. MitoQ administration also corrected
hyperglycaemia and plasma lipid profiles in these rodents, while
minimising DNA oxidative damage in multiple organs (Mercer et al.,
2012). Thus far, the use of MitoQ has been tested in patients with
Parkinson’s disease and chronic hepatitis C (Smith & Murphy, 2011)
with no reported adverse effects which suggests potential suitability
of this agent and alike mitochondrial antioxidants such as MitoTempol
(Prakash, Pabelick, & Sieck, 2017) to be used in clinical studies for
treatingMetS and COPD. In addition, novel mitochondria-targeted anti-
oxidants have also been identified including those derived from natural
products such as berberine and palmatine (Lyamzaev et al., 2011), as
well as synthetic antioxidant peptides (Chen, Liu, Gao, Zhuo, & Ge,
2011) which exhibits potent radical-scavenging properties in isolated
mitochondria and in human cells. However, their use in the context of
MetS and COPD are yet to be explored.

4.4. Targeting obesity with lifestyle and pharmacotherapies

The strong association between obesity and pulmonary health has
prompted therapeutic interventions targeting adiposity and/or restor-
ing adipose tissue dysfunction. However, the existence of the ‘obesity
paradox’ had raised doubts regarding the appropriateness of targeting
obesity in COPD patients. This is because weight loss in obese COPD pa-
tients, on one hand may improve cardiovascular outcomes, but on the
contrary may worsen respiratory outcomes and even increase their
risk of mortality (Cao et al., 2012; Pi-Sunyer, 2009; Vestbo et al.,
2006). Moreover, it is also possible that the reduced lung volumes
caused by obesitymay protect against hyperinflation inmoderate to se-
vere COPDwhich in turnmay benefit lung function. In a follow-up study
involving 190 patients with stable COPD (GOLD 3-4), the overweight/
obese cohort indeed had better lung function and survival rate than
those with normal BMI despite a significantly higher peak work rate
(Galesanu et al., 2014). However, such benefits were diminished or
worsened when adjusted for midthigh muscle cross-sectional area sug-
gesting the speculated benefits of having greater BMI is likely to be com-
ing from themusclemass rather than fat. A recent study byOrfanos et al.
(2018) also demonstrated that obesity induces airway smooth muscle
hyperresponsiveness in human which provides another pathogenic
link between obesity and COPD, further substantiating the detrimental
effects of obesity on lung function. These findings provide a good ratio-
nale for targeting obesity as a plausible therapeutic strategy to better
COPD outcomes. However, a therapeutic approach that targets obesity
can be problematic, as weight loss interventions particularly in the el-
derly group result not only in loss of fat mass but also loss of skeletal
muscle mass, which is very detrimental in the COPD context (Passey
et al., 2016). For this reason, clinicians are faced with the dilemma of
whether to recommend weight loss in obese COPD patients. To make
matters worse, there is insufficient evidence to guide the management
of COPD patients with concurrent weight issues at the present time
which has raised an urgent call from international experts for research
in this area (Schols et al., 2014). In light of this, a recent study by
McDonald et al. (2016) involving 28 obese COPD patients who
underwent strict dietary calorie restriction regime coupled with resis-
tance exercise training resulted in clinically significant improvements
in body mass index, exercise tolerance and health status, whilst
preserving skeletal muscle mass. The findings in the study are consis-
tent with results obtained from an obese asthmatic cohort, where mod-
est weight loss (between 5% and 10%) can lead to significant clinical
improvements in health status and disease control (Lv, Xiao, & Ma,
2015). Although not assessed in these studies, a reduction of excess
weight in general correlates with significantly lowered risk of comorbid
conditions arising from metabolic derangement (Pi-Sunyer, 2009). To-
gether, these findings provide a proof-of-concept for the feasibility
and benefits of weight loss intervention in obese COPD patients
(Fig. 2). Future work should place emphasis on treatment interventions
thatwould preserve and/or enhance skeletalmusclemass as a core con-
sideration for the management of obese COPD patients.

Nutritional and exercise are lifestyle interventions that are com-
monly used as a first-line treatment of obesity. However, lifestyle inter-
ventions are not always satisfactory. In fact, it is recommended that if
adequate weight loss by lifestyle intervention is not achieved within
3-6 months, pharmacotherapy should be commenced (Srivastava &
Apovian, 2017). It is important to note that, the primary goals of phar-
macotherapy on obesity are to improve or prevent complications arising
from MetS such as hypertension, dyslipidaemia and diabetes, rather
than weight loss per se (Srivastava & Apovian, 2017). Currently, several
Food and Drug Administration (FDA, USA) approved drugs are used for
the long- and short-term management of obesity. A number of sympa-
thomimetic drugs such as Phentermine and Diethylpropion are ap-
proved only in the USA for short-term (less than 3 months) treatment
due to safety concerns (Manning, Pucci, & Finer, 2014) and thus do
not appear to fit the rational paradigm for treating chronic disorders
such as COPD and MetS. Even for drugs approved for long-term use, if
3% mean weight loss is not attained during the first 3 months of medi-
cation, alternative treatment modalities should be considered
(Manning et al., 2014).

Orlistat is a potent and selective inhibitor of pancreatic lipase re-
quired for the hydrolysis of dietary fat in the gastrointestinal tract into
fatty acids and monoacylglycerol. Orlistat is approved by the FDA
(USA) for the long-term management of obesity in conjunction with
dieting (Lucas & Kaplan-Machlis, 2001) which is mainly attributed to
its negligible systemic absorption profile (Zhi, Melia, Eggers, Joly, &
Patel, 1995). In a 4-year, double-blind, prospective study, administra-
tion of Orlistat in overweight patients resulted in a significant reduction
in weight with a mean loss of 5.8 kg from baseline (i.e. before treat-
ment) (Torgerson, Hauptman, Boldrin, & Sjostrom, 2004). Compared
to lifestyle intervention alone, the incidence of type 2 diabetes was
also found to be significantly reduced over the course of the 4 years
(Torgerson et al., 2004). Moreover, Orlistat treatment also demon-
strated beneficial effects on cardiovascular risk by lowering blood pres-
sure, fasting glucose levels, as well as serum cholesterol and lipid
profiles (Broom et al., 2002). Orlistat use in overweight/obese patients
with concurrent COPD must be proceeded with caution. This is largely
because of the “obesity paradox” and that weight loss of more than
10% over a period of 3-6months has been shown to have profound neg-
ative impacts on COPD prognosis (Qureshi et al., 2014; Shavelle,
Paculdo, Kush, Mannino, & Strauss, 2009). This precaution should not
impede the use of Orlistat or similar weight loss agents in this popula-
tion, but therapeutic interventions should be coupled with dietary and
exercise rehabilitation to maintain the lean body mass. Meanwhile,
signs of any unintentional weight losses and/or side effects should be
closely monitored and promptly acted upon accordingly.

Lorcaserin is another FDA-approved agent that is used in the long-
termmanagement of obesity. In the hypothalamus, Lorcaserin activates
serotonin 5-HT2C receptors leading to suppression of appetite, reducing
caloric intake without a direct impact on energy expenditure (Halford,
Harrold, Boyland, Lawton, & Blundell, 2007). Clinical administration of
Lorcaserin demonstrated effective weight loss along with a favourable
safety profile with no signs of heart-valve problems, unlike that of 5-
HT2B receptor agonists (Fidler et al., 2011; O'Neil et al., 2012; Smith
et al., 2010). Administration of Lorcaserin to obese diabetic subjects
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exerted significant improvements on glycaemic control evidenced by
reduction in mean HbA1c levels and fasting blood glucose (O'Neil
et al., 2012). So far, there is no experimental evidence or clinical data
to suggest benefits of Lorcaserin administration on respiratory disor-
ders. Given that pre-clinical and clinical studies have indicated
that Lorcaserin is well-tolerated and not associated with cardiac
valvulopathy or pulmonary hypertension (Redman & Ravussin, 2010),
then it is possible that COPD patients with weight control issues may
benefit from Lorcaserin therapy especially when use in conjunction
with lifestyle interventions. Noteworthy, similar weight loss precau-
tions also apply to the use of Lorcaserin, and signs of serotonin syn-
drome should also be closely monitored with the use of serotonergic
medications (Halford et al., 2007).

Phentermine is another sympathomimetic drug which stimulates
the release of synaptic noradrenaline, dopamine and serotonin release
leading to appetite-suppression (Manning et al., 2014). As described
above, Phentermine alone is only recommended for short-term use,
however by combining with Topiramate, Phentermine is suitable for
long-term use (Allison et al., 2012; Gadde et al., 2011). The synergistic
effects of Phentermine and extended-release Topiramate (marketed as
Qnexa/Qsiva/Qsymia) allows a dose reduction of each drug and thus
less toxicity without a loss in efficacy (Gadde et al., 2011). Topiramate
is an anti-convulsant drug that was originally used in epileptic pa-
tients when its weight loss-inducing properties was accidentally dis-
covered (Astrup & Toubro, 2004). Phentermine/Topiramate therapy
for 56 weeks was reported to be well-tolerated and resulted in
dose-dependent weight loss of up to 11% from baseline (Allison
et al., 2012; Gadde et al., 2011). The weight loss was associated with
various improvements of metabolic parameters including systolic
and diastolic blood pressure, fasting glucose, triglycerides, total cho-
lesterol, LDL, and HDL (Allison et al., 2012). Despite the demonstrated
safety and efficacies in treating obesity and metabolic derangement,
no studies to-date have examined the effect of Phentermine/
Topiramate on respiratory diseases exposing the need for research in
this area.

In light of the relative lack of prospects for novel anti-obesity therapy
and the high attrition rate associated with drug development (Chan &
Ye, 2013), more recently, researchers and clinicians have begun to
turn to drug repurposing strategies in an attempt to broaden therapeu-
tic options (Shih, Zhang, & Aronov, 2017). Glucagon-like peptide-1
(GLP-1) based therapy represents one of the best examples of
anti-obesity therapy deriving from this strategy. GLP-1 belongs to a
group of hormones called incretins which are secreted from the
enteroendocrine cells of the gut into the bloodstream shortly following
food consumption. GLP-1 is responsible for enhancing the insulin secre-
tory response by the pancreas to the products (e.g. glucose) within the
nutrients in the food (Garber, 2011). In addition, more recent research
has indicated that GLP-1 mediates satiation by acting on peripheral
and central pathways (Holst, 2013) in which the appetite-suppressant
properties may be of therapeutic application in the fight against obesity.
Two classes of GLP-1 based therapy have been developed: i) GLP-1R ag-
onists (Exenatide and Liraglutide) which exhibit increased resistance to
dipeptidyl peptidase 4 (DPP-4) degradation and thus provide pharma-
cological levels of GLP-1; ii) DPP-4 inhibitors (Sitagliptin, Vildagliptin,
Saxagliptin)which reduce endogenousGLP-1 degradation, thereby pro-
viding physiological levels of GLP-1 (Garber, 2011). GLP-1R belongs to
the family B subclass of G protein-coupled receptors (GPCRs). Activation
of this receptor results in the amplification of intracellular signalling via
protein kinase A (PKA)which in turn drive the expression, biosynthesis,
and secretion of insulin from pancreatic β-cells in a glucose-dependent
manner (Drucker, Philippe, Mojsov, Chick, & Habener, 1987). GLP-1R
agonists are well-tolerated with demonstrated efficacy as a mono-
therapy or combination-therapy. Both Exenatide (DeFronzo et al.,
2005) and Liraglutide (Garber et al., 2009; Zinman et al., 2009) demon-
strated moderate but significant weight loss especially when adminis-
tered in concert with insulin-sensitizing agents like metformin with
minimal adverse effects such as hypoglycaemia. GLP-1R agonists effec-
tively improved glycaemic control in obese patient with concurrent di-
abetes evidenced by reduction in mean HbA1c levels (DeFronzo et al.,
2005; Garber et al., 2009; Zinman et al., 2009). In an experimental
mice model of AECOPD induced by inhalation of ovalbumin and lipo-
polysaccharide, administration of GLP-1R agonists significantly im-
proved pulmonary function, reduced the severity of exacerbations and
enhanced survival rate independent of changes in themRNA expression
of pro-inflammatory cytokines and surfactant proteins in the lung (Viby
et al., 2013).Moreover, not only are functional GLP-1R expressed in lung
tissue (Romani-Perez et al., 2013; Viby et al., 2013), but they appear to
have an important role in regulating surfactant-protein production
and lung development in an experimental rat model (Romani-Perez
et al., 2013). As a whole, these evidence indicated that GLP-1R agonists
appear to be safe and effective against obesity and various parameters of
metabolic derangements in patients with no negative effects on the car-
diovascular risk on patients (Filippatos, Panagiotopoulou, & Elisaf,
2014). Thus, GLP-1R agonists appear to have a favourable safety profile,
but ongoing trials will further assess their effects on the pulmonary
components, as well as the mechanism of action.

On the contrary, the effect of DPP-4 inhibitors onweight loss appears
to be variable and controversial. Meta-analysis of 29 clinical studies ver-
ified that the efficacy of all three DPP-4 inhibitors on weight loss to be
insignificant (Amori, Lau, & Pittas, 2007). Despite the neutral effect on
body weight, all three DPP-4 inhibitors display similar efficacy on
glycaemic control reflected by reduction of HbA1c levels along with
good safety profile and patient tolerance (Amori et al., 2007). Notewor-
thy, the same study also suggested DPP-4 inhibitors were only slightly
less effective than Sulfonylureas and as effective as Metformin and
Thiazolidinediones, which are the standard drugs for treating diabetes,
in terms of reducing blood glucose. In addition to glycaemic control,
DPP-4 inhibitors also appear to exert beneficial effects on the vascula-
ture. In diabetic patients with concurrent coronary heart disease,
Sitagliptin treatment improved heart function and coronary artery per-
fusion (Read, Khan, Heck, Hoole, & Dutka, 2010). A separate study
showed that Sitagliptin treatment resulted in amoderate but significant
reduction in diastolic blood pressure in non-diabetic hypertensive pa-
tients (Mistry et al., 2008). Finally, 4 weeks of Vildagliptin administra-
tion on drug-naive patients with type 2 diabetes was associated with
improvement of postprandial plasma triglyceride and apolipoprotein
B-48–containing triglyceride-rich lipoprotein particle metabolism fol-
lowing a fat-rich meal (Matikainen et al., 2006). Similar effects of
Vildagliptin on postprandial lipid mobilization and oxidation were re-
ported in a more recent study which is likely to be mediated via the
sympathetic activation rather than a direct effect on metabolic status
(Boschmann et al., 2009). Unlike that of GLP-1R agonists, so far, no ex-
perimental or clinical studies have examined the pulmonary aspects of
DPP-4 inhibitor therapy. However, it is noteworthy that DPP-4 inhibitor
therapy has been shown to coincide with an increased risk of upper re-
spiratory tract infection (Amori et al., 2007; Willemen et al., 2011),
which may limit its experimental and clinical use in COPD.

Evidence from previous weight loss research indicates that life style
rehabilitation and pharmacotherapy are often ineffective in patients
with severe obese issues to lose enough weight to improve their health
and quality of life in the long term (Pi-Sunyer, 2009). Meanwhile, a
growing body of evidence indicates that bariatric surgery is effective
in attaining sustained weight control, improving comorbidities, and
prolonging survival (Sjostrom et al., 2004). In addition to reversing obe-
sity, bariatric surgery has been shown to improve other parameters of
the MetS including abnormal plasma lipid and cholesterol profile, ele-
vated blood pressure and fasting glucose (Batsis et al., 2008) which in
turn may reduce cardiovascular risk (Batsis et al., 2007). A recent
study conducted on 481 obese patients with COPD in the US has
found bariatric surgery remarkably reduced the incidence of emergency
visits and hospitalization related to AECOPD in patients with concurrent
obesity (Goto, Tsugawa, Faridi, Camargo Jr., & Hasegawa, 2017). As
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obesity profoundly impinges on respiratory mechanics which can con-
tribute to the manifestation of deteriorating symptoms, it is possible
that surgical weight loss may contribute to the alleviation of COPD
symptoms by lowering systemic inflammation (Fig. 2). In line with
this, reduced systemic CRP level has been observed in morbidly obese
patients following surgical weight loss (Chen et al., 2009). Moreover,
the systemic appearance of soluble intercellular adhesion molecule-1
(sICAM-1), a key mediator of atherosclerotic plaque formation, was
also found to be dramatically reduced following surgical weight loss
(Orea Soler et al., 2010) whichmay explain the associated cardiovascu-
lar benefit.
4.5. The use of natural products and complementary medicines

Natural products derived from plants, microbes, and animals are an
invaluable source of molecular diversity in drug discovery and have
greatly contributed to the identification of new drugs or drug
derivatives (Chan & Ye, 2013; Li & Vederas, 2009). Using fish oil as an
example, which is enriched in omega-3 (ω-3) fatty acids namely
eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid
(DHA; 22:6n-3) (Calder, 2015), experimental evidence demonstrated
that these ω-3 fatty acids restore metabolism and functions of adipose
tissue by promoting oxidativemetabolism viamitochondrial biogenesis
and fatty acid oxidation (Flachs et al., 2005). EPA and DHA promote glu-
cose utilization and insulin sensitivity in keymetabolic tissues including
the liver, skeletal muscle and adipose tissue through the activation of
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) and
AMPK (Neschen et al., 2007; Oh et al., 2010; Storlien et al., 1987;
Storlien et al., 1991). Moreover, EPA and DHA also appear to suppress
the production of pro-inflammatory chemokines and cytokines, while
increasing the expression of anti-inflammatory cytokines and
adipokines such as adiponectin in adipose tissue which in turn may re-
duce inflammation (Kalupahana, Claycombe, & Moustaid-Moussa,
2011; Oh et al., 2010). Although yet to be fully elucidated, the mecha-
nisms underlying the anti-inflammatory actions of these ω-3 fatty
acids may be related to their ability to alter cellular membrane phos-
pholipid composition and disruption of the lipid rafts, suppression of
the pro-inflammatory transcription factor NFκB to reduce transcription
of pro-inflammatory genes, activation of the anti-inflammatory tran-
scription factor PPARγ and inhibition of TLR4 signalling via binding to
G protein coupled receptor 120 (GPR120) in adipocytes, macrophages,
and hepatic stellate cells (Calder, 2015). Disappointingly, data from clin-
ical trials do not support the link between either EPA or DHA to restor-
ing insulin sensitivity. A meta-analysis of 11 randomized controlled
trials (RCTs) with 618 participants concluded that ω-3 fatty acids con-
sumption did not affect insulin sensitivity (Akinkuolie, Ngwa, Meigs, &
Djousse, 2011). Another systematic review involving 17 RCTs and at
least 3 months continuous administration of ω-3 fatty acids also found
no clear effects on various risk factors of MetS, despite significant im-
provement in blood pressure and lipid profile with no adverse effects
reported (Lopez-Huertas, 2012). Of note, data from a dose-response
study in healthy subjects have demonstrated the existence of a thresh-
old for the anti-inflammatory effects of EPA (Rees et al., 2006). This im-
plies that the daily intake of theseω-3 fatty acids must exceed a certain
level in order to exert any health benefits. In summary, human studies
have largely failed to recapitulate the protective effect of EPA and DHA
on glucose metabolism and insulin sensitivity that have been observed
in rodents. Besides the obvious interspecies genetic and phenotypical
differences, it is also noteworthy that the majority of the intervention
studies in rodents were conducted in parallel of the disease develop-
ment (preventative protocol) whereas intervention studies in humans
are typically administered after establishment of the disease (reversal
protocol). Hence, further clinical trials properly taking into account
the aforementioned discrepancies are needed before any conclusions
of the systemic use of ω-3 fatty acids on MetS can be made.
Laboratory evidence suggest thatω-3 fatty acids also exert beneficial
anti-inflammatory effects on arachidonic acid metabolic pathways and
the downstream balance of eicosanoids, including prostaglandins
and leukotrienes which may influence neutrophil recruitment and
bronchoconstriction (Calder, 2017). Moreover, fish intake (rich source
of .ω-3 fatty acids) in children has been associatedwith reducedwheeze
and asthma in majority of epidemiologic cohort studies (Wendell, Baffi,
& Holguin, 2014). Currently, an ancillary study is ongoing on a subset of
participants in Vitamin D and Omega-3 Hypertension Trial (VITAL
Hypertension) with an aim to examine whetherω-3 fatty acids supple-
mentation (Omacor® 1 g/day) may improve respiratory symptoms or
reduce the risk of lung infections or the decline of pulmonary function.
The sub-cohort from VITAL-Hypertension is composed of 1,973 partici-
pants of both gender, 50 years or older from11 continental US locations.
These subjects were randomized and 1,924 had lung function tests of
acceptable quality, among these 27.3% had mild to moderate COPD
and 5.9% displayed obstructive spirometry evidenced by FEV1 b 80%
normal. Moreover, the mean BMI was 29.9 (N30 = obesity) suggesting
the subjects entering the study are either overweight or borderline
obese (Gold et al., 2016). The outcome of this trial would undoubtedly
advance our understandings regarding the therapeutic potentials of
ω-3 fatty acids for COPD.

Plants have traditionally been a tremendous source of natural
products with beneficial effects on several types of diseases including
MetS and COPD. The use of ginseng dates back to about five thousand
years ago, by the legendary Emperor Shennong in ancient China who
as reported in the literature, was the first to classify hundreds of me-
dicinal and poisonous herbs, giving rise to the bedrock of the oldest
Pharmacopoeia in the world (Yun, 2001). Thirteen species of ginseng
have been identified, with Panax ginseng (Korean ginseng), Panax
quinquefolius (American ginseng) being the most commonly used
(Baeg & So, 2013). Administration of ginseng has been demonstrated
to have a number of positive effects on glucose and lipid metabolism
in humans. Eight week-oral administration of heat-processed Panax
ginseng decreased fasting blood glucose level, increased serum insulin
and glucose tolerance in streptozotocin-induced diabetic mice (Jang
et al., 2017). In high-fructose fed rats, Panax ginseng administration
for eight weeks significantly reduced increments of body weight and
adiposity. This is associated with reduced hyperlipidemia and hyper-
tension, together with ameliorated endothelial dysfunction and
marked upregulation of IRS-1 and glucose transporter type 4 (Glut4)
in the muscle suggestive of enhanced insulin sensitivity (Kho et al.,
2016). Similar results were also obtained in ob/ob mice with 16
weeks of Panax ginseng administration in drinking water (Cheon,
Kim, & Kim, 2015). Moreover, Panax ginseng also appears to enhance
islet function and attenuated cytokine-induced apoptosis (Kim et al.,
2016) which may explain its beneficial effects on glucose metabolism
(Luo, Dong, Liu, & Zhou, 2015). The metabolic benefits of Panax gin-
seng may be extended into the cardiovasculature. Long-term con-
sumption of ginseng extract has been shown to reduce the
susceptibility to acute ischemia reperfusion heart injury in rats by up-
regulating the actions of Sirtuins (Luo et al., 2015). In a clinical set-
ting, Panax ginseng has been shown to exert positive effects on
glucose metabolism reflected by an improved glucose tolerance
(Shergis, Zhang, Zhou, & Xue, 2013). A meta-analysis of 16 random-
ized controlled trials of moderate duration (≥30 days) assessing the
glycaemic effects of ginseng in diabetic patients have found that gin-
seng modestly yet significantly improved fasting blood glucose in
people with and without diabetes (Shishtar et al., 2014). It must be
noted that most of these studies were of short duration (67%
trialsb12wks), and that participants included also have a relatively
stable glycaemic control (median HbA1c non-diabetes=5.4% [2 tri-
als]; median HbA1c diabetes=7.1% [7 trials]). Hence, larger and lon-
ger duration randomized controlled trials using standardized
preparations are needed to validate ginseng's anti-diabetic and meta-
bolic efficacy.
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In addition to glucose metabolism, Panax ginseng also appears to
modulate immune response which may have important implications
in chronic inflammatory diseases such as COPD (Shergis et al., 2013).
Delivery of Panax ginseng in the form of 200 mg G115 to patients with
chronic bronchitis have demonstrated enhanced bacterial clearance
rate following acute attacks compared to those receiving anti-
bacterials alone (Scaglione, Cogo, Cocuzza, Arcidiacono, & Beretta,
1994; Scaglione, Weiser, & Alessandria, 2001). On a similar note, both
Panax ginseng and Panax quinquefolius have also been shown to offer
protection against upper respiratory tract infections by rhinovirus and
coronavirus in a randomized, double-blind, placebo controlled trial in-
volving 100 healthy volunteers (Lee et al., 2012). Administration of
200 mg G115 to patients with moderate to severe COPD for 12 weeks
was associated with increased FEV1 and FVC, as well as VO2max which
correlateswith exercise capacity (Gross et al., 2002). Although these im-
provements gradually subsided 8 weeks post-treatment, this piece of
clinical evidence provided proof-of-concept for the therapeutic use of
Panax ginseng in COPD. In line with this, a systematic review also con-
cluded promising benefits of Panax ginseng for improving FEV1 and
quality of life of patients evidenced by St. Georges RespiratoryQuestion-
nairewhen comparedwith no treatment orwhen administered in com-
bination with pharmacotherapy and compared with pharmacotherapy
alone. Wu et al. have recently conducted a pilot study based on a full-
scale 52weeks trial protocol (Wu et al., 2014) comparing Panax ginseng
with placebo for treating moderate to very severe COPD. In a feasibility
study involving nine participants with COPD, it was found that P. gin-
seng (200mg G115, twice daily) was well tolerated with no adverse
events reported. Based on this success, the full-scale trial has been
approved and has been registered with the ANZCTR (ACTRN:
12613000382774) for implementation in the Guangdong Provincial
Hospital of Chinese Medicine in China. Overall, the use of natural prod-
ucts such as ginseng appears to be well-tolerated in healthy subjects
and patients. Themeta-analysis results indicate that the addition of nat-
ural products to routine pharmacotherapies may produce additional
benefits in terms of decreasing the BODE Index and increasing the 6-
min walking distance in stable COPD patients when used for up to six
months (Chen et al., 2014).

Another natural product which has proven be effective in treating
various diseases is the Codonopsis species (Dang shen) which belongs
to the Campanulaceae family. The root extracts of Codonopsis species
have been demonstrated to possess pharmacological efficacies, such as
antioxidant, anti-tumor, anti-microbial and immune-boosting proper-
ties (Luo et al., 2007. The pharmacological; Wang, Ng, Yeung, & Xu,
1996). The efficacy of the Codonopsis roots is likely due to be attributed
to the enriched constituents, including polysaccharides, saponins, alka-
loids and phytosteroids (Li, Xu, Han, & Wu, 2009; Yongxu & Jicheng,
2008). Codonopsis roots is commonly used in combination with other
natural product formulations to treat stable COPD. Meta-analysis of 48
randomized controlled trials found that clinical therapywith Codonopsis
roots exerts a number of positive effects on pulmonary function with
minimal adverse events (Shergis et al., 2015) In these COPD patients,
Codonopsis roots therapy improved FEV1 and 6-min walking distance
comparedwith conventional pharmacotherapy such as bronchodilators
and mucolytics. These patients also had reduced exacerbations and a
better quality of life reflected by St. Georges Respiratory Questionnaire
compared with placebo. The systematic review highlighted that there
is sufficient evidence to support the routine use of Codonopsis roots as
a standard clinical therapy.

In the metabolic disease context, administration of Codonopsis root
extracts to fructose-fed rats significantly attenuated weight gain and
fasting hyperinsulinemia accompanied by an improved glucose toler-
ance. In these rats, Codonopsis root extracts was also protected from ox-
idative damage resulting from lipid peroxidation which is likely to be
due to improved antioxidant enzyme activities, including superoxide
dismutase, glutathione peroxidase and glutathione reductase in the
liver (Chen et al., 2013). Moreover, in non-obese diabetic rats
consumption of Codonopsis root extracts effectively reduced serum glu-
cose levels and the urinary appearance of glucose compared to control.
The treated rats also displayed greater glucose infusion rates together
during hyperinsulinemic euglycaemic clamp and lower hepatic glucose
output under basal and hyperinsulinemic conditions indicative of re-
stored insulin sensitivity (Jeong, Kang, Kim, & Park, 2017). Likewise,
oral supplementation of Codonopsis root extracts resulted in lowered
fasting blood glucose and insulin in high-fat diet induced obese mice.
This was associated with improved serum profiles for triglycerides,
total cholesterol and LDL compared to high-fat diet fedmice. In addition,
the supplementation also exerts benefits on adiposity and liver function
in these obesemice (Lee et al., 2014). Overall, experimental evidence in-
dicates therapeutic potential of Codonopsis roots for treating MetS
which may be exerted via obesity-dependent and -independent mech-
anisms. However, its efficacy in treatingMetS in humans is still awaiting
clinical verification.

A review of the medical records from Australian clinics has revealed
that acupuncture is themost frequent form of complementarymedicine
use for respiratory disorders (Nik Nabil et al., 2015). A systematic re-
view of 16 RCTs that examined the benefits of acupuncture or other re-
lated therapies for treatment of COPD has revealed that acupuncture
therapies improved health-related quality of life in patients with mild
to severe forms of COPD (Coyle et al., 2014). Despite being associated
with improvement in St George's Respiratory Questionnaire score,Med-
ical Research Council's dyspnoea scale, dyspnoea visual analogue scale
and greater 6-minwalking distance when compared to placebo control,
acupuncture therapies reportedly had no additional effects on pulmo-
nary function when compared to either placebo or pharmacotherapy.
Although not directly benefiting pulmonary function, emerging
evidence suggests that ear-acupuncture/-acupressuremayhelp individ-
uals to maintain smoking cessation which warrants further investiga-
tion. In the metabolic context, acupuncture interventions have
recently been explored (Martinez & Peplow, 2016). The authors con-
cluded that electro-acupuncture (a modern form of acupuncture) at
low intensity and low frequency may ameliorate insulin resistance
and enhance insulin sensitivity in experimental models and human
insulin-resistant conditions, thus highlighting its potential use as a
monotherapy or as an add-on therapy to diet-exercise interventions
for treating chronic diseases like COPD and MetS (Fig. 2).

5. Perspectives and conclusions

A growing body of research indicates correlative links betweenMetS
and pulmonary dysfunction during COPD. The correlation implies that
components of the MetS particularly hyperglycaemia can give rise to
pulmonary function impairment in COPD and vice versa. Regardless of
the direction of the drive, the concurrent existence of MetS and COPD
amplifies an individual’s risk of cardiovascular comorbidity which is a
major cause of mortality in these patients. Although the causal relation-
ship and the underlying mechanisms for the development of these two
chronic diseases are intertwined in nature, it is apparent that the major
risk factor for the onset of COPD is cigarette smoking, while that for
MetS is obesity. Both systemic inflammation and oxidative stress are
emerging to be important links connecting COPD to MetS and extra-
pulmonary pathologies such as CVD. In COPD, systemic inflammation
may result from the spill over of lung-derived pro-inflammatory medi-
ators including white blood cells, CRP, IL-6 and fibrinogen. In COPD pa-
tients withweight gain issues, adipose tissuemay also release a panel of
adipokines such as IL-6 and leptin which may potentiate the spill over
inflammation from the lung. Parallel to this, loss of skeletal muscle
mass associatedwith physical inactivitymay negate the homeostatic ef-
fects of myokines which further exacerbates systemic inflammation.
The altered oxidant balance during COPD may deplete the endogenous
antioxidant defence leading to oxidation of cellular components and
moleculeswithin the lung, adipose tissue and skeletalmuscle sustaining
their roles in systemic inflammation. Polypharmacy is a major issue
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commonly encountered in COPD patients, as all the comorbidities and
syndromes are treated in isolation (Diez-Manglano et al., 2014;
Franssen, Spruit, & Wouters, 2011). This means that the risk of adverse
events due to combining drugs is increased and compliance may be-
come difficult particularly in elderly/frail group of patients. Therefore,
identifying convergentmechanisms that can treat the lung/systemic in-
flammation and comorbidities such as MetS concurrently should be a
key focus for future therapeutic interventions.
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