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In credit risk estimation, the most important element is obtaining a probability of default as
close as possible to the effective risk. This effort quickly prompted new, powerful
algorithms that reach a far higher accuracy, but at the cost of losing intelligibility, such
as Gradient Boosting or ensemble methods. These models are usually referred to as
“black-boxes”, implying that you know the inputs and the output, but there is little way to
understand what is going on under the hood. As a response to that, we have seen several
different Explainable AI models flourish in recent years, with the aim of letting the user see
why the black-box gave a certain output. In this context, we evaluate two very popular
eXplainable AI (XAI) models in their ability to discriminate observations into groups, through
the application of both unsupervised and predictive modeling to the weights these XAI
models assign to features locally. The evaluation is carried out on real Small and Medium
Enterprises data, obtained from official italian repositories, and may form the basis for the
employment of such XAI models for post-processing features extraction.

Keywords: SHAP (shapley additive exPlanations), credit risk, default, clustering, explainable artificial
intelligence (XAI)

1 INTRODUCTION

Probability of default (PD) estimation is an issue which banks and other financial institutions
have been confronting with since the dawn of credit. Systems and methodologies evolved as
knowledge and technology did, but it wasn’t until recently that the incredible steps forward
made in IT gave a real shake to the way it was performed by the industry. At first, incumbents
institutions resisted the application of new paradigms, which favored the emergence of a
growing number of Fintech startups whose purpose is to provide an estimation of the
creditworthiness of people and firms alike, and make it so that this estimation is the most
high fidelity as possible.

To be able to give such estimation, these firms of course leverage new and diverse sources of data,
take advantage of innovations in regulatory framework concerning financial data (e.g. European
PSD2 (European Commission, (2015)) and exploit the far higher predictive power that some of the
newly implemented algorithms offer with respect to traditional methods. The increase in prediction
power of new algorithms, though, takes a toll on explainability, since the models are now so complex
that it is close to impossible to establish clear links between the inner workings of the model and the
given output. This surely represents a problem and hinders their diffusion, other than raising a series
of ethical and regulamentary issues, which are starting to be addressed (see, for example European
Commission (2020)).

To solve this trade-off, the concept of eXplainable AI (XAI) emerged introducing a suite of
machine learning (ML) techniques that produce models that offer an acceptable trade-off between
explainability as well as predictive utility and enables humans to understand, trust and manage the
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emerging generations of AI models. Among the emerging
techniques, two frameworks have been widely recognized as
the state-of-the-art in eXplainable AI and those are:

• the Lime framework, introduced by (Ribeiro et al., 2016)
• SHAP values, introduced by (Lundberg and Lee, 2017).

In finance, interpretability is especially important because the
reliance of the model on the correct features must be guaranteed;
yet, there aren’t many studies focusing on the application of XAI
in this specific context (Bussmann, 2020). propose a XAI model
based on Shapley values applied in the context of loan decisions
regarding SME seeking for financing through P2P platforms,
whereas the research by (Ariza-Garzón et al., 2020) aim to assess
the predictive capacity of several MLmodels in the context of P2P
lending platforms’ credit scoring, after that applying the Shapley
method to provide explainability to the prediction. The most
interesting precedent is perhaps the research of (HadjiMisheva et
al., 2021), where the authors explore the utility of both SHAP and
Lime frameworks in the context of credit risk management,
outlining the practical hurdles in applying these techniques to
several different kinds of ML algorithms as well as proposing
solutions to the challenges faced.

Our study aims to compare SHAP and LIME frameworks by
evaluating their ability to define distinct groups of observations,
employing the weights assigned to features through their local
interpretability algorithm as input space for unsupervised
approached and a supervised one. We do this building our
approach on one of the best performing, yet complex,
supervised learning algorithm, XGBoost (Chen and Guestrin,
2016), employed to predict the probability of default of italian
Small and Medium Enterprises.

2 METHODOLOGY

2.1 LIME
Locally Interpretable Model Agnostic Explanations is a post-hoc
model-agnostic explanation technique which aims to
approximate any black box machine learning model with a
local, interpretable model to explain each individual prediction
(Ribeiro et al., 2016). The authors suggest the model can be used
for explaining any classifier, irrespective of the algorithm used for
predictions as LIME is independent from the original classifier.
Ultimately, LIME works locally which means that it’s observation
specific and, just like SHAP, it will provide explanations for the
prediction relative to each observation. What LIME does is trying
to fit a local model using sample data points that are similar to the
observation being explained. The local model can be from the
class of interpretable models such as linear models, decision trees,
etc. The explanations provided by LIME for each observation x is
obtained as follows:

Φ(x) � argming∈GL(f , g, πx) + Ω(g) (1)

where G is the class of potentially interpretable models such as
linear models and decision trees,

g ∈ G: An explanation considered as a model.
f : Rd →R.
πx(z): Proximity measure of an instance z from x.
Ω(g): A measure of complexity of the explanation g ∈ G.
The goal is to minimize the locality aware loss L without

making any assumptions about f, since a key property of LIME is
that it is model agnostic. L is the measure of how unfaithful g is in
approximating f in the locality defined by π(x).

2.2 SHAP
The SHAP framework, proposed by (Lundberg and Lee, 2017)
adapting a concept coming from game theory (Lloyd, 1952), has
many attractive properties. In this framework, the variability of the
predictions is divided among the available covariates; this way, the
contribution of each explanatory variable to each point prediction can
be assessed regardless of the underlying model (Joseph, 2019).

From a computational perspective, SHAP (short for SHapley
Additive exPlanation) returns Shapley values expressing model
predictions as linear combinations of binary variables that describe
whether each covariate is present in the model or not. More formally,
the SHAP algorithm approximates each prediction f(x) with g (x′), a
linear function of the binary variables z′ ∈{0,1}M and of the quantities
ϕi ∈ R, defined as follows:

g(z′) � ϕ0 +∑
M

i�1
ϕizi′ , (2)

where M is the number of explanatory variables.
(Scott et al., 2018) has shown that the only additive method

that satisfies the properties of local accuracy, missingness and
consistency is obtained attributing to each variable xi′ an effect ϕi
(the Shapley value), defined by:

ϕi(f , x) � ∑
z′4x′

|z′|!(M − |z′| − 1)!
M!

fx(z′) − fx(z′ i)[ ] (3)

where f is the model, x are the available variables, and x′ are the
selected variables. The quantity fx (z′) − fx (z′ \ i) expresses, for
each single prediction, the deviation of Shapley values from their
mean: the contribution of the i-th variable.

Intuitively, Shapley values are an explanatory model that
locally approximate the original model, for a given variable
value x (local accuracy); with the property that, whenever a
variable is equal to zero, so is the Shapley value (missingness);
and that if in a different model the contribution of a variable is
higher, so will be the corresponding Shapley value (consistency).

2.3 Evaluation Approaches
While LIME and SHAP have similar behaviour in that they both
obtain parameters for feature contribution at the observation
level (local explanation), they do differ in the algorithm which
leads to such outcome. In order to see which approach is better in
detecting variables’ contribution at the local level, we attempt an
unsupervised approach and verify if it is possible to cluster
observation employing a dissimilarity matrix built on LIME
weights and SHAP values, employing standardized Euclidean
distance as the basis for clustering.
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More formally, we define the pairwise distance di,j as:

di,j � (xi − xj)Δ−1(xi − xj)′ (4)

whereΔ is a diagonalmatrix whose i-th diagonal element contains the
standard deviation. The distances can be represented by a N × N
dissimilarity matrixD such that the closer two observations i, j are in
the Euclidean space, the lower the entry di,j.

On the similaritymatrix we perform a classical K-means clustering
(as defined by (MacQueen, 1967)) and, to represent the connectivity
approach and not confine ourselves to the convex clusters originated
by K-means clustering, we also run a spectral clustering algorithm, as
outlined in (Ng et al., 2001). This is done for both dissimilarity
matrices computed on LIMEweights and SHAP values.We then look
for the best number of clusters K using measures that assess clusters’
internal cohesion and external separation, namely the Silhouette
(Rousseeuw, 1987) and the Davies–Bouldin index (Davies and
Bouldin, 1979). Other than using unsupervised tool to devise

groups out of XAI models parameters, we run as well a supervised
learning algorithm (Random Forest, as in (Breiman, 2001)) on XAI
parameters to see how they perform as input in predicting default,
which was the problem we started the analysis with. We compare the
two predictivemodels, one for Limeweights and one for SHAP values,
through AUROC (Bradley, 1997). This way, we have a thorough
perspective on the discriminative power of eXplainable AI-assigned
feature weights.

3 APPLICATION

3.1 Data
Data on italian SME is obtained through the Bureau van Dijk
database, which sources data directly from Italian chamber of
commerce. We employed some techniques to deal with the
strongly unbalanced classes (e.g. Lin et al. (2017) approach) (Lin

FIGURE 1 | Silhouette plot for LIME data clustering

FIGURE 2 | (A) Lime spectral clustering; (B) Shap spectral clustering.
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et al., 2017) and to remove time-specific factors.More specifically, we
worked on data encompassing the last 6 years, comprisingmore than
2 millions SME observations, we kept all the defaulted cases and, for
the not-defaulted ones, we randomly sampled a group of observation
to maintain as they were (about 10,000 for each year), while with the
remaining we built 5,000 clusters per year and employed themedoids
as input observations. This brought down class imbalance fromabout
100 : 1 to 5 : 1, allowing the model to better frame risk patterns and
give more amplitude to probability estimation.

The above procedure led us to a dataset with about 139,000
observations, with 27,200 defaults. We split the dataset assigning
70% of observation to the trainig set and 30% to the test set using
stratified partitioning, run the chosen supervised algorithm
(XGBoost), then apply LIME and SHAP to the test set to get
the respective parameters; these are extracted for both methods as
linear combinations of variables contributions’, therefore are
similar in magnitude and behaviour and thus comparable
through our methodology.

3.2 RESULTS

To select the number of clusters K we examine the silhouette plot
(Rousseeuw, 1987) of both generated dataset, for K from 2 to 9.
Either for SHAP or LIME, the number of clusters which
maximizes the silhouette score is two, coherently with the
problem at hand (default prediction); we can see this by
looking at the silhouette scores represented by the vertical red
dashed line, which is higher for the plot with two clusters, and
also from the part of the clusters who enter the X axis negative
score, which increase as we increase the number of clusters. We
show in Figure 1 the silhouette graph for LIME data clustering ,
being the one for SHAP being basically identical, albeit with a
higher average silhouette score, as we are addressing in the
following lines.

We therefore perform K-means clustering and Spectral clustering
on the two sets of data, with the aimof evaluating the goodness of fit of
the clustering approach on XAI parameters through Silhouette score
and Davies–Bouldin index (DBI). Here, the higher the Silhouette
score, the better externally separated and internally cohese are the
clusters, while the reverse is true for Davies-Bouldin index.

In Table 1 we can see the results of both tests on each of the
clustering techniques, for LIME weights and SHAP values
respectively. Both techniques assign a score to represent internal
clusters cohesion and external distant from one another: the
silhouette scores tells us the clusters are better defined as it
advances in positive territory, whereas the Davies-Bouldin index

FIGURE 3 | Lime and SHAP ROC curves.

TABLE 1 | Clustering evaluation results.

Method LIME SHAP

K-means Silhouette 0.143 0.370
Spectral clustering Silhouette 0.141 0.370
K-means DBI 2.325 1.126
Spectral Clustering DBI 2.329 1.106

Frontiers in Artificial Intelligence | www.frontiersin.org September 2021 | Volume 4 | Article 7525584

Gramegna and Giudici SHAP and LIME Credit Risk

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


dispersion is lower (and therefore clusters are better) the lower is
the score.

As it turns out, SHAP values seem to constitute an input space
more suitable to be divided into clusters, with a clear advantage in
discriminative power in this unsupervised setting. The measures we
employed for this evaluation take into consideration the entire
numerosity of dimensions, which in this case is 46 since we have
one parameter for each of the original feature, whereas with a
scatterplot we can only evaluate two dimensions at a time.

For reference, in Figure 2 we report bidimensional plots for
each case, where we can see how spectral clustering assigned each
data point to the respective clusters by looking at the different
colors; here, of course, we can only see this division across two
dimensions, but we can already notice how SHAP value clustering
seem to better divide the two clusters in space.

Having established the superiority of SHAP values in the
unsupervised environment, we can now test the predictive power
of both families of parameters. To this end, we run several Random
Forest algorithms (Breiman, 2001) with optimized hyperparameters
and compare themeans of the Area under the Curve (AUC) (Bradley,
1997). We employ Random Forests to evaluate parameters’ preditive
power because it has less hyperparameters to optimize, it better
handles multicollinearity and it’s better parallelizable, thus allowing
us to increase the number of runs significantly. Furthermore, we don’t
need a specific supervised learning algorithm to evaluate this point, as
long as we use the same for both sets of parameters.

As we can see in Figure 3, with a mean AUC of 0.864 for
SHAP versus one of 0.839 for LIME and 50 repetitions, we find
that the difference in means is statistically significant with a
p-value of 0.0035.

Therefore, SHAP values appear to be better than Lime weights
in assignign values to the dynamics of credit default as they are
picked up by the XGBoost algorithm, dynamics upon which we
looked for discriminative power, that is the objective of this paper.

4 CONCLUSION

The estimation of Probability of Default is a key element in
the economic life of modern societies, and we now have the

instruments and technologies to improve it significantly and
lead away from the simplistic assumptions we used to follow
in order to avoid undetected risks. This concretizes in an
improve adherence to reality, were we have more dimensions
available regarding the entity we want to evaluate and at the
same time we are more capable and correct in such
evaluation. We have already seen in the aforementioned
works that the methodology based on a highly accurate
predictive model combined with an interpretability tool
allows us to reap the benefit of this improved precision
without sacrificing explainability; our approach shows that
some XAI models may be better than others and,
furthermore, that elements coming from eXplainable AI
models can be used to further improve methodologies and
add value to data.

Some other works are already moving in this direction: see
for instance (Bussmann, 2020; Bussman et al., 2021) or
(Gramegna and Giudici, 2020) on the use of Shapley values
to enrich the analysis and improve methods, but also (Giudici
et al., 2020) and (Giudici and Raffinetti, 2020), with some
innovative methodologies that combine well with XAI
models.

Further research could find new ways to leverage the power of
explanatory parameters and use them to deal with other issues
concerning the Machine Learning pipeline, as well as extend the
approach to other domains.
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