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Rheumatoid arthritis (RA) is a chronic autoimmune disease that endangers the health of
approximately 1% of the global population. Current RA medications on the market mainly
include non-steroidal anti-inflammatory drugs, biological agents, and disease-modifying
drugs. These drugs aim to inhibit the overactivated immune response or inflammation of
RA, but they cannot cure RA. A better understanding of the pathogenesis of RA will
provide a new understanding to search for RA targets and for drug development. The
infiltration of T cells and hyper-proliferation of fibroblast-like synoviocytes (FLS) in the
synovium of patients with RA are significantly upregulated. Furthermore, the abnormal
activation of these two types of cells has been confirmed to promote development of the
course of A by many studies. This article systematically summarizes the interactions
between T cells and FLS in RA synovial tissues, including one-way/mutual regulation and
direct/indirect regulation between the two. It further aims to investigate the pathogenesis
of RA from the perspective of mutual regulation between T cells and FLS and to provide
new insights into RA research.
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1 INTRODUCTION

In the past few decades, extensive research has been conducted to illustrate the important role of T
lymphocytes (T cell) in rheumatoid arthritis (RA) (1). In RA, T cell can interact with antigen-
presenting cells, including dendritic cell, macrophage, B lymphocyte (B cell), and even non-
professional antigen-presenting cell, such as fibroblast-like synoviocyte (FLS). During T cell
activation, CD4+ T cells initially form contacts with human leukocyte antigen (HLA) or major
histocompatibility class II (MHC-II) molecules and co-stimulatory molecules (e.g., CD28) of other
org July 2022 | Volume 13 | Article 9221111
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cells, leading to the maturation of CD4+ cells (2). Subsequently,
antigens presented by other cells promote the activation of CD8+

T cells, further exacerbating inflammation in RA (3). The
interaction between T cells and other cellular components is a
key factor in RA pathogenesis.

Apart from immune cells, non-immune cells of target organs
also play a vital role in various autoimmune diseases, forming the
foundation of the pathogeneses of these diseases (4). FLS are a
special type of non-immune cells present in synovial tissue
around joints. FLS play an important destructive role in the
pathogenesis of RA; specifically, the numbers of FLS significantly
increase and become an important part of the destructive pannus
that characterizes the synovial membrane of patients with RA. In
addition, FLS in RA exhibit an aggressive phenotype and mediate
inflammation and joint destruction. Therefore, cellular crosstalk
between FLS and other cellular components might also play an
important role in RA, especially in the pathology of the
joint synovium.

In this review, we summarize the pathophysiological features
of T cells and FLS, which are two important cellular types in the
joint synovium of patients with RA, at the functional and
molecular level. Further, we outline the interactions between T
cells and FLS in RA. Finally, we summarize the potential
therapeutic options by explaining the roles of these cells in RA.
2 INDIRECT REGULATION OF T CELLS IN
RA BY FLS

2.1 Indirect Promotion of T Cell Survival
and Chemotaxis by FLS in RA
RA is an autoimmune disease associated with severe synovitis
and the destruction of bone and cartilage. In the synovial tissues
of patients with RA, T cells can interact with other immune cells,
such as macrophages and B cells, and other non-immune cells,
Frontiers in Immunology | www.frontiersin.org 2
including FLS, leading to T cell recruitment, activation, and
cytokine production (5). This section focuses on these functions
of T cells mediated by FLS-secreted chemokines (Figure 1).

CD13 released from FLS induces chemotaxis and T cell
activation through a pertussis toxin-sensitive G protein-
coupled receptor in RA (6). FLS-derived stromal cell-derived
factor (SDF)-1 and vascular cell adhesion molecule (VCAM)-1
recruit T cells via their corresponding receptors, CXC motif
chemokine receptor (CXCR)-4 and integrins alpha (VLA)-4,
respectively, in RA (7). FLS can produce an abundance of
proinflammatory cytokines in RA joints. For example,
interleukin (IL)-15 is mainly responsible for local T cell
activation and proliferation (8). The action of FLS-derived IL-7
is essential for lymphoid neogenesis in the RA synovium (9). The
Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) pathway in FLS is indirectly activated by
the tumor necrosis factor (TNF) through the autocrine
expression of type I interferon (IFN), resulting in IFN-a/b
receptor engagement and the production of chemokines by T
cells, which play a role in the effects of the JAK inhibitor CP-
690550 (tofacitinib) in the treatment of RA. The reduction of
chemokine synthesis mediated by FLS limits the recruitment of T
cells and other infiltrating leucocytes (10).
2.2 Indirect Regulation of CD4+ T Cell
Differentiation in RA by FLS
In addition to recruiting and activating T cells, FLS can also
promote the differentiation of proinflammatory subtypes and
inhibit the differentiation of anti-inflammatory subtypes of T
cells in the synovial joints of patients with RA (11) (Figure 2).
FLS co-cultured with peripheral blood mononuclear cells
(PBMCs) increase peripheral T follicular helper (Tfh) cell
(CD4+CXCR5+ICOS+) count in patients with RA (12).
Adiponectin-stimulated FLS can also promote Tfh generation,
predominantly via IL-6 production in RA (13). P53 abrogates
FIGURE 1 | RA-FLS indirectly promotes survival and chemotaxis of T cells in joint synovium of patients with RA via by producing various chemokines, including
CD13, SDF1, VCAM1, IL15, TNF, and type I IFN. SDF, Stromal cell-derived factor; VCAM, Vascular cell adhesion molecule; VLA,Integrins alpha; CXCR, CXC motif
chemokine receptor; IL, interleukin; JAK, Janus kinase; STAT, signal transducer and activator of transcription; TNF, tumor necrosis factor; IFN, interferon.
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FLS-induced Th1 and Th17 cell differentiation in RA (14).
Upregulated KAT7, an H4-specific histone acetylase in FLS,
promotes Th17 cell differentiation in RA by inducing C–C
motif chemokine ligand (CCL) 20 expression and the p44/42
mitogen-activated protein kinase pathway (15). Further,
myeloid-related protein (MRP)8/MRP14 is an endogenous
Toll-like receptor 4 (TLR4) ligand. MRP8 produced by FLS
can promote Th17 differentiation by enhancing the expression
of IL-6 in RA. MRP8 induces IL-6 secretion in FLS via TLR4/
phosphoinositide 3-kinase (PI3K)/nuclear factor kappa B (NF-
kB) and mitogen-activated protein kinase signaling pathways in
RA (16). Moreover, IL-34/colony stimulating factor 1 receptor
(CSF-1R) axis-induced FLS upregulate Th17 production through
increased IL-6 in RA (17). In addition, cysteine-rich protein 61
(Cyr61) induces IL-6 production by FLS, promoting Th17
differentiation via the Avb5/Akt/NF-kB signaling pathway in
RA (18). Co-cultured FLS enhance PBMC-secreted IL-17-A, IL-
6, IFNg, and IL-1b production in RA (19). FLS and macrophages
are the main sources of IL-26 in RA joints. IL-26 induces
production of the proinflammatory cytokines IL-1b, IL-6, and
TNF-a in monocytes. IL-26-stimulated monocytes selectively
promote the generation of RORgt+ Th17 cells through IL-1b
secretion by monocytes. Therefore, IL-26 is constitutively
Frontiers in Immunology | www.frontiersin.org 3
produced by FLS, induces proinflammatory cytokines in
myeloid cells, and promotes Th17 cell differentiation in RA
(20). Synovial fluid and FLS from patients with RA suppress
enhancer of zeste homolog 2 (EZH2) expression in CD4+ T cells.
EZH2 deficiency attenuates regulatory T cells (Treg)
differentiation in RA (21). Overall, IL-6 seems to be a key
inflammatory factor released by FLS in RA. Thus, FLS
indirectly affect the differentiation of T cells in the synovial
joints of patients with RA through IL-6, promoting the
differentiation of Th17 and Tfh cells.
3 INDIRECT REGULATION OF FLS
IN RA BY T CELLS

3.1 Promotion of FLS Inflammatory
Phenotypes in RA via Cytokines
From T Cells
3.1.1 Indirect Effects of Th17 Cells on FLS in RA
Different subtypes of CD4+ T cells can be detected in the synovial
joints of patients with RA (22). Th17 promotes the development
of RA and is an important aspect of the proinflammatory
FIGURE 2 | FLS regulates differentiation of CD4+ T cells in RA. P53 KD and EZH2 OE promote Th1 and Treg differentiation of T cells in RA synovium, respectively.
FLS promotes Tfh differentiation of T cells via IL-6. FLS directly induces Th17 differentiation through cytokines, including CCL20, MRP8, IL-6, and IL-26, etc. KD,
knockdown; OE, overexpression; Tfh, T follicular helper; CCL, C–C motif chemokine ligand; MRP, myeloid-related protein; TLR, Toll-like receptor; Cyr61, cysteine-
rich protein 61; EZH, enhancer of zeste homolog; Treg, regulatory T cells.
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function of FLS. Transcripts of IL-17R, as well as those of IL-
17RB, C, and D, have been previously detected in the FLS of
patients with RA (23) (Figure 3A).

Th17 cells induce secretion of the cytokine granulocyte-
macrophage colony-stimulating factor (GM-CSF) in synovial
stroma and innate lymphoid cells to initiate and augment
autoimmune arthritis (24). Th17 cells and IL-17 increase
autophagy of FLS by causing mitochondrial dysfunction in RA
(25). The blockade of IL-17 alleviates inflammation in rat
arthritis and matrix metalloproteinase (MMP)-13 expression
from FLS (26). In addition, IL-17-induced receptor activator of
NF-kB ligand (RANKL) expression is decreased by the inhibition
of Act1, TNF receptor-associated factor 6 (TRAF6), and activator
protein (AP)-1. In the absence of RANKL, IL-17-prestimulated
FLS induce osteoclastogenesis from monocytes, which is
repressed by the inhibition of TNF-a (27). FLS express two
types of phospholipase D, namely PLD1 and PLD2. PLD
regulates the Th17-promoted production of proinflammatory
cytokines by FLS (28). The dihydroartemisinin derivative DC32
inhibits the Th17-induced invasion and migration of FLS by
decreasing the secretion of MMPs (MMP-2, MMP-3) in
vitro (29).

Th17-cell-secreted IL-17A and TNF-a have synergistic effects
on promoting the production of inflammatory cytokines in FLS
from patients with RA, the human leukemia cell line THP-1, and
the rheumatoid synovial fibroblast cell line MH7A. IL-17A and
TNF-a also promote the proliferation and migration of MH7A
cells. However, a novel dual targeting fusion protein (targeting
TNF-a and IL-17A) was found to be more efficient in inhibiting
these synergistic effects when compared to the effects of
etanercept (30). Stromal cell-derived factor 1 (SDF-1) is
overproduced in RA FLS, and IL-17 upregulates the expression
of SDF-1 in RA FLS via pathways mediated by PI3K, NF-kB, and
AP-1 (31).

3.1.2 Indirect Effects of Th1/Th2 Cells on FLS in RA
Apart from Th17, Th1 and CXCR3+ Th2 phenotypes are the
main subtypes of T helper cells in the synovium of patients with
RA; IL-4 and IL-13 induce FLS to produce a series of
inflammatory cytokines, such as IL-6, CCL2, CXCL1, and
CXCL8, whereas IFNg promotes the expression of CXCL10
(32). Both Th1 and Th17 cells produce IL-17 and IFNg. The
expression of CD40, intercellular adhesion molecule 1 (ICAM-
1), and MHC-II in FLS is upregulated upon co-culture with Th1
cells, whereas Th17 cells induce only ICAM-1 in FLS. Both T cell
subsets promote the production of IL-6 and IL-8 by FLS from
patients with RA (33). T cell-derived IL-2 might activate FLS (via
IL-2 receptor (CD122) and (CD132) chains) to produce MCP-1,
thus recruiting macrophages into the rheumatoid synovium and
promoting inflammation (34). Both Th1 and Th2 cells express
macrophage migration inhibitory factor (MIF). MMPs are
induced by FLS after co-culture with Th1 and Th2 cells, and
activated T helper cells are more effective than resting cells. The
neutralization of MIF by an anti-MIF antibody leads to the
downregulation of MMP in both Th1- and Th2-stimulated FLS
(35) (Figure 3B).
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3.1.3 Indirect Effects of Other T Cells on FLS in RA
IL-21 is produced primarily by CD4+ T cells and natural killer T
cells. IL-21 induces the migration, invasion, and production of
MMPs (MMP-2, MMP-3, MMP-9, MMP-13) in FLS from
patients with RA (36). IL-21 promotes activation of the PI3K,
STAT3, and ERK1/2 pathways in FLS, and the inhibition of these
A

B

C

FIGURE 3 | T cells promote inflammatory phenotype of FLS in RA, mainly
including proliferation, migration, invasion, and production of proinflammatory
cytokines and destructive MMPs in joint synovium. (A) The indirect effects of
Th17 cells on FLS in RA; (B) The indirect effects of Th1/Th2 cells on FLS in RA;
(C) The indirect effects of other T cells on FLS in RA. GM-CSF, granulocyte-
macrophage colony-stimulating factor; MMP, matrix metalloproteinase; RANKL,
receptor activator of NF-kB ligand; TRAF, TNF receptor-associated factor; AP,
activator protein; ICAM, intercellular adhesion molecule; MIF, migration inhibitory
factor; ATAC, activation-induced, T cell-derived, and chemokine-related
cytokine; Lptn, lymphotactin; FAK,focal adhesion kinase.
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pathways attenuates IL-21-mediated migration and the
production of MMPs (36). The percentage of T cells from the
synovial fluid in patients with RA is upregulated relative to that
in patients with psoriatic arthritis (37). The proportion of IL-
21+CD4+ T cells from peripheral blood in patients with RA is
positively associated with IgM-rheumatoid factor, serum
anticyclic citrullinated peptide antibodies, and disease activity
score 28 (DAS28). IL-21 expression in synovial fluid is correlated
with MMPs; IL-21 significantly induces the production of MMPs
in synovial biopsies from patients with RA (37). CD4+IL-21+ T
cells sorted from synovial fluid promote the secretion of MMPs
by FLS to a greater extent than medium or CD4+IL-21− T cells in
an in vitro co-culture system. The blockage of IL-21 and TNF
leads to the downregulation of MMPs from FLS (37).

In phorbol myristate acetate/ionomycin-stimulated PBMCs,
activation-induced, T cell-derived, and chemokine-related
cytokine (ATAC)/lymphotactin (Lptn) is detected in CD8+ T
cells and is upregulated in CD4+CD28− T cells from patients with
RA as compared with their levels in healthy controls (38). FLS
express the ATAC/Lptn receptor XCR1 in the RA synovium.
ATAC/Lptn leads to the marked downregulation of MMP2
production in FLS (38). TLR3 is induced in the synovium of
rats with pristane-induced arthritis (39). In addition, activation
of the TLR3 signaling pathway promotes the development of this
arthritis model. Interestingly, pristane-primed T cell-derived
cytokines further promote FLS activation (39).

IFNg produced by T cell stimulation promotes the
phosphorylation of focal adhesion kinase (FAK)-Y925, which
is important for cell migration (40). SiRNA-mediated
knockdown of JAK2, but not JAK1, substantially suppresses
FAK activation via IFNg. IFNg-induced FAK activation and
invasion of FLS are also blocked by baricitinib (JAK inhibitor)
(40). Soluble mediators released by Th cells drive synovial fluid
towards a glycolytic and proinflammatory phenotype. Targeting
JAKs or glycolytic enzymes modulates synovial fluid glucose
metabolism and decreases the secretion of IL-6 and MMP3 (41).
Therefore, targeting glycolytic pathways represents a potential
therapeutic strategy to treat inflammation in synovial fluid
(41) (Figure 3C).
Frontiers in Immunology | www.frontiersin.org 5
4 DIRECT INTERACTION BETWEEN FLS
AND T CELLS IN RA
4.1 Direct Regulation of T cells by
FLS in RA
In addition to indirect regulation through cytokines and
chemokines, there is a direct interaction between T cells and
FLS in the synovium of patients with RA. Different antigen-
presenting cells, including B cells, macrophages, and dendritic
cells, interact directly with T cells. FLS, as non-immune cells, also
have antigen-presenting capabilities. This section summarizes
the direct communication between T cells and FLS in the
synovium of patients with RA (Figure 4).

Despite not being professional antigen-presenting cells, FLS
can also present peptides, such as human cartilage gp-39 and
human type II collagen (CII), derived from autoantigens
discovered in the joint tissues of patients with RA, to activated
T cells in vitro in an IFN-dependent and MHC-restricted
manner (42). Cell–cell contact between T cells and FLS induce
the lymphocytic expression of aminopeptidase N/CD13 and
results in lymphocytic activation (43). Both FLS (production of
SDF-1) and CD8/CD4+ T cells (expression of CXCR4) play a
positive role in the recruitment of T cells in the joint synovium
(44). CD4+ T cells abnormally express CX3CR1 in the synovium
of patients with RA. Fractalkine (FKN) induces the adhesion of
CD4+ T cells and survival signals and co-stimulates the secretion
of inflammatory cytokines and granules. CD4+ T cells accept
primary stimulatory and co-stimulatory signals from non-
professional antigen-presenting cells, such as FLS, in the RA
synovial microenvironment (45).

A previous study showed the effects of FLS on the
recruitment, activation, and expansion of T cells in RA in a
CD47-TSP1 (thrombospondin-1)-dependent manner (46).
TSP1-mediated co-stimulation is achieved through its
independent interaction with CD36 on antigen-presenting cells
and with CD47 on T cells. A CD47–TSP1–CD36 trimolecular
complex is a new co-stimulatory pathway that represses the
activation of T cells. Because the lesions in rheumatoid synovitis
are sites of antigenic recognition, the identification of TSP1 on
FIGURE 4 | FLS directly regulate functions of T cells in RA.
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antigen-presenting cells such as FLS suggests the central role of
TSP1 in the expansion of T cells in RA (47). Direct contact
between T cells and FLS induces the expression of HLA-DR on
FLS and CD69 on T cells in an allogeneic and autologous
manner. The addition of DAP3.B7 cells to co-cultures of T
cells and FLS alleviates the repressed allogeneic activation of T
cells (48). The allogeneic response by T cells to FLS in the
presence of DAP3.B7 cells can be blocked by inhibiting CD80
with CTLA-4 Ig (48). Strong expression of B7-H3 was detected
on FLS in synovial tissue of a patient with RA (49). Cells
expressing B7-H3 are distinct from but very close to cells
expressing CD45, CD3, and CD20. In addition, FLS and T cell
co-cultures show localization of B7-H3 in the contact section
between them but this is distinct from CD11a/CD18 (LFA-1)+ T
cells and ICAM-1+ FLS. Blocking B7-H3 on FLS affects the
interactions between FLS and T cells. Resting T cells have
upregulated IL-2, TNF-a, and IFN-g, whereas cytokine-
activated T cells exhibit downregulated cytokine production.
However, cytokine production by T cells activated via TCR is
not affected by B7-H3 (49).

4.2 Direct Regulation of FLS by T Cells in
RA
Direct contact between activated CD4+ T cells and an FLS-
facilitated hGITR–GITRL interaction lead to the upregulation of
MMP-13 (50). CII-reactive T cells induce the secretion of
chemokines (IL-8, MCP-1, and MIP-1a) through interactions
with FLS in RA joints, which is mediated by CD40L–CD40
communication (51). FKN–CX3CR1 receptor– l igand
interactions affect FLS growth and T cell functions. FLS
promote autocrine growth by releasing FKN and triggering the
activity of CX3CR1. This growth-promotion loop is amplified by
CX3CR1+ T cell-produced TNF-a upon stimulation by FKN+

FLS (52).
Mutual activation of T cells and FLS results in increased

proliferation and expression of ICAM-1 and VCAM-1 by both
CD4+ T cells and FLS (53). The interaction between CD4+ T cells
and FLS results in the upregulation of TNF-a, IFN-g, and IL-17A
from CD4+ T cells and the secretion of other cytokines, including
IL-6, IL-8, and vascular endothelial growth factor (VEGF).
Moreover, CD4+ T cells cultured in conditional medium
promote invasiveness and glycolysis in FLS while repressing
oxidative phosphorylation, with the effects paralleled by
induced glucose transporters GLUT1 and GLUT3, key
glycolytic enzymes GSK3A, HK2, LDHA, and PFKFB3, VEGF,
and MMPs, which is alleviated by the glycolytic inhibitor 2-DG
and adenosine monophosphate analogue 5-aminoimidazole-4-
carboxamide ribonucleotide (53).

Co-culture with T cells induces the phosphorylation of
protein kinase Akt (Ser473) and downstream mediators,
including GSK-3a/b, FoxO1/3a, and mouse double minute
(MDM)-2, in FLS from patients with RA (54). Co-cultured T
cells also promote the proliferation of FLS and the production of
IL-6, which is repressed by blocking antibodies to CD11a and
ICAM-2. T cell-mediated phospho-Akt upregulation is unique to
Frontiers in Immunology | www.frontiersin.org 6
FLS because no such effect is observed in B cells and dendritic
cells. Selective involvement of the LFA-1–ICAM-2 pathway has
been confirmed based on increased ezrin phosphorylation at
Tyr353 downstream of ICAM-2, which supports cell survival
through Akt activation (54).

The rapid and robust adhesion of cytokine-activated T cells
(Tck) and super antigen-activated T cells to FLS leads to
flattening and a crawling movement in T cells on the cellular
surface of FLS (55). Tck activates FLS to secret IL-6 and IL-8 in a
cell contact-dependent manner, which is further activated by IL-
17. Antibody blocking of membrane TNF-a on the Tck surface
inhibits cytokine production by FLS, demonstrating a novel
mechanism of TNF-a during T cells–FLS interactions in the
RA synovium (55) (Figure 5).

4.3 Direct Mutual Regulation of T Cells and
FLS in RA
In addition to the one-way direct regulation, there is a direct and
mutual crosstalk between T cells and FLS in the synovium of
patients with RA. This two-way communication further leads to
the development of RA (56) (Figure 6). The T cells from patients
with RA with a stronger response to CII show higher expression
of inflammatory mediators, including IL-15, TNF-a, IFN, and
IL-17. When co-incubated with RA FLS, T cells can stimulate the
secretion of TNF-a, IL-15, and IL-18 from FLS during CII
stimulation. In contrast, T cells also produce higher amounts
of IL-17 and IFN-g during co-culture with RA FLS. The crosstalk
between T cells and FLS requires direct cell–cell contact and
occurs in a CD40L-CD40 dependent manner (57).

IL-17 induces the expression of IL-32 in FLS from patients
with RA, which activates the secretion of IL-17 from CD4+ T
cells (58). IL-17 and IL-32 are co-localized near tartrate resistant
acid phosphatase-positive areas in joints from patients with RA.
IL-32 and IL-17 promote osteoclast differentiation in a
synergistic manner, and both promote osteoclast resorption via
RANKL (58).

The interactions between FLS from rats with collagen-
induced arthritis (CIA) and rat CCR7− effector memory T
(Tem) cells is regulated by KCa1.1 and Kv1.3 (59). Blocking
KCa1.1 on FLS reduces the promoting effects of FLS on the
proliferation and migration of Tem cells, and blocking Kv1.3 on
Tem cells reduces the effects of Tem cells on the expression of
KCa1.1 and MHCII and the invasion of FLS. Furthermore,
combination therapies comprising selective KCa1.1 and Kv1.3
inhibitors are more efficacious than monotherapies in alleviating
disease features of rat arthritis models (59).

Macrophage-produced PGE2 is a response to IL-17 of T cells,
which negatively regulates the expression of TNF-a and IL-17, as
well as the TNF-a/IL-1-mediated activation of FLS via EP2 and
EP4 receptors, resulting in the modulation of proinflammatory
cascades in RA (60). A CTLA4-FasL fusion protein suppresses
FLS proliferation and the development of adjuvant-induced
arthritis (AIA) in rats. However, CTLA4-FasL also acts as an
effective inhibitor for T cells; it not only inhibits the activation of
T cells but also promotes activated T cell death (61).
July 2022 | Volume 13 | Article 922111
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5 CORRELATION BETWEEN T CELLS AND
FLS IN RA

The numbers of FLS and T cells in the synovial tissue of patients
with RA are closely associated with joint damage (62). RA naiüve
T cells share hypermethylation sites with FLS. FLS-representative
DNA methylation signatures derived from blood might serve as
biomarkers of RA risk or disease status (63). In the following
section, we summarize some recent studies reporting that some
treatments for RA (Table 1) or the regulation of a specific gene/
protein (Table 2) can affect the function of both T cells and FLS
in RA.

5.1 Simultaneous Effect of an RA Drug on
T Cells and FLS
IL-21 induces the expression of Beclin-1, autophagy-related 5
(Atg5), and LC3-phosphatidylethanolamine conjugate 3-II
(LC3-II) through the inhibition of C/EBP homologous protein
Frontiers in Immunology | www.frontiersin.org 7
(CHOP) in FLS from rats with adjuvant-induced arthritis.
Berberine (BBR), an alkaloid derivative predominantly present
in Oregon grapes and shoots of barberry, represses FLS
autophagy via PI3K/Akt signaling by inhibiting autophagic
elements, p62 sequestration, and the induction of CHOP. In
addition, IL-21 induces the hyper-proliferation of FLS by
upregulating the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X
protein (BAX) ratio, which can be reversed by BBR. IL-21 also
promotes CD4+ CD196+ Th17 cell expansion via the PI3K/Akt
pathway, and BBR can repress the expansion of Th17 cells by
repressing the specific transcriptional factor RORgt in Th17 cells
in a PI3K/AKT-dependent manner. Furthermore, BBR promotes
the expansion of CD4+CD25+ Treg cells, which exerts an effect
opposite to that of Th17 cells, through induction of a specific
Treg transcriptional factor, forkhead box P3 (Foxp3), via aryl
hydrocarbon receptor (AhR) and the upregulation of
cytochrome P450 family 1, subfamily A, polypeptide 1
(CYP1A1) (64).
FIGURE 6 | The mutual regulation of T cells and FLS in RA. CIA, collagen-induced arthritis; Tem: effector memory T; AIA, adjuvant-induced arthritis.
FIGURE 5 | T cells directly regulate FLS in RA. CII:type II collagen; FKN, Fractalkine; TSP, thrombospondin.
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Silibinin, a natural polyphenolic flavonoid, represses cell
proliferation and induces the apoptosis of FLS from patients
with RA in an NF-kB pathway-dependent manner. Silibinin also
represses Sirtuin1 (SIRT1), and SIRT1 knockdown enhances
silibinin-induced apoptosis in FLS. Silibinin also inhibits
arthritis development in a CIA rat model and the secretion of
inflammatory cytokines in FLS from patients with RA. In
addition, it inhibits the differentiation of Th17 cells in vitro (65).

Single-use or combination treatment with LMT-28 (a
derivative of oxazolidinone) and metformin significantly
Frontiers in Immunology | www.frontiersin.org 8
ameliorates arthritic signs in rats with CIA by suppressing
Th17 differentiation and IL-6 signaling in FLS (66, 67). A
combination of LMT-28 and tetrahydropapaverine (THP,
benzylisoquinoline alkaloid) could attenuate RA through the
suppression of Th17 differentiation in T cells and
proinflammatory cytokine-induced inflammation in FLS (68).
Diallyl trisulfide induces FLS apoptosis, represses Th17
differentiation, and has a therapeutic effect on mice with CIA
by blocking NF-kB and Wnt pathways (69). Oroxylin A-treated
CIA mice demonstrate an upregulation of Treg cells and
TABLE 1 | The medicinal treatment regimens that can affect the functions of both T cells and FLS in RA.

Treatment T cells FLS Other Ref

BBR BBR inhibits the proliferation of Th17 cells through
downregulation of RORgt and promotes the
differentiation of Treg cells through induction of Foxp3
activation via up-regulation of AhR and CYP1A1.

BBR inhibited autophagy in AA-FLS mediated
through PI3K/Akt signaling via suppression of
autophagic elements, p62 sequestration and
induction of CHOP.
BBR inhibited the proliferation of AA-FLS via
promotion of apoptosis.

(64)

Silibinin Silibinin inhibits Th17 cell differentiation. Silibinin suppresses cell viability and increases
apoptosis of RA-FLS.
The production of inflammatory cytokines in RA-FLS
and a CIA rat model is inhibited by silibinin.

(65)

Single use or
combination
treatment with
LMT-28 and
metformin

Single use or combination treatment with LMT-28 and
metformin suppress Th17 differentiation.

Single use or combination treatment with LMT-28
and metformin and IL-6 signaling in FLS.

(66, 67)

LMT-28 and THP
combination

LMT-28 and THP combination inhibits Th17
differentiation.

LMT-28 and THP combination suppresses of IL-6 or
TNF-induced signaling pathways in RA-FLS.

LMT-28 and THP
combination inhibits
osteoclastogenesis.

(68)

Diallyl Trisulfide Diallyl Trisulfide represses Th17 differentiation and has a
therapeutic effect of CIA mice.

Diallyl Trisulfide induces FLS apoptosis of CIA mice. (69)

Oroxylin A Oroxylin A-treated mice shows an increase in Treg and
reduction in Th17 cells in the ILN.

Oroxylin A decreases the secretion of IL-1b and IL-6
from TNFa-stimulated RA FLS in vitro.

(70)

Formyl peptide
receptor agonist
Cpd43

Cpd43 inhibits the expansion, activation and
differentiation of arthritogenic effector CD4 T cells.

Cpd43 inhibits proliferation of FLS. (71)

MTX In T cell lines, MTX inhibits activation of NF-kB via
depletion of BH4 and up-regulation of JNK-dependent
p53 activity.

Inhibition of NF-kB activation by MTX is prevented by
adenosine receptor antagonists in FLS.

(72)

CP-25 CP-25 decreases the expression of BAFF-R in CD4+ T
cells.

CP-25 inhibits the proliferation and cytokine secretion
of FLS co-cultured with BAFF-activated CD4+ T
cells.

(73)

Bortezomib plus
MSC combination

Bortezomib plus MSC combination restores TLR
expression and Treg frequency in blood.

Bortezomib plus MSC combination normalizes FLS
proliferation, apoptosis and cytokine secretion.

Human UC-MSCs
suppress the
inflammatory effects of
FLSs and T cells of
RA.

(74, 75)

monoclonal BsAb
(TNF-a and
CXCL10)

The BsAb inhibited CXCL10-mediated CD8+ T cell
migration.

The BsAb inhibited TNF-a induced ICAM-1 and
VCAM-1 in FLS. The BsAb decreased the expression
of TNFSF11 and the production of IL-6 in FLS
stimulated with TNF-a and CXCL10.

(76)

FL-BsAb1/17 FL-BsAb1/17 could repress the production of IL-1 and
IL-17 in T cells.

FL-BsAb1/17 could significantly decrease the
production of IL-6 in FLS.

(73)

Huayu Tongbi
Fang

Huayu Tongbi Fang decreased GM-CSF production by T
cells.

Huayu Tongbi Fang could inhibit FLS activation. (77)

Clarithromycin As clarithromycin suppressed HLA-DR and costimulatory
molecule expression was enhanced by IFN, autologous
T cell proliferation was inhibited by clarithromycin.

Clarithromycin suppressed the production of these
cytokines including IL-1, IL-6, IL-8, G-CSF and GM-
CSF but did not enhance IL-10 production of FLS.

(78)
July 20
22 | Volume 13 | Article
Atg5, autophagy-related 5; CHOP, C/EBP homologous protein; BBR, Berberine; BCL, B-cell lymphoma; BAX, Bcl-2 associated X protein; FOXP3, forkhead box P3; AhR, aryl hydrocarbon
receptor; CYP1A1, cytochrome P450 family 1, subfamily A, polypeptide 1; SIRT, Sirtuin1; THP, tetrahydropapaverine; MTX, methotrexate; BH4, tetrahydrobiopterin; JNK, Jun-N-terminal
kinase; BsAb, bispecific antibody; CP-25, Paeoniflorin-6′-O-benzene sulfonate; BAFF-R,B cell-activating factor, belonging to the TNF family-receptor; UC-MSCs, umbilical cord-derived
mesenchymal stem/stromal cells.
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downregulation of Th17 cells in the inguinal lymph nodes.
Oroxylin A also represses the production of IL-1b and IL-6
from TNFa-stimulated FLS in vitro (70). The formyl peptide
receptor agonist Cpd43 inhibits the expansion of arthritogenic
effector CD4 T cells and FLS and reduces joint damage in CIA
and AIA mice (71).

Previous results also showed that methotrexate (MTX)
represses the NF-kB pathway in T cells and FLS. In T cell
lines, MTX blocks the NF-kB pathway by repressing
tetrahydrobiopterin (BH4) and inducing p53 in a Jun-N-
terminal kinase (JNK)-dependent manner (72). Levels of
phosphorylated RelA are decreased in low-dose MTX-treated
patients with RA. However, the MTX-mediated inhibition of the
NF-kB pathway is completely prevented by adenosine receptor
antagonists in FLS from patients with RA but not via BH4 and
JNK (72). Clarithromycin represses the secretion of cytokines
such as IL-1, IL-6, IL-8, G-CSF, and GM-CSF but does not
enhance the production of IL-10 by FLS. As clarithromycin
suppresses HLA-DR and co-stimulatory molecule expression is
enhanced by IFN, the proliferation of autologous T cells is
markedly inhibited by clarithromycin. Clarithromycin exerts a
considerable immunosuppressive effect on FLS by inhibiting co-
stimulatory molecule expression, cytokine production, and
antigen-specific T cell proliferation induced by FLS (78).

The effects of a monoclonal bispecific antibody (BsAb)
targeting TNF-a and CXCL10 was also evaluated in RA (76).
BsAb repressed the CXCL10-mediated migration of CD8+ T
cells. Further, the effect of binding of the BsAb to TNF-a was
comparable to that of adalimumab; BsAb also repressed TNF-a-
mediated cell death and the expression of VCAM-1 and ICAM-1
in FLS. BsAb was also found to inhibit TNFSF11 and IL-6 in
Frontiers in Immunology | www.frontiersin.org 9
TNF-a- and CXCL10-stimulated FLS (76). Another
recombinant IgG-like bispecific antibody (FL-BsAb1/17)
targeting IL-1b and IL-17A also showed considerable effects
for RA treatment, which could repress the secretion of IL-6 in
FLS from patients with RA (73). Paeoniflorin-6′-O-benzene
sulfonate (CP-25) decreases the expression of B cell-activating
factor, belonging to the TNF family-receptor (BAFF-R), in CD4+

T cells and represses cell proliferation and cytokine production
in FLS co-cultured with BAFF-activated CD4+ T cells (85). A
Chinese herbal formula, Huayu Tongbi Fang, also represses FL-
mediated inflammation in rats by suppressing T cells and FLS-
producing GM-CSF (77). Human umbilical cord-derived
mesenchymal stem/stromal cells (UC-MSCs) inhibit the
inflammatory features of FLS and T cells from patients with
RA and alleviate the progression of CIA, implying that UC-
MSCs can be used as a potential therapeutic strategy for RA (74).
The combination of bortezomib and MSCs rescues TLR
expression and the ratio of Treg cells in peripheral blood and
normalizes FLS proliferation, apoptosis, and cytokine
secretion (75).

5.2 Regulation of T cells and FLS by a
Common Factor in RA
CCL3 enhances the expression of proinflammatory cytokines
(including IL-6, IL-1b, TNF-a, and RANKL) in RA-FLS by
activating the PI3K/AKT signaling pathway. Moreover, CCL3
can upregulate CD4+ T cells to mediate the inflammatory
response in RA (86). Cobrotoxin (CTX) suppresses the
abnormal increase in CD4+/CD8+ T cells and inhibits T cell
proliferation. CTX also inhibits the proliferation of cultured FLS
by inhibiting the NF-kB signaling pathway (79).
TABLE 2 | Specific gene/protein that can affect the functions of both T cells and FLS in RA.

Molecule T cells FLS Other Ref

CCL3 CCL3 could up-regulate CD4
+T cells to mediate the
inflammatory response.

CCL3 enhanced the expression
level of pro-inflammatory
cytokines in RA-FLS via activation
of the PI3K/AKT signaling
pathway.

(79)

IL-21 IL-21 induced RANKL
expression in CD4+ T cells
from RA patients.

IL-21 induced RANKL expression
in RA-FLS.

IL-21 enhanced osteoclastogenesis in vitro. (80,
81)

CTX CTX suppressed the abnormal
increasing of CD4+ T cells/
CD8+ T cells ratio, and
inhibited T cell proliferation.

CTX inhibited the proliferation of
the RA-FLS via suppression of
NF-kB signaling pathway.

(79)

rhIL23R-
CHR

rhIL23R-CHR decreased
secretions of IL-17 and IL-9,
whereas FoxP3 was activated
in the process in the CIA rats.

rhIL23R-CHR repressed
proinflammatory effects on FLS.

synergetic effects with TNF-a (82)

cDHPS cDHPS restored the balance
of Th17 and Treg cells of CIA
mice.

cDHPS reduced the secretion of
pro-inflammatory mediators
related to FLS activation,

cDHPS repressed angiogenesis, articular cartilage degradation and osteoclast
differentiation, inhibited HIF-1a expression and promoted anti-inflammatory
mediator release in the joint tissues and serum of CIA mice .

(83)

DP DP suppressed
lipopolysaccharide-induced
pro-inflammatory cytokine
expression in Jurkat T
lymphocytes.

DP inhibited p65 acetylation in
MH7A cells, a human RA-FLS
line.

DP specifically inhibited the HAT activities of p300/CBP. DP-induced
hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear
localization of IKBa. Accordingly, DP treatment inhibited TNFa-stimulated
increases in NF-kB function and expression of NF-kB target genes in these cells.

(84)
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rhIL23R-CHR can be used to inhibit the IL-23-related
pathway to explore the role of IL-23 in the dysfunction of
Th17/Th9/Treg cells in rats with CIA. CIA rats demonstrate
downregulation of the production of IL-9 and IL-17 and
upregulation of FoxP3 upon rhIL23R-CHR treatment,
implying that IL-23 could alleviate the dysfunctions of Th17/
Th9/Treg cells. Furthermore, IL-23 also promotes the
proinflammatory features of FLS in vitro, showing synergetic
outcomes with TNF-a (82).

RANKL is expressed by both FLS and sub-lining T
lymphocytes (87). IL-21 promotes RANKL in CD4+ T cells
from CIA and in CD4+ T cells and FLS from patients with RA.
IL-21 also induces osteoclastogenesis by inducing RANKL
expression in CD4+ T cells and FLS in vitro (80). Another
study detected RANKL+ cells in FLS and infiltrating
mononuclear cells of synovial tissue of patients with RA (81).
Double immunostaining detected RANKL+ cells in CD3+ and
CD4+ T cells. RANKL is elevated and osteoprotegerin is lowered
in the synovial fluid of patients with RA. The ratio of the
concentration of RANKL to that of osteoprotegerin is also
upregulated in the synovial fluid of patients with RA compared
to that in the synovial fluid of patients administered oroxylin A
or with gout. In addition, RANKL+ T cells promote
osteoclastogenesis from peripheral monocytes. The promoting
function of RANKL osteoclastogenesis was confirmed by
osteoprotegerin-mediated inhibition in a dose-dependent
manner (81).

Dendrobium huoshanense stem polysaccharide (cDHPS)
alleviates the imbalance in Th17/Treg cells; represses the
production of FLS activation-associated proinflammatory
cytokines, damage to articular cartilage, the formation of
osteoclasts, and angiogenesis; reduces HIF-1a; and induces
anti-inflammatory cytokines in joint synovium and serum of
CIA mice (83) . Delphinidin represses the histone
acetyltransferase activities of p300/CBP and p65 acetylation in
MH7A cells, which are a human RA FLS cell line (84).
Delphinidin-mediated hypoacetylation is characterized by the
cytosolic accumulation of NF-kB activator p65 and nuclear
localization of the NF-kB inhibitor IKBa. Delphinidin
suppresses the TNF-a-induced upregulation of the NF-kB
pathway in MH7A cells. It also represses LPS-induced
proinflammatory cytokine production in Jurkat T lymphocytes,
implying that a histone acetyltransferase inhibitor can efficiently
suppress cytokine-mediated immune responses (84).
6 CONCLUSION AND PERSPECTIVE

T cells and FLS play an important role in the pathogenesis of RA.
T cells show a systematic disorder in patients with RA, and FLS
promote inflammation and damage the joints locally in the joint
synovium of patients with RA. However, since T cells can be
recruited to the joint synovium through blood and lymphatic
circulation, there is a possibility of interactions between the two
cellular components in the joint synovium. Recent publications
have confirmed many means of communication between T cells
Frontiers in Immunology | www.frontiersin.org 10
and FLS in the joint synovium in RA, including direct or indirect
interactions and one-way or two-way interactions, further
amplifying the severity of synovitis. Therefore, blocking this
key interaction has the potential to relieve the symptoms of
RA or even completely treat RA.

Many agents can directly affect both FLS and T cells in RA.
The dual effect of those potential drugs on FLS and T cells
presents a promising solution for the treatment of RA and thus,
should be further studied in the future. For example, blocking the
proinflammatory cytokine (CCL3, IL-21, and IL-23) pathways
will block the activation of T cells and FLS-mediated
proinflammatory effects because their receptors are commonly
expressed on T cells and FLS (88). In addition, for some
pathways that can act mutually between T cells and FLS, such
as PGE2/EP receptors and Kv1.3/KCa1.1, inhibitors that stop
these bidirectional effects should be designed and tested to
prevent the cascading proinflammatory effects and relieve the
symptoms of RA (89).

But there are still some unsolved issues with the current
research, which leads to obstacles to potential application in the
future. For example, FLS is not professional APC, and it is not
clear whether the molecular mechanism of the signals that
activate T cells is exactly the same as that of APCs, and the
interaction between FLS and different subtypes of CD4+ T cells is
also not entirely clear. Secondly, in the joint synovial tissue of RA
patients, in addition to FLS and T cells, there are many other
important cell types, including B cells, macrophages, etc., and the
interaction network between these cells also needs to be further
clarified. Finally, the interaction between T cells and FLS in most
of the literature mentioned in this review was confirmed by in
vitro experiments, and whether the same regulatory patterns still
exist in the in vivo environment require better in vivo models to
confirm. All of these issues need further in-depth study before
clinic application.
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