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Four-dimensional entanglement 
distribution over 100 km
Takuya Ikuta   & Hiroki Takesue

High-dimensional quantum entanglement can enrich the functionality of quantum information 
processing. For example, it can enhance the channel capacity for linear optic superdense coding 
and decrease the error rate threshold of quantum key distribution. Long-distance distribution of 
a high-dimensional entanglement is essential for such advanced quantum communications over 
a communications network. Here, we show a long-distance distribution of a four-dimensional 
entanglement. We employ time-bin entanglement, which is suitable for a fibre transmission, and 
implement scalable measurements for the high-dimensional entanglement using cascaded Mach-
Zehnder interferometers. We observe that a pair of time-bin entangled photons has more than 1 bit of 
secure information capacity over 100 km. Our work constitutes an important step towards secure and 
dense quantum communications in a large Hilbert space.

Long-distance distribution of quantum entanglement1–6 is essential for quantum communications. Distributed 
quantum entanglement enables two distant parties to perform communication protocols that are impossible 
with classical information processing, such as quantum teleportation7 and quantum key distributions8. Quantum 
communications using distributed quantum entangled qubits has been demonstrated over distances longer than 
100 km9–13, which can cover a communications network in an urban area. Quantum communications using 
entanglement has mainly focused on a two-dimensional bipartite state. Currently, however, high-dimensional 
entanglement—entangled qudits—is attracting much attention because its larger Hilbert space allows us to enrich 
the functionality of quantum communications protocols. Entangled qudits have been investigated on the basis 
of various optical orthogonal modes, including orbital angular momentum (OAM)14–17, frequency18–20, time21–26, 
and combinations of different optical modes, or hyper entanglement27. Entangled qudits can be used to over-
come the channel capacity limit for linear photonic superdense coding28. Furthermore, they enable us to per-
form high-dimensional quantum key distribution. Using high-dimensional entanglement, we can decrease the 
threshold of the symbol error rate and increase the information capacity of a secure channel29,30, which has been 
demonstrated with a free-space optical setup in the laboratory31. For such quantum communications over a com-
munications network, it is necessary to distribute high-dimensional entanglement. Entangled qudits have been 
distributed over 1.2 and 15 km on free-space and fibre-based optical links, respectively32,33. However, a remaining 
challenge is long-distance distribution that can cover a communications network in an urban area.

For long-distance distribution for advanced quantum communications, it is important to generate maximally 
entangled qudits efficiently. One way to do this is to exploit optical nonlinear effects. In this process, probability 
amplitudes of generated photons are often different from those of the maximally entangled state. When the dif-
ference is not negligible, a filtering process after the two-photon generation14 or complicated preparation of the 
pump light34 is required. In particular, filtering to generate the maximally entangled state reduces the generation 
rate of the entanglement, leading to a longer measurement time. Another problem is qudit degradation caused 
by various disturbances in a transmission channel. Spatial-mode-based qudits are especially vulnerable to these 
disturbances. OAM transmission over 143 km was attempted by using classical light35. However, it is necessary to 
build an active high-speed stabilization system composed of optical components for high-dimensional entangle-
ment distribution. Finally, since a qudit essentially has many parameters characterizing the state, measurements 
for qudit characterization are more complex than those for qubits. In particular, we cannot confirm for certain a 
high-dimensional entanglement with a single two-dimensional subspace measurement even if the generated state 
is a high-dimensional entanglement3,4,26.

Here we report four-dimensional entanglement distribution over 100 km of fibre. We employ time-bin entan-
gled qudits generated via spontaneous parametric down-conversion, where the maximally entangled state is gen-
erated without extra filters22,26. The time-bin state is robust against disturbances in fibre transmission regardless 
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of its dimension, which contributes to the success of long-distance distribution. Although fibre length variation 
in a long-time measurement leads to fluctuations in the photon detection times and disturbs the measurement4, 
we realize a stable measurement by implementing an algorithm that automatically tracks fluctuations of photon 
detection times. The state after fibre transmission is evaluated by using the quantum state tomography (QST) 
scheme proposed by the authors, with which we can significantly reduce the complexity of the experimental 
procedure36. We show that the four-dimensional entanglement is conserved after 100-km distribution. We also 
discuss the secure information capacity of the measured photon pair. The results indicate that the measured pho-
ton pair has a secure information capacity of more than 1 bit even after the distribution over 100 km.

Results
Experimental setup. The setup for generation and distribution of the four-dimensional entanglement is 
shown in Fig. 1a. We modulated the intensity of a continuous-wave laser light with a 1551.1-nm wavelength 
and 10-μs coherence time to generate four sequential pulses. The pulse duration, time interval, and repetition 
frequency were 100 ps, 1 ns, and 125 MHz, respectively. These sequential pulses were launched into a periodically 
poled lithium niobate (PPLN) waveguide to generate pump pulses through second harmonic generation (SHG). 
The pump pulses were launched into another PPLN waveguide to create a four-dimensional time-bin maximally 
entangled state via spontaneous parametric down-conversion (SPDC). A time-bin entangled state generated via 
SPDC is given by

⟩ ⟩ ⟩∑ψ| = | ⊗ |
=

−
c k k ,

(1)k

d

k s i
0

1

where ck is a probability amplitude satisfying ∑ |ck|2 = 1, d is the number of pump pulses for SPDC. k s and k i 
denote states where signal and idler photons exist in the k-th time slot, respectively. By modulating the pump 
pulse in the corresponding time slot, ck can be simply controlled without extra filters22,26. Here, we equalized the 
intensities of the four sequential pump pulses to generate the maximally entangled state. In our experimental 
setup, the signal and idler photons had wavelengths in the telecommunications C-band, where the photon loss in 
fibre transmission is minimized. The signal and idler photons with 1555- and 1547-nm wavelengths, respectively, 
were separated by a wavelength demultiplexing (WDM) filter and launched into 50-km optical fibre spools. We 
used dispersion shifted fibres (DSFs) to avoid broadening the pulse widths of the photons. The fibre spools for the 
signal and idler photons had 11.8- and 11.2-dB transmission losses, respectively.

After the distribution over the fibres, the signal and idler photons were sent to two receivers, Alice and Bob. 
Each receiver performed a measurement using the setup depicted in Fig. 1b. Because our measurement setup had 
polarization dependence, the receivers first compensated for the polarizations of the photons using remote con-
trollable polarization controllers and polarisers (see Supplementary Information.) After polarization compensa-
tion, the photons were launched into the measurement setup. The measurement setup was composed of 1- and 
2-bit delay Mach-Zehnder interferometers (MZIs) and two superconducting nanowire single photon detectors 
(SNSPDs). Each MZI had two input ports and two output ports. One input port of the 1-bit delay MZI was con-
nected to an output port of the 2-bit delay MZI. SNSPD 1 and 2 were connected to an output port of the 1-bit 
delay MZI and the remaining output port of the 2-bit delay MZI, respectively. The 1- and 2-bit delay MZIs had 
1- and 2-ns delay times, respectively. The phase differences between the short and long arms, θ1 and θ2, of the 1- 
and 2-bit delay MZIs, respectively, were set at either 0 or π/2 for QST. Because we employed a four-dimensional 
time-bin state and 1- and 2-bit delay MZIs, the photon could be detected in seven and six different time slots at 
SNSPD 1 and 2, respectively (see Fig. 1b). Depending on the detected time t, the index of the SNSPD, x, and phase 

Figure 1. Experimental setup. (a) Generation and distribution of four-dimensional time-bin entanglement. 
(b) Alice and Bob’s measurements. PPLN, periodically poled lithium niobate waveguide; BPF, band pass filter; 
PC, polarization controller; WDM, wavelength demultiplexing filter; DSF, dispersion shifted fibre spool; Auto 
PC, remote controllable polarization controller; Pol, polariser; MZI, Mach-Zehnder interferometers; SNSPD, 
superconducting nanowire single photon detector. The inset shows the detection efficiencies of the SNSPDs.
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differences θ1 and θ2, the photon was observed by different measurement operators θ θÊtx 1 2
 (see Methods). By 

comparing the coincidence counts and measurement operators under all possible combinations of (t, x, θ1, θ2) for 
Alice and Bob, we reconstructed the density operator of the two photons, ρ̂36. Note that we performed QST with 
only 16 measurement settings because we only changed θ1 and θ2, each of which could take two possible values. 
This significant simplification of the measurement is possible because different measurements are simultaneously 
implemented in a time-bin state measurement using delayed interferometers.

Tracking of the photon detection times. Here we describe our scheme for tracking the photon detec-
tion times. For maximally entangled time-bin qubits, we can track the fluctuation of the photon detection time 
by selecting the time slot that shows the highest single photon count in a histogram. However, this method is 
not valid for the present experiment because we have two time slots showing the highest single photon count 
at SNSPD 2. To track the photon detection time precisely and deterministically, we used the cross correlation 
function g(τ), given by

g h t T h t dt( ) ( mod 8 ) ( ) , (2)
T

i m
0

8

∫τ τ= −

where hi(t) and hm(t) are an ideal and a measured histogram of single photon counts, respectively, and T is the 
time interval between the time slots. We employed h t t kT lT( ) ( )i l k0

3
0

3 δ= ∑ ∑ − −= =  for SNSPD 1 and 
h t t kT lT( ) ( 2 )i l k0

1
0

3 δ= ∑ ∑ − −= =  for SNSPD 2, where δ(t) is the Dirac delta function. This correlation function 
returns the highest value when τ is equal to the position of the first time slot in the measured histogram of the 
single photon counts. Therefore, we can deterministically track the fluctuation of the photon detection time. The 
measured histograms of the single photon counts at the SNSPD 2 for Alice and the first time slots estimated by the 
cross correlation function with a 0.33-ns time window are shown in Fig. 2. The estimated first time slot precisely 
overlapped the first time slot indicated by the measured histogram. After this compensation, we analysed coinci-
dence counts between Alice and Bob.

Qualities of the reconstructed state. We performed coincidence measurements for QST four times after 
the long-distance distribution. The measurement time for each phase setting of the MZIs, θ1 and θ2, was 15 min; 
thus, it took totally four hours to perform each QST. The average number of photon pairs per qudit was 0.03. The 
average single photon counts at SNSPD 1 and 2 for Alice (Bob) were 3.3 and 7.7 (2.9 and 12) kcps, respectively. 
From the measured coincidence counts, we reconstructed the density operator of the four-dimensional entangle-
ment by using maximum likelihood estimation36–38. It is known that a QST using maximum likelihood estimation 
leads to large systematic errors if the number of coincidence counts is small39. In our experiment, the total coinci-
dence counts per trial was sufficiently large (>600,000), which means that such errors were expected to be small. 
The reconstructed density operator is shown in Fig. 3. All measured coincidence counts and reconstructed den-
sity operators are provided in Supplementary Data 1 and 2, respectively. Both the real and imaginary parts show 
characteristics close to the four-dimensional maximally entangled state. We also derived five figures of merit from 
the reconstructed density operators to quantify the quality of the two photon state after the distribution, which are 
summarized in Table 1 (see Methods for the definitions). The measured fidelity and trace distance were close to 
one and zero, respectively, which indicated the reconstructed state was close to the four-dimensional maximally 
entangled state. Moreover, the reconstructed state was close to a pure state because the measured linear entropy 
and von Neumann entropy were low. Furthermore, conditional entropy ensured that the measured two photons 
were not a two-dimensional entanglement. Note that conditional entropy cannot be negative without entangle-
ment40,41. In addition, the minimum value of conditional entropy for a two-dimensional two-photon state is −1 
bit. We emphasize that we obtained a conditional entropy of −1.557 bit, which is smaller than the minimum value 
for two-dimensional entanglement by eight standard deviations. These results indicate that the four-dimensional 
entanglement was conserved after the distribution over 100 km.

Figure 2. Result of photon detection time tracking. Histograms of single photon counts in long-time 
measurements at SNSPD 2 for Alice are shown. Single photon counts were accumulated in one minute for each 
histogram. The photon detection time drifted about 4 ns during the measurement, which was longer than the 
total duration of the four-dimensional time-bin state.
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Discussion
To evaluate the usefulness of the four-dimensional entanglement quantitatively, we considered the Devetak- 
Winter rate, which gives the available secure key rate in a quantum key distribution against a collective attack42. 
We assume that Alice and Bob share the mixed state ABρ̂  and an eavesdropper, Eve, has ancilla states with which 
we obtain a pure state |ψABE〉 s.t. ρ ψ ψ= | |^ ⟩⟨TrAB

E
ABE ABE . In this situation, we can define coherent information as 

ˆ ˆρ ρ〉 = −I A B H H( ) ( ) ( )c vn
B

vn
AB 42–44. Therefore, the amount of coherent information is the same as the conditional 

entropy when the sign is inverted. According to ref.42, there exists a protocol which gives a secure key rate equal 
to the amount of coherent information. In fact, this secret key rate agrees with the key rate when we use a 
d-dimensional entangled state and d + 1 mutually unbiased bases (MUBs)30. Therefore, the four-dimensional 
entanglement in our experiment can be used as a resource for up to 1.557 bits of secure keys. Although detailed 
analyses on the finite-key effect, quantum bit error rates, and security loopholes are still needed before we can use 
this as a real quantum key distribution system, this key rate gives a secure information capacity—an upper bound 
of the secure key rate with an ideal measurement setup. To use this resource for quantum key distribution, we 
need to implement at least two MUBs. One of the MUBs with respect to the computational basis {|k〉} is the 
Fourier transform basis. Recently, implementations of the Fourier transform basis for a four-dimensional 
time-bin state have been demonstrated22,45, where cascaded MZIs were employed. Therefore, our experimental 
setup can also be used for quantum key distribution with two MUBs. Furthermore, it was recently pointed out 
that the amount of high-dimensional quantum entanglement can be bounded by measurement results using two 
MUBs46. If the amount of entanglement is only the quantity that we are interested in, we can implement such 
MUBs by optimizing the MZI phases for the scheme, which would help simplifying high-dimensional quantum 
communication systems. On the other hand, it is necessary to prepare d + 1 MUBs to realize the full potential of 
high-dimensional entanglement. As long as a d-dimensional space has d + 1 MUBs, we can implement d + 1 
MUBs for a time-bin qudit in principle. For example, a multi-arm interferometer using d optical delay lines and 
d − 1 optical phase shifters, which was used to test the high-dimensional Bell-type inequality25, can be used to 
implement d + 1 MUBs. Although a practical implementation of d + 1 MUBs for a time-bin qudit remains as an 
important task, our observation of four-dimensional entanglement with more than 1 bit of coherent information 
constitutes an important step towards advanced secure and dense quantum communications over a long 
distance.

Methods
Measurement operators of the MZIs. Here, we briefly derive the measurement operator Etx 1 2θ θ

ˆ . We assume 
that the expected value of photon counts is given by ρ=θ θ θ θn N ETr( )tx tx1 2 1 2

ˆ ˆ  when a single photon in state ρ̂ is meas-

ba

Figure 3. Experimental results. (a) Real and (b) imaginary parts of the density operator reconstructed by QST. 
The data shown here were averaged over four trials. To increase readability, the local phase rotation 
^ φ φ= ∑ − | |⟩ ⟨U ik k k( ) exp ( )k s s was multiplied after averaging ρ̂, where φ was calculated from the probability 
amplitudes of |00〉 and |11〉 in the eigenstate with the largest eigenvalue.

Fidelity F( , )ˆ ˆρ σ = 0.935 ± 0.015

Trace distance ρ σ =D( , )ˆ ˆ 0.081 ± 0.019

Linear entropy H ( )lin ρ =ˆ 0.121 ± 0.026

Von Neumann entropy ρ̂ =H ( )vn 0.437 ± 0.063

Conditional entropy
H s( )c ρ̂| = −1.557 ± 0.067

ρ| =ˆH i( )c −1.557 ± 0.066

Table 1. Figures of merit for the reconstructed density operators. The errors were estimated as standard 
deviations in the four experimental trials, which means that the errors included not only statistical 
characteristics of the photon counts but also experimental fluctuations.
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ured N times (The details are described in ref.36). When a photon in time-bin state | 〉k  enters the 2-bit delay MZI, the 
state of the photon at the output port connected to the 1-bit delay MZI is M̂ k1,

2 bit

2
| 〉θ

−
, where M1,

2 bit

2
ˆ

θ
−

 is given by

ˆ
η

η
=

∑ ′ + ′ + ′

+
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−

−

( )
M

k k ke 2

2(1 ) (3)

k
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1,
2 bit 0

3
1
2 bit

1
2 bit2
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Here, η −bit
1
2  is the transmittance ratio between the short and long paths in the 2-bit delay MZI. Similarly, we 

can define measurement operators for the 2-bit and 1-bit delay MZI at the output port connected to SNSPD 2 and 
1, respectively, as follows:
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The post-selection at detection time slot t corresponds to projection measurement ˆ =P t tt . From these 
measurement operators, we can define ˆ

θ θEtx 1 2
 as follows:

η=θ θ θ θ θ θ
− − − −ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †

E M M P PM M , (6)t t t1 1,
2 bit

1,
1 bit

1,
1 bit

1,
2 bit

1 2 2 1 1 2

ˆ ˆ ˆ ˆ ˆ† †
=θ θ θ θ

− −
E M P PM , (7)t t t2 2,

2 bit
2,
2 bit

1 2 2 2

where η is another transmittance ratio that compensates for differences depending on the transmittances of the 
optical paths and detection efficiencies of the SNSPDs. The measurement operators for the coincidence counts are 
obtained by combining θ θÊtx 1 2

 for Alice and Bob and used to perform QST for two photons37,38.
The transmittance ratios 1

2 bitη − , 2
2 bitη − , and η −

1
1 bit were stable because the MZIs were fabricated by planar 

lightwave circuit technology. From the previous measurement36, 1
2 bitη − , η −

2
2 bit and η −

1
1 bit for Alice (Bob) were 

estimated to be 1.009, 0.8300 and 1.063 (0.8495, 0.8302 and 0.9669), respectively. On the other hand, η depends 
on the conditions of the SNSPDs. We estimated η from the average single photon count rates during QST to be 
0.8507 for Alice and 0.4812 for Bob.

Figures of merit for the entanglement. To characterize the measured four-dimensional entanglement, 
we used fidelity F( , )ρ σˆ ˆ , trace distance D( , )ρ σˆ ˆ , linear entropy ˆH ( )lin ρ , von Neumann entropy H ( )vn ρ̂ , and condi-
tional entropy H X( )c ρ|ˆ . Here we employed the following definitions:

ˆ ˆ ˆ ˆ ˆρ σ σ ρ σ= 





F( , ) Tr , (8)
2

D( , ) 1
2

Tr ( ) , (9)
2ρ σ ρ σ= −ˆ ˆ ˆ ˆ

H ( ) 1 Tr( ), (10)lin
2ρ ρ= −ˆ ˆ

H ( ) Tr( log ), (11)vn ρ ρ ρ=−ˆ ˆ ˆ

ρ ρ ρ| = −H X H H( ) ( ) ( ), (12)c vn vn
Xˆ ˆ ˆ

σ̂ φ φ= , (13)

where ρ̂  is the reconstructed density operator, φ| 〉 is given by ⟩ ⟩φ∑ | ⊗ |−
= ik k k2 exp( )k s i

1
0

3 , X ∈ {s, i} denotes the 
signal and idler photons, and Xρ̂  is the reduced density operator for X. Since the pump pulses for SPDC were 
generated from continuous-wave light and we calibrated the initial phase settings of the MZIs for Alice and Bob 
to maximize the extinction ratio for 1555- and 1547-nm continuous-wave light, respectively, the generated entan-
gled state had non-zero relative phases like |φ〉36. Therefore, we optimized the phase constant φ to maximize 
F( , )ρ σˆ ˆ  or minimize ρ σˆ ˆD( , ) as we calculated these quantities.

Conditional entropy is always positive if state ρ is separable40,41. Furthermore, the minimum value of condi-
tional entropy for a d-dimensional two-photon state is − dlog2  because von Neumann entropy is always positive 
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for any state and the maximum von Neumann entropy ˆH ( )vn
Xρ  is dlog2 . Therefore, a conditional entropy smaller 

than −1 bit implies that the reconstructed state is not separable and not two-dimensional.

Data availability. The data that support the findings of this study are available from the corresponding 
author upon reasonable request.
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