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Background: Cardiac dysfunction is one of the most common complications

of sepsis and is associated with the adverse outcomes and high mortality of

sepsis patients. IL-12p40, the common subunit of IL-12 and IL-23, has been

shown to be involved in a variety of inflammation-related diseases, such as

psoriasis and inflammatory bowel disease. However, the role of IL-12p40 in

lipopolysaccharide (LPS)-induced cardiac dysfunction remains obscure. This

study aimed to explore the role of IL-12p40 in LPS-induced cardiac dysfunction

and its potential mechanisms.

Methods: In this study, mice were treated with LPS and the cardiac expression

of IL-12p40 was determined. Then, IL-12p40–/– mice were used to detect the

role and mechanisms of IL-12p40 in LPS-induced cardiac injury. In addition,

monocytes were adoptively transferred to IL-12p40–/– mice to explore their

e�ects on LPS-induced cardiac dysfunction.

Results: The results showed that cardiac IL-12p40 expression was significantly

increased after treated with LPS. In addition, IL-12p40 deletion significantly

aggravated LPS-induced cardiac dysfunction, evidenced by the increased

serum levels of cardiomyocyte injury markers and heart injury scores, as

well as by the deteriorated cardiac function. Moreover, IL-12p40 deletion

increased LPS-induced monocyte accumulation and cardiac expression of

inflammatory cytokines, as well as enhanced the activation of the NF-κB and

MAPK pathways. Furthermore, adoptive transfer WT mouse monocytes to

IL-12p40−/− mice alleviated LPS-induced cardiac dysfunction and decreased

the phosphorylation of p65.

Conclusion: IL-12p40 deletion significantly aggravated LPS-induced cardiac

injury and cardiac dysfunction in mice by regulating the NF-κB and

MAPK signaling pathways, and this process was related to monocytes.

Therefore, IL-12p40 show a protective role in SIC, and IL-12p40 deficiency or

anti-IL-12p40 monoclonal antibodies may be detrimental to patients with SIC.
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Introduction

Sepsis is a systemic inflammatory response syndrome

(SIRS) caused by severe infection, surgery, burns, trauma,

etc., characterized by an imbalance between inflammatory

and anti-inflammatory responses in the body. It can cause

septic shock and multiple organ dysfunction syndrome

(MODS). Sepsis-induced cardiac dysfunction (SIC) is the

most common complication in clinical sepsis and is associated

with adverse outcomes and high mortality in sepsis patients

(1, 2). It is mainly characterized by ventricular enlargement,

myocardial contraction and/or diastolic dysfunction (3).

Although numerous studies have paved the way to understand

the underlying pathogenesis of SIC (4), the specific mechanism

is still not clear. Some studies have reported that the potential

mechanism of SIC is a result of the complex interaction of

inflammation, oxidative stress, autophagy and apoptosis (4–6)

rather than due to a single factor alone.

Previous studies have shown that cytokines participate in

the pathological process of sepsis by regulating the immune–

inflammatory response of the body. Feng et al. reported that

the patients with severe sepsis and septic shock had significantly

high serum levels of IL-6 and IL-18 (7). Furthermore, Huan

et al. reported that the expression level of IL-35 was decreased in

mouse heart tissue after treatment with LPS (8). Therefore, some

researchers have attempted modulate these cytokines to reduce

the disadvantages of the sepsis-related host response. Panacek

et al. found that the anti-TNF-α antibody afelimomab can

significantly decrease the 28-day mortality rate of sepsis patients

whose serum IL-6 level is over 1,000 pg/ml (9). Moreover, the

anti-IL-6 receptor (IL-6R) antibody tocilizumab can improve the

prognosis of critical COVID-19 patients, as it can bind to IL-6R

and block downstream signal transduction (10).

IL-12p40 is the common subunit of IL-12 and IL-23, which

are the proinflammatory factors of the IL-12 family. It can be

produced by activated inflammatory cells including monocytes,

macrophages, dendritic cells (DCs) and neutrophils (11, 12).

To date, some studies have explored the roles of IL-12p40 in

autoimmune disease (13), inflammatory responses (14), fibrosis

(15) and allograft rejection (16). However, in different diseases,

the biological effects of IL-12p40 are not fixed and depending on

the inflammatory microenvironment (17). Eriksson et al. found

that IL-12p40 deletion can protect mice from autoimmune

myocarditis (18). Yao et al. reported that IL-12p40 deletion can

induces cholangitis and fibrosis in interleukin-2Rα(−/−) mice

(19). Furthermore, Prando et al. found that patients with IL-

12p40 deficiency were susceptibility to mycobacterial disease

and salmonellosis disease (20). However, whether IL-12p40

plays a role in sepsis and sepsis-induced cardiac dysfunction is

unknown. In this study, we aimed to identify the function of IL-

12p40 in sepsis-induced cardiac dysfunction and to explore its

underlying mechanisms.

Materials and methods

Animals and experimental model

IL-12p40 knockout (IL-12p40−/−) mice with a C57BL/6J

background were purchased from the Institute of Model

Zoology, Nanjing University (imported from the Jackson

Laboratory), and wild-type (WT) mice in the same brood

were used as controls (21, 22). All mice were housed in the

specific-pathogen-free mouse room of Renmin Hospital of

Wuhan University, in which the temperature (20–22◦C) and

humidity (50 ± 5%) were relatively constant, and the mice

could freely obtain water and food. The study was approved

by the Animal Care and Use Committee of Renmin Hospital of

Wuhan University, and the Care and Use of Laboratory Animals

were performed in accordance with the NIH Guidelines revised

in 2011.

In the first experiment, male WT mice aged 8–10 weeks

were randomly divided into a Saline group (n = 10) and an LPS

group (n = 30). Mice in the LPS group were intraperitoneally

injected with 10 mg/kg LPS (055:B5, Sigma-Aldrich, USA)

(23), while those in the Saline group were intraperitoneally

injected with an isovolumetric dose of saline. Every 10 mice

in the LPS group were sacrificed with isoflurane at 3, 6, and

12 h after treatment with LPS. Mice in the Saline group were

sacrificed in the same way at 6 h after treatment with saline.

The heart tissues of all the mice were harvested, and cardiac

IL-12p40 expression levels were detected by qRT–PCR and

western blotting. In the second experiment, 8- to 10-week-old

WT mice and IL-12p40−/− mice were selected and randomly

divided into Saline + WT group (n = 10), Saline + KO

group (n = 10), LPS + WT group (n = 10) and LPS + KO

group (n = 10). Mice in the LPS + WT and LPS + KO

groups were given LPS at a dose of 10 mg/kg, while those

in the other two groups were given an isovolumetric dose

of saline. Six hours later, all the mice were anesthetized and

underwent cardiac ultrasound. After that, all of them were

sacrificed, and serum and heart tissue samples were obtained

for further measurement. In the third experiment, 8- to 10-

week-old IL-12p40−/− mice were subjected to the adoptive

transfer of WT monocytes or IL-12p40−/− monocytes (106

cells/mouse) from the tail vein (24). On the second day, all

IL-12p40−/− mice that had received WT monocytes or IL-

12p40−/− monocytes were divided into KO+WT Mono group

(n = 6), KO+WT Mono+LPS group (n = 6), KO+KO Mono

group (n = 6) and KO+KO Mono+LPS group (n = 6). Then,

mice in the KO+WT Mono+LPS and KO+KO Mono+LPS

groups received 10 mg/kg LPS, while those in the other two

groups received an isovolumetric dose of saline. Six hours

later, all the mice were anesthetized and underwent cardiac

ultrasound. Then, all of them were sacrificed, and serum and

heart tissue samples were obtained for further measurement.
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Echocardiography

The cardiac function of mice was evaluated by

echocardiography as described in our previous study (25).

In brief, transthoracic echocardiography was performed using

a Mylab30CV ultrasound (Biosound Esaote), and data on left

ventricular end-diastolic diameter (LVEDd), left ventricular

end-systolic diameter (LVESd), left ventricular end-diastolic

volume (LVEDd), left ventricular end-systolic volume (LVESd),

ejection fraction (LVEF) and fractional shortening (LVFS) were

obtained for 10–15 cardiac cycles.

Biochemical determination

The creatine kinase-myocardial band (CK-MB) and lactate

dehydrogenase (LDH) were assessed as indices of cardiomyocyte

injury. Serum concentrations of CK-MB and LDH were

detected according to the manufacturer’s instructions, and all

kits were purchased from Nanjing Jiancheng Bioengineering

Institute, China.

Quantitative real-time PCR

Total RNA was extracted from heart tissues using TRIzol

reagent and reverse transcribed to cDNA according to a

previous protocol (26). Subsequently, quantitative real-time

PCR (qRT–PCR) was performed using a LightCycler 480 (Roche,

Switzerland) according to the manufacturer’s recommendation.

The expression of glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) was quantified as an internal control. All the primer

sequences used in our study are shown in Table 1.

Western blot analysis

The extraction of protein from heart tissues and western

blotting were performed according to methods described

previously (27). In brief, the heart tissues were lysed by RIPA

buffer and ultrasound successively. Total protein was collected

from each heart sample and quantified with a BCAProtein Assay

Kit (Thermo Fisher Scientific). Then, the proteins (50 µg per

sample) were separated by SDS-PAGE and transferred to PVDF

membranes (Millipore, Beijing, China). The PVDF membranes

were then blocked for 1.5 h with specific 5% non-fat dried milk

and incubated with primary antibodies overnight at 4◦C. The

primary antibodies included anti-IL-12p40, anti-Bcl-2, anti-Bax,

anti-c-caspase3, anti-STAT1, anti-p-STAT1, anti-p-p65, anti-

p65, anti-CD14, anti-CD16, anti-ERK, anti-p-ERK, anti-p38,

anti-p-p38, anti-JNK, anti-p-JNK and anti-GAPDH. Finally,

the membranes were incubated with secondary antibodies and

scanned with an Odyssey infrared imaging system (LI-COR,

TABLE 1 All the primer sequences in this study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

ANP ACCTGCTAGACCACCTGGAG CCTTGGCTTATCTTCGGT

ACCGG

BNP GAGGTCACTCCTATCCTC

TGG

GCCATTTCCTCCGACTTTTC

TC

IL-1β GGGCCTCAAAGGAAAGAA

TC

TACCAGTTGGGGAACTCTGC

IL-6 AGTTGCCTTCTTGGGACTGA TCCACGATTTCCCAGAGAAC

IL-17 TCCAGAAGGCCCTCAGAC

TA

AGCATCTTCTCGACCCTGAA

TNF-α CCCAGGGACCTCTCTCTA

ATC

ATGGGCTACAGGCTTGTC

ACT

INF-γ ACTGGCAAAAGGATGGTG

AC

TGAGCTCATTGAATGCTTGG

GAPDH ACTCCACTCACGGCAAATTC TCTCCATGGTGGTGAAGA

CA

USA). The protein expression level of GAPDH was used as

an internal control to analyse the expression levels of the

target proteins.

Histological analysis

Hearts were arrested in 10% KCl solution immediately

after being obtained. After fixation with 10% formalin for

48 h, the heart specimens were embedded in paraffin and

then sliced into 5-µm sections. The heart injury score and

myocardial collagen volume were analyzed by hematoxylin

and eosin (HE) staining and masson’s trichrome staining,

respectively. Moreover, these sections were also subjected

to immunofluorescence staining. In brief, the sections were

incubated with primary antibodies against CD14 (R&D Systems,

USA), against CD16 (R&D Systems, USA) and against p-p65

(Abcam, United Kingdom) overnight at 4◦C. Then, the sections

were incubated with secondary antibodies [anti-rabbit HRP

reagent (Gene Tech, Shanghai, China)] and 40,6-diamidino-2-

phenylindole [DAPI (Gene Tech, Shanghai, China)]. All the

figures were captured with fluorescence microscope, and Image

Pro Plus 6.0 (Media Cybernetics, Bethesda, MD, United States)

was used for relative quantification.

TdT-mediated dUTP nick-end labeling
(TUNEL) assay

The heart specimens described above were deparaffinized

with toluene and dehydrated with ethanol according to the

procedures previously described in our previous study (28).
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FIGURE 1

LPS treatment increases cardiac IL-12p40 expression in mice. (A) Western blot analysis of IL-12p40 protein levels in the hearts of each group (n

= 5). (B) qRT-PCR analysis of IL-12p40 mRNA expression levels in the hearts of each group (n = 6). *P < 0.05 compared with the Saline group.

Then, a TUNEL kit (Millipore, United States) was used to assess

the apoptosis of myocardial tissue.

Flow cytometry

Flow cytometry of mouse spleen tissue was performed as

described previously (29). In brief, isolated cell suspensions from

spleens were filtered, centrifuged, resuspended and blocked with

a CD16/32 antibody. Then, the cell suspensions were stained

with primary antibodies for 30min at 4◦C in the dark. Flow

cytometry analysis was performed on a BD FACS Calibur flow

cytometer (BD Biosciences, San Jose, CA, USA).

Monocyte transduction

Monocytes were obtained according to previous reports (30,

31). Briefly, tibias and femurs were collected from WT and IL-

12p40−/− mice. Serum-free α-MEMwas injected with a syringe

into the bone marrow cavities of tibias and femurs to flush

out the cells in the cavities. This process was repeated several

times until all the cells in the marrow cavities were flushed

out. All bone marrow cell suspensions from IL-12p40−/− mice

were collected in a petri dish, while those from WT mice

were collected in a separate petri dish. After filtration and

centrifugation, bone marrow cell suspensions were lysed with

sterile cell lysate. Then, the bone marrow cell suspensions were

mixed with FBS, PS and α-MEM and seeded in each well of

6-well culture plates. After overnight incubation in a humid

incubator with 5% CO2, the supernatants were discarded from

the 6-well culture plates, and the adherent cells were treated

for 3 days with monocyte colony-stimulating factor (MC-SF),

FBS, PS and α-MEM. All cytokines were purchased from R&D

Systems. Monocytes were then cultured in fresh serum-free α-

MEM medium at a density of 5×106 cells/ml. These monocytes

from WT or IL-12p40−/− mice were transferred into each IL-

12p40−/− recipient mouse through the tail vein at a dose of 106

cells per mouse (24).

Statistics

All the results are presented as the mean ± SD. One-way

analysis of variance (ANOVA) or multiactor analysis of variance
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FIGURE 2

IL-12p40 deletion aggravates LPS-induced cardiac injury and cardiac dysfunction in mice. (A,B) The levels of LDH and CK-MB in serum of mice

in each group (n = 6). (C,D) qRT-PCR analysis of ANP and BNP mRNA expression levels in the hearts of mice in each group (n = 6). (E,F)

Echocardiography analysis of LVEF and LVFS of mice in each group (n = 6). (G) HE and masson’s trichrome stainings and the quantitative results

of heart tissues in each group (n =6; scale bar, 100µm). *P < 0.05 compared with the Saline group. #P < 0.05 compared with the LPS+WT

group.

was used for comparison of the mean between the groups. A p<

0.05 was considered significant.

Results

LPS treatment increases cardiac IL-12p40
expression in mice

The results of qRT-PCR and Western blot showed that

within 6 h after treated with LPS, the mRNA and protein levels

of IL-12p40 in the mouse myocardium increased gradually.

However, after 12 h, both the mRNA and protein levels of IL-

12p40 showed downwards trends. Moreover, the mRNA and

protein levels of IL-12p40 in mice treated with LPS at 3, 6, and

12 h were significantly different from those in mice in the Saline

group (Figure 1).

IL-12p40 deletion aggravates
LPS-induced cardiac injury and cardiac
dysfunction in mice

The results of biochemical determination showed that

treatment with LPS dramatically increased the LDH and CK-

MB levels in the serum of mice, and IL-12p40 deletion further

increased their levels in mice treated with LPS (Figures 2A,B).

The results of qRT-PCR also showed that the levels of ANP and

BNP in the cardiac tissue of mice were obviously increased after

treatment with LPS and were further increased after IL-12p40

deletion (Figures 2C,D). In addition, the echocardiography

results showed that treatment with LPS significantly reduced

the LVEF and LVFS of mice; however, IL-12p40 deletion

further reduced the LVEF and LVFS of mice (Figures 2E,F).

Furthermore, the histological examination revealed that the
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FIGURE 3

IL-12p40 deletion increases the phosphorylation of NF-κB and MAPK signaling pathways and aggravates cardiac inflammation in mice treated

with LPS. (A) Western blot analysis of T-ERK, p-ERK, T-p38, p-p38, T-JNK, p-JNK, T-STAT1, p-STAT1, T-P65, and p-P65 protein levels in the

hearts of mice and the ratios of p-ERK/T-ERK, p-p38/ T-p38, p-JNK/T-JNK, p-P65/T-P65, and p-STAT1/T-STAT1 in each group (n = 5). (B)

qRT-PCR analysis of IL-1β, IL-6, IL-17, TNF-α and INF-γ mRNA expression levels in the hearts of mice in each group (n =6). *P < 0.05 compared

with the Saline group. #P < 0.05 compared with the LPS+WT group.

heart injury scores of mice treated with LPS were significant

higher than those of mice treated with saline, and IL-12p40

deletion could further increase the heart injury scores of mice

treated with LPS (Figure 2G). However, there was no significant

difference in myocardial collagen volume among all the groups

(Figure 2G).

IL-12p40 deletion increases the
activation of NF-κB and MAPK signaling
pathways and aggravates cardiac
inflammation in mice treated with LPS

JAK/STAT1 and NF-κB are the signaling pathways of

inflammatory responses, while the MAPK signaling pathway

is involved in the pathogenesis of LPS-induced cardiac injury.

The results showed that LPS stimulation could significantly

increase the phosphorylation of p65, p38, ERK and JNK,

which were further increased by IL-12p40 deletion (Figure 3A).

However, neither LPS stimulation nor IL-12p40 deletion

had significant effect on the phosphorylation of STAT1

(Figure 3A). Furthermore, the qRT–PCR results showed that

the mRNA levels of the proinflammatory cytokines IL-1β, IL-

6, IL-17, TNF-α, and INF-γ were markedly increased after

treatment with LPS (Figure 3B). And IL-12p40 deletion could

further increase the mRNA levels of these inflammatory

cytokines (Figure 3B).

IL-12p40 deletion increases monocyte
infiltration

Monocytes are natural inflammatory cells and are involved

in the inflammatory response of sepsis (32, 33). Thus, we

also evaluated the infiltration of monocytes in mice. CD14

and CD16 are the surface molecules of monocytes. The

immunofluorescence results showed that the infiltration of

monocytes in the hearts of mice was significantly increased

after treatment with LPS. Interestingly, these changes were

obviously exacerbated by IL-12p40 deletion (Figure 4A).

Furthermore, the results of flow cytometry also showed

that LPS stimulation increased the infiltration of monocytes

in the spleen, which was further exacerbated by IL-12p40

deletion (Figure 4B).
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FIGURE 4

IL-12p40 deletion increases monocytes infiltration. (A) The immunofluorescence analysis of CD14 and CD16 in heart sections of each group (n

= 6; scale bar, 50µm). (B) Flow cytometry analysis of CD14++CD16+monocyte percents in spleen tissues of mice in each group (n = 6). *P <

0.05 compared with the Saline group. #P < 0.05 compared with the LPS+WT group.

IL-12p40 deletion aggravates
LPS-induced myocardial apoptosis

Western blot results showed that LPS stimulation increased

the protein expression of Bax and C-caspase3 and decreased

the protein expression of Bcl-2 in hearts. These changes

were obviously aggravated by IL-12p40 deletion (Figure 5A).

Moreover, compared with the saline group, the number of

TUNEL-positive cells in the hearts of the LPS group was

significantly increased and was further increased by IL-12p40

deletion (Figure 5B).

WT monocyte adoptive transfer alleviates
cardiac injury in LPS-treated IL-12p40–/-

mice

To explore the effects of exogenous monocytes on LPS-

treated IL-12p40−/− mice, WT or IL-12p40−/− mouse

monocytes were injected via the tail vein prior to LPS or

saline treatment. Our results showed that lower levels of

LDH and CK-MB in serum and lower mRNA levels of ANP

and BNP in the hearts were observed in LPS-treated IL-

12p40−/− mice with adoptive transfer of WT monocytes

than those in LPS-treated IL-12p40−/− mice with adoptive

transfer of IL-12p40−/− monocytes (Figures 6A–D); however,

these significant differences were not observed in saline-

treated IL-12p40−/− mice (Figures 6A–D). In addition, the

echocardiography results also showed that adoptive transfer

of WT monocytes could improve cardiac function of LPS-

treated IL-12p40−/− mice (Figures 6E,F). Moreover, the results

of histological examination indicated that adoptive transfer of

WT monocytes can decrease heart injury scores of LPS-treated

IL-12p40−/− mice but have no effect on themyocardial collagen

volume (Figure 6G).

WT monocyte adoptive transfer alleviates
myocardial apoptosis in LPS-treated
IL-12p40–/– mice

Adoptive transfer of WT monocytes into LPS-treated

IL-12p40−/− mice decreased the protein expression of

Bax and C-caspase-3 and increased the protein expression

of Bcl-2; however, these significant differences were not

observed in saline-treated IL-12P40−/− mice (Figure 7A).

In addition, LPS-treated IL-12p40−/− mice with adoptive

transfer of WT monocytes exhibited fewer TUNEL-positive

cells than those with adoptive transfer of IL-12p40−/−

monocytes (Figure 7B).
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FIGURE 5

IL-12p40 deletion aggravates LPS-induced myocardial apoptosis. (A) Western blot analysis of Bax, Bcl-2 and C-caspase-3 protein levels in heart

tissues of each group (n = 5). (B) TUNEL staining and the quantitative results of heart tissues in each group (n = 6; scale bar, 50µm). *P < 0.05

compared with the Saline group. #P < 0.05 compared with the LPS+WT group.

WT monocyte adoptive transfer inhibits
cardiac inflammation in LPS-treated
IL-12p40–/– mice

Compared to the LPS-treated IL-12p40−/− mice with

adoptive transfer of IL-12p40−/− monocytes, the levels of p-

p65 were significant lower in the hearts of LPS-treated IL-

12p40−/− mice with adoptive transfer of WT monocytes

(Figure 8A). Moreover, the inhibitory effect of WT monocyte

adoptive transfer on inflammation was further confirmed by the

results of qRT-PCR, which showed that the mRNA expression of

proinflammatory cytokines, including IL-1β, IL-6, IL-17, TNF-

α, and INF-γ were significantly down-regulated in LPS-treated

IL-12p40−/− mice with adoptive transfer of WT monocytes

(Figure 8B).

Discussion

In this study, we explored the effects of IL-12p40

deletion on LPS-induced cardiac dysfunction and elucidated

the underlying mechanisms. We found that the expression

of IL-12p40 was upregulated in mice after treatment with

LPS. In addition, our findings indicated that IL-12p40 deletion

aggravated cardiac injury and cardiac dysfunction and increased

monocyte infiltration in mice treated with LPS. Moreover, IL-

12p40 deletion enhanced the phosphorylation of NF-κB and

MAPK signaling pathways, and up-regulated the expression

of inflammatory factors. In subsequent experiments, we found

that the levels of cardiac inflammation and cardiac injury in

LPS-treated IL-12p40−/− mice with adoptive transfer of WT

monocytes were lower than those in LPS-treated IL-12p40−/−

mice with adoptive transfer of IL-12p40−/− monocytes.

The results of epidemiological statistics showed that ∼40%

of patients with sepsis have cardiac dysfunction (34). This type

of cardiac dysfunction is caused by sepsis alone and is called

SIC. Previous studies have demonstrated that the mortality rate

of septic patients with SIC is obviously higher than that of

septic patients without SIC (1, 35). Although the underlying

mechanisms of SIC have been explored by many studies,

these processes are not completely understood. Accumulating

evidence indicates that inflammatory reactions are key factors

for the initiation and progression of SIC (6). Interleukins (ILs)

play an important role in regulating the immune system of

human beings. There are more than 40 ILs which can be

divided into six families according to their biological functions.

IL-12 and IL-23 are the two proinflammatory factors of

the IL-12 family and share a common subunit of IL-12p40.
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FIGURE 6

WT monocyte adoptive transfer alleviates cardiac injury in LPS-treated IL-12p40−/− mice. (A,B) The levels of LDH and CK-MB in serum of mice in

each group (n = 6). (C,D) qRT-PCR analysis of ANP and BNP mRNA expression levels in the hearts of mice in each group (n = 6). (E,F)

Echocardiography analysis of LVEF and LVFS of mice in each group (n = 6). (G) HE and masson’s trichrome stainings and the quantitative results

of heart tissues in each group (n =6; scale bar, 100µm). *P < 0.05 compared with the KO+WT Mono group. #P < 0.05 compared with the

KO+WT Mono+LPS group.

Thus, knocking out or neutralizing the IL-12p40 subunit can

counteract the biological effects of both IL-12 and IL-23. To

date, there is growing evidence that neutralizing the IL-12p40

subunit can improve the prognosis of many patients with

autoimmune diseases by regulating the immune/inflammatory

response (36–38). In this study, we detected that IL-12p40

expression in the hearts of mice was upregulated within 6 h

after treatment with LPS; however, after 12 h, the expression

of IL-12p40 showed a downwards trend. The mechanism of

this phenomenon is unclear and may be attributed to the

inflammatory overreaction in the early stage of sepsis, followed

by immunoparalysis or immunosuppression. Moreover, we also

detected that IL-12p40 deletion upregulated the expression

of inflammatory factors and aggravated cardiac injury and

cardiac dysfunction in mice treated with LPS. Therefore, we

speculated that IL-12p40 deletion could aggravate LPS-induced

SIC in mice.

The NF-κB pathway is considered an important

proinflammatory signaling pathway and can mediate the

synthesis of cytokines, including TNF-α, IL-1β, IL-6, IL-8, etc.

NF-κB is a heterodimer and p65 is one subunit of it. Sakurai

et al. reported that IL-2 deletion leads to the development

of inflammatory colitis accompanied by enhanced NF-κB

activation (39). In addition, Wang et al. found that sevoflurane

can ameliorate LPS-induced inflammatory injury of HK-2

cells by down-regulating the expression of p-p65 (40). MAPK

signaling pathway is one of TLR4-related immune signalings

and has three major subfamilies, including ERK, JNK and

p38 (41). TLR4 is responsible for the recognition of LPS and

MAPK signaling pathway is involved in regulating cardiac
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FIGURE 7

WT monocyte adoptive transfer alleviates myocardial apoptosis in LPS-treated IL-12p40−/− mice. (A) Western blot analysis of Bax, Bcl-2 and

C-caspase-3 protein levels in heart tissues of each group (n = 5). (B) TUNEL staining and the quantitative results of heart tissues in each group (n

=6; scale bar, 50µm). *P < 0.05 compared with the KO+WT Mono group. #P < 0.05 compared with the KO+WT Mono+LPS group.

FIGURE 8

WT monocyte adoptive transfer reduces cardiac inflammation in LPS-treated IL-12p40−/− mice. (A) The immunofluorescence analysis of p-p65

in heart sections of each group (n = 6; scale bar, 50µm). (B) qRT-PCR analysis of IL-1β, IL-6, IL-17, TNF-α, and INF-γ mRNA expression levels in

the hearts of mice in each group (n =6). *P < 0.05 compared with the KO+WT Mono group. #P < 0.05 compared with the KO+WT Mono+LPS

group.
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inflammatory responses triggered by LPS (28). STAT1 is

an important mediator of biological responses induced by

inflammatory activators (42), and the JAK-STAT signaling

pathway is known as a mechanism involved in immune

regulation (43). In our study, the results indicated that the

phosphorylation of p65, p38, ERK, and JNK were significantly

increased in mice treated with LPS, and IL-12p40 deletion

further exacerbated these changes. However, neither LPS

stimulation nor IL-12p40 deletion had significant effect on

the phosphorylation of STAT1 in mice. Therefore, IL-12p40

deletion aggravates LPS-induced cardiac dysfunction in mice

by activating NF-κB and MAPK signaling pathways but not the

JAK-STAT1 signaling pathway.

Monocytes are natural immune cells that can participate

in the activation of the innate immune system and release

inflammatory cytokines and chemokines after recognized

pathogens. The cytokines include TNF-α, IL-1β, IL-6, IL-

12, IL-18, and IL-23 (44, 45), while the chemokines include

CCL2/MCP-1, CXCL8, CXCL10, CCL18, and CCL20 (46–48).

Then, these cytokines and chemokines further activate and

recruit other immune cells to the inflammation sites and trigger

a series of inflammatory responses (49). In recent years, many

studies have reported the role of monocytes in sepsis. Gainaru

et al. found that the circulating monocyte count was greatly

increased in gram-negative sepsis (32). Raffray et al. observed

that zoledronate could rescue immunosuppressed monocytes

during acute sepsis and thusmay help improve clinical outcomes

during severe infection (50). Furthermore, Sáenz et al. reported

that we could diagnose severe sepsis in the early stage by

analyzing the monocyte immunophenotype (51). In this study,

we found that the infiltration of monocytes in mice was

significantly increased after treatment with LPS. Moreover, IL-

12p40 deletion further increased the infiltration of monocytes in

mice treated with LPS.

However, the role of monocytes in LPS-induced cardiac

dysfunction in IL-12p40−/− mice still needs to be further

verified. In subsequent experiments, we transferred WT and IL-

12p40−/− monocytes into different IL-12p40−/− mice treated

with LPS. The results indicated that transfer of WT monocytes

can significantly alleviate cardiac inflammation and cardiac

injury compared with transfer of IL-12p40−/− monocytes. One

possible explanation is that WT monocytes can secrete more

IL-12 and IL-23 than IL-12p40−/− monocytes, and transfer of

WT monocytes can partially offset the loss of the biological

effects of IL-12 and IL-23 caused by IL-12p40 deletion. Thus,

monocytes can regulate LPS-induced inflammatory responses,

cardiac injury and cardiac dysfunction by secreting IL-12 and IL-

23, and their functions are different in different environments.

In conclusion, our research indicated that IL-12p40

deletion significantly aggravated LPS-induced cardiac injury

and cardiac dysfunction in mice by regulating the NF-κB

and MAPK signaling pathways, and this process may be

related to monocytes. Therefore, IL-12p40 show a protective

role in SIC, and IL-12p40 deficiency or anti-IL-12p40

monoclonal antibodies may be detrimental to patients

with SIC.
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