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Abstract: The evolutionary theory of aging supports a trade-off relationship between reproduction
and aging. Aging of the male reproductive system primarily affects the testes, leading to a decrease
in the levels of sexual hormones, alterations in sperm quality and production, and a decline in
fertility that does not necessarily involve a complete cessation of spermatogenesis. Inflammation,
oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of
age-related diseases that are frequently observed in aged testes. Although the molecular mechanisms
are still poorly understood, accumulating evidence points toward pro-inflammatory molecules and
reactive oxygen species as primary contributing factors for testicular aging. However, the real
impact of aging-related testicular alterations on fertility, reproductive health, and life span is far
from being fully revealed. This work discusses the current knowledge on the impact of aging in
the testis, particularly of aging-related dysregulated inflammation and oxidative damage on the
functioning of its different cell populations. More interestingly, this review covers the potential
benefits of anti-aging interventions and therapies using either pharmacological compounds (such
as non-selective non-steroidal anti-inflammatory medication) or more natural alternatives (such
as various nutraceuticals or even probiotics) that exhibit anti-inflammatory, antioxidant, and anti-
apoptotic properties. Some of these are currently being investigated or are already in clinical use to
delay or prevent testicular aging.

Keywords: aging; testis; inflammation; oxidative stress; apoptosis; anti-aging

1. Introduction

Aging is accompanied by numerous changes in the function of the endocrine system.
Many of these changes are very pronounced, readily detectable, and have been thoroughly
documented [1]. Recent studies have focused more on the aging-related dysregulation
observed in the inflammatory and oxidative status of the testis [2,3], which is in line with
the commonly accepted oxidation–inflammation theory of aging described for several extra-
gonadal tissues [4]. In general terms, this theory suggests that the aging process is linked
to chronic oxidative stress, which affects all cells of the organism, especially immune cells.
Thus, being unable to preserve their redox balance, cells would suffer functional losses
incompatible with suitable preservation of homeostasis that drives the over-expression or
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over-production of inflammatory markers. Overall, literature on this topic seems to support
the idea that a pro-inflammatory and pro-oxidant microenvironment is characteristic of
aged testes. Thus, in this article, we will provide an overview of the impact of aging in the
testis with emphasis on recent findings on the relevance of the oxidation–inflammation
theory of aging (Figure 1).

As men age, testicular function declines gradually, affecting not only their fertilizing
capacity but also their overall health status and quality of life [3,5–7]. However, con-
sensus on the importance of the study of the reproductive aging process, as well as the
communication of such a topic to the general public, have been, thus far, very limited.
There is controversy regarding the form in which testicular aging should be diagnosed,
treated, or even denominated; many go as far as to question its clinical entity. Although
aging constitutes a universal, multi-factorial, progressive, and irreversible process, many
attempts have been made to delay or prevent aging in general. Studies on testicular aging
are becoming more and more relevant given that, in modern societies, paternal age has in-
creased. Furthermore, age-related decline in testicular function also impacts overall health
status [3,5]. Importantly, although regional, ethnic, and socio-economic differences should
be considered, life expectancy of human males worldwide is approximately 80 years, and
it often surpasses the age of 90 years. Sexual activity continues into the eighth decade of
life for many older men, and sexuality is an important emotional and physical component
that actually ‘defines’ the quality of life in aging men [5].

Several studies, conducted primarily in animal models, have shown that the use of
specific pharmacological compounds or more natural alternatives with known antioxidant
and anti-inflammatory properties have a beneficial effect on the inflammatory and oxidative
status of the aged testis. This review will discuss the current knowledge of such compounds
(some of them, commonly used for the treatment of different pathologies) and the possible
perspectives of employing them as anti-aging therapies in the testis.

2. Testicular Aging
2.1. General Aspects of Age-Dependent Alterations in the Human Testis

The aging process of the testis is quite relative, as there is no precise clinical symptom
for the decline in testicular function. Although morphological studies of the testis of elderly
men reflect pronounced individual variations, testicular morphology is, in general terms,
profoundly altered during aging. Most studies performed in human tissue have shown de-
creased testicular volume, weight, and density [8–13], reduction of testicular perfusion [14],
occlusion and thickening of blood vessels [14,15], increased tunica albuginea weight and
thickness [8,11,16], thickening of basement membrane and an intensely collagenized and
thickened tunica propria [17–19].

Age-related changes in testicular volume are essentially prominent in the seminif-
erous tubules [20]. The decrease in length and diameter that has been reported for aged
seminiferous tubules [10,20] is the consequence of the loss of both germ cells [21–23] and
Sertoli cells [8,21,24–27]. The most frequent histological pattern of the aging testis is a
mosaic of different seminiferous tubule lesions, which vary from tubules with complete,
although reduced, spermatogenesis, to completely sclerosed tubules [10,21]. Altogether,
these reports indicate that abnormal histological structure and impaired spermatogenesis
leading to germ cell loss are always present in the aging human testis [23]. On average,
the loss of germ cells begins with the spermatids, but gradually affects the earlier stages
of germ cell line. Hence, tubules with maturation arrest at the level of the spermatocytes
or spermatogonia can be observed in aged testes [21–23]. In the meantime, in tubules
with complete spermatogenesis, numerous morphological abnormalities in germ cells have
been reported, including multinucleation originated from cell–cell fusion [16,18,21,28,29].
Differentiating germ cells only exist for the duration of one spermatogenic cycle, which,
in men, is completed within 72 days [30,31]. Thus, only spermatogonial stem cells can
be suspected to be really exposed to age-dependent processes. Very interesting studies
performed by Pohl et al. [32] in testis from men with normal spermatogenesis revealed
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age-dependent, highly specific processes taking place in aging germ cells that are clearly
distinct from somatic aging. In these studies, the authors propose aging-associated changes
in the spermatogonial dynamics, in which elevated numbers of proliferating A-dark sper-
matogonia result in a loss of quiescence of these undifferentiated cell populations, in an
effort to repopulate the testis. This decreases spermatogenic efficiency and leads to stem
cell exhaustion and, possibly, to accumulating DNA replication errors, given the already
reported decreased efficiency of DNA repair mechanisms in the aging testis revised by [33].
However, findings about DNA damage and apoptosis in the human testis are inconclu-
sive and conflicting. Both decreased apoptosis in spermatogonia [22] and increased germ
cell apoptosis [23] have been reported in aging men. Because human reproductive ag-
ing has been studied mainly without considering confounding factors like infertility or
aging-related morbidities, both of which impact spermatogenesis, very few reports can
actually claim that their results are solely aging-related changes, especially when it comes
to gamete production. In this regard, Pohl et al. [34] have recently reviewed the literature
focusing on data from healthy men or men with normal spermatogenesis, revealing an
increase in sperm DNA fragmentation, an increase in telomere length, and changes in DNA
methylation patterns in aging sperm.

It is well established that as men age, sperm production and semen quality become
altered. However, even though population-based studies frequently have a large sample
size, they generally do not screen the subjects for health problems that might affect semen
quality. For example, reproductive disorders such as hypogonadism or prostatic hyper-
plasia could affect semen and sperm parameters [35]. Therefore, careful consideration is
necessary when trying to consider such alterations as solely related to the physiological ag-
ing process. Nevertheless, several studies (including meta-analyses and studies where only
healthy men had been enrolled) have reported on significant decreases in semen volume,
sperm motility, and normal sperm morphology in older men, while sperm count tended
to decrease and sperm concentration either decreased or remained unchanged [36–39]. In
addition, the major reason for diminished semen quality seems to involve the accumulation
of reactive oxygen species (ROS) that accompanies aging [40,41].

ROS consist of both free radical and non-free radical oxygen-including molecules
such as superoxide anion (O2•−), proxyl radical (•ROO), hydroxyl radical (•OH), singlet
oxygen (1O2), and hydrogen peroxide (H2O2). To combat ROS, mammalian cells have
naturally occurring antioxidant capacity, including enzymatic factors (e.g., superoxide
dismutase 1 and 2, catalase, glutathione peroxidase, and peroxiredoxins,) as well as non-
enzymatic factors (namely, glutathione, n-acetylcysteine, vitamins E, A, and C, coenzyme
Q10, carnitines, myo-inositol, lycopene, selenium, zinc, and copper). Low levels of ROS
are necessary for normal sperm function (e.g., capacitation, hyperactivation, acrosomal
reaction, and fertilization) [42,43]. High levels of ROS can overcome the naturally occurring
antioxidant capacity in the seminal plasma and cause oxidative stress. Human spermatozoa
membranes are particularly rich in unsaturated fatty acids and are very sensitive to ROS-
induced lipid peroxidation [44].

Because ROS and the resulting oxidative stress are intimately related to apoptosis,
the increased apoptotic events that have been described in the human testis during ag-
ing [23,34] could also be, at least in part, explained by the accumulating ROS in aged
testes. As degenerating abnormal cells that arise upon aging, (such as germ cells) are
phagocytosed by Sertoli cells, an accumulation of lipid droplets in the Sertoli cell cytoplasm
ensues [21,45]. However, this is not the only change that has been reported in Sertoli cells
during aging. Multiple morphological abnormalities have been described for this cell pop-
ulation, including multinucleation [21,45], mitochondrial metaplasia [18], and reduction of
cell junctions [45], along with a marked reduction in number [8,21,24–27].

While changes in testicular volume are prominent in the seminiferous tubules, the
volume occupied by the testicular interstitium remains unchanged [10]. There have been
contradictory findings in the few studies examining Leydig cell population number during
aging. Some studies have described no change in Leydig cell number [21,24,26], while
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others have reported a reduction in both Leydig and interstitial cell number [46,47]. Re-
cently, Mularoni et al. [27] have reported that increasing age was negatively associated
with Leydig cell number. Apart from cell number, other primary morphological alterations
of Leydig cells that are normally observed in aged testes are cellular atrophy, abundant
intranuclear inclusions, multinucleation, a decrease in the quantity of smooth endoplas-
mic reticulum and mitochondria, the tendency to form small clusters, and an increase in
lipofuscins and lipids [16,18,48].

Lipofuscin is the term given to yellow-brown pigment granules composed of lipid-
and protein-containing residues of lysosomal digestion that, upon plasma membrane,
mitochondrial or lysosomal damage, can become oxidized. Lipofuscin accumulates in
post-mitotic cells due to its highly complex cross-linked structure that is not amenable to
degradation. High lipofuscin load has been implicated in cell aging [49–52]. Lipofuscin ac-
cumulation has been suggested to negatively influence cellular functions by inhibiting the
proteasome, hampering autophagy and lysosomal degradation, thus contributing to ROS
generation. Defective cytosolic protein degradation, in turn, leads to the decreased degra-
dation of pro-apoptotic proteins (including c-jun, Bax, and p27), triggering the initiation of
the apoptotic cascade [53].

According to the oxidation–inflammation theory of aging, there is an underlying
interdependence between oxidative stress and the occurrence of inflammatory processes in
the age-related impairment of the functions of organisms. In fact, inflammation has been
reported to be strongly associated with aging. The term “inflammaging”, which implies
the occurrence of a global reduction in the capability to cope with a variety of stressors
and a concomitant progressive increase in the pro-inflammatory status [54], is presently
used to describe the up-regulation of the inflammatory response that takes place with
advancing age. Increased circulating levels of pro-inflammatory cytokines (e.g., IL-1β
IL-6, IL-18, TNF-α) and activation of certain immune cells have been reported in older
people [55–57]. However, to our knowledge, there are no reports on testicular expres-
sion levels of inflammatory markers in aged human testes. Such analysis has only been
conducted in experimental animals, which we will discuss later on.

Autophagy is an evolutionarily conserved process for cellular homeostasis through
the degradation of long-lived proteins and functionally redundant or damaged intracel-
lular organelles in lysosomes. Reduced autophagy is associated with accelerated aging,
aging-related frailty and diseases, while enhanced autophagy partially protects cells from
the natural aging process [58] and delays aging-related frailties [59]. New data suggest
that elevated autophagy may suppress the activation of the NLRP3 inflammasome and
reduce NLRP3-related inflammation [60]. In this context, protective effects of autophagy
in inflammatory diseases associated with NLRP3 inflammasome have been reported,
including gouty arthritis and familial Mediterranean fever. In contrast, autophagy dys-
function can lead to diseases featuring excessive activation of NLRP3 inflammasome and
hyper-inflammation [60]. Inflammasome signaling pathways also regulate the autophagic
process for maintaining the balance between defensive inflammatory responses and the
prevention of excessive and detrimental inflammation [60]. Whether autophagic dys-
function is involved in aging-related testicular alterations observed in men needs to be
further addressed.

Perhaps the most significant change in male reproductive aging that is directly as-
sociated to aging-dependent alterations in the human testis has to do with the decline in
its endocrine function, namely the decline in testosterone production. In this context, a
study from Bremner et al. [61] have demonstrated that not only there was a clear decrease
in serum testosterone levels in healthy old men compared to those of young men, but that
the early morning rise in testosterone levels characteristic of young men was not present in
old age. Previous reports using single blood samples obtained in the morning (8–10 a.m.)
have also shown a decrease in plasma testosterone levels in aged men compared to those
found in young men [62–64]. Moreover, in recent years, longitudinal studies have reported
greater annualized declines in plasma testosterone and DHT in older men (transitioning
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from 8th to 9th decades) over a 5-year follow-up when compared to younger men [65].
In contrast, a study from the 80’s comparing serum testosterone levels in normal aging
men and normal young men had failed to show significant differences [66]. A plausible
explanation for such discrepancies could be associated with the time chosen for sample
collection and the impaired circadian rhythm in serum testosterone levels in aging men.
Concomitant with reduced testosterone synthesis, elderly men, who are otherwise healthy,
have increased serum levels of hormones that stimulate testosterone synthesis, such as
LH and FSH. In addition, testosterone metabolites like estradiol, as well as inhibin, which
is a factor involved in the negative feedback loop controlling testosterone synthesis, are
significantly lowered [67,68]. The androgen deficiency that occurs with aging is referred to
as late onset hypogonadism and is characterized by many disorders including low libido,
erectile dysfunction, infertility, gynecomastia, hot flashes, low energy, sleep disturbance,
depressed mood, impaired cognition, osteoporosis, and loss of muscle mass or increased
body mass index [69]. Altogether, these symptoms constitute an impairment of health
and quality of life. Consequently, elucidating the underlying mechanisms of testicular
aging and identifying interventions that might slow down or postpone this process is a
significant unmet health issue.

2.2. Animal Models for the Study of Testicular Aging: What We Know So Far

Given the poor, and sometimes ethically impeded, access to fresh, disease-free testic-
ular tissue from old men, it has been rather difficult to obtain data on isolated testicular
cell population physiology and the corresponding underlying regulatory mechanisms
involved in their proposed impaired function during aging. Although there is conflicting
evidence about the extent to which aging is a process that is similar across all organisms
or particular to each species [70], the integrative understanding of aging implies that a
diversity of model organisms will be essential to achieve a full understanding of the aging
process. In fact, model organisms have been vital to the common goal of identifying
and understanding the molecular, cellular, and environmental factors affecting longevity
and improving healthspan. While many different non-human organisms have been used
to explore the aging process (e.g., yeast, roundworms, and fruit flies), rodents (such as
mice and rats) are routinely the models of choice. From the perspective of aging biology,
several life characteristics make rodents an extremely appealing group for comparative
studies, from the diversity in their maximum lifespans, to the many similarities they share
with aging in humans. Furthermore, their short lifespans (compared to humans) and the
ability to control environmental exposure create opportunities for regulatory up-regulation
of lifespan.

Studies in human populations have explored longevity candidate genes; a small but
growing number of gene variants contributing to known longevity mechanisms has been
established, including genes related to stress resistance, metabolism, and cellular division.
In addition, over the last few decades, the relative ease of manipulating genes of interest
has allowed for the development of organisms with specific genetic mutations to address
the mechanistic aspects of longevity. Genetically-modified rodents have proven to be a
powerful tool for the study of aging. For reviews, see [70–76]. However, the manipulation
of some of these genes, although contributing significantly to ameliorating age-related
alterations in different tissues, has not had a real impact on longevity itself. It is inherently
difficult to determine which of the molecular, cellular, morphological, and functional, or
“whole-animal” characteristics represent mechanisms of delayed/accelerated aging and
which should be regarded as markers of younger/older biological age. Consequently,
although mouse models of accelerated aging may not fully model the natural aging process,
they have been employed as alternatives to shed light on the mechanisms underpinning
degenerative processes associated with aging. Here, we will address the most relevant
animal models that have shown alterations at the testicular level.

The age-related decline in circulating GH (growth hormone) levels in men is inter-
preted both as a symptom of neuroendocrine aging (as one of the causes of altered body
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composition and other unwelcomed symptoms of aging) and as a mechanism of natural
protection from cancer and other chronic diseases. Importantly, there is increasing ev-
idence that isolated genetic GH deficiency and GH resistance in humans protects from
age-related disease [77,78] and extends healthspan assessed by a variety of criteria [78].
Very interestingly, it was shown early on that mutations in the GH/IGF-1/mTOR (growth
hormone/insulin-like growth factor-1/mammalian target of rapamycin) pathway could
lead to animals with extended or reduced lifespan. In fact, reduced somatotropic signal-
ing was associated with extended longevity while overexpression of GH was associated
with reduced longevity; for reviews, see [79,80]. In this context, GH transgenic (Tg) mice
and mice with various progeroid syndromes offer opportunities to study the effects of
accelerated aging on reproductive functions [81–83].

In contrast, association of reduced GH signaling and remarkably extended longevity
was subsequently described in mice with hypopituitarism (including GH deficiency),
in mice with isolated genetic GH deficiency, and in mice with GH resistance [84–87].
The Snell dwarf and Ames dwarf mice with mutations in the Pit-1 and Prop-1 genes,
respectively, as well as the GH receptor knockout (GHRKO) and the GH releasing hormone
knockout (GHRHKO) mice, are classical animal models with delayed aging [83,88–92].
GH-deficient dwarf rats have also been studied [93]. Testicular aging analyses performed
on some of these genetically modified rodent models have allowed us to report very clear
aging-related alterations in the testis and a negative association between longevity and
inflammatory processes, oxidative state, and apoptotic events. Thus, in long-lived (Ames
dwarf and GHRHKO) mice, we described the down-regulation of apoptotic germ cell
number, macrophage cell number, cyclooxygenase 2 (COX2) expression, prostaglandin
D2 (PGD2) production, and lipid peroxidation, [83]. Conversely, mice with decreased
longevity (GH-Tg) displayed up-regulation of germ cell apoptosis, macrophage cell number,
IL-1β, NLRP3, and COX2 expression, PGD2 production, lipid peroxidation, and catalase
expression [83] and unpublished data. GH-Tg mice also display Leydig cell hypertrophy
with well-developed cytoplasmic lipid droplets, as well as some seminiferous tubules with
arrested spermatogenesis [94], because normal levels of GH promote the generation of
proper numbers of mature Leydig cells. The very evident inverse association of COX2
expression and longevity was confirmed with the development of an inducible COX2-Tg
mouse model [95] in which post-natal over-expression of COX2 led to short-lived mice
that displayed a panel of aging-related phenotypes with increased cellular senescence in
virtually every tissue, including the testes. Moreover, COX2-Tg males showed reduced
testicular size and number of mature spermatozoa [95].

A different, new example of a genetically modified animal model is the senescence-
accelerated mouse prone 8 (SAMP8). This mouse strain is exposed to elevated levels
of oxidative stress from an early age in various tissues, including the testes [96]. Using
SAMP8 and SAMR1 (senescence-resistant inbred strain, the normally aging control group
for SAMP strains) mice, Zhao et al. [97] have recently demonstrated that oxidative stress
and chronic inflammation are involved in the decline in testosterone production both
in vivo and in vitro in aged Leydig cells. Their results highlight the importance of COX2 in
the regulation of the age-related decline in testosterone synthesis by providing evidence
that activation of two signaling pathways, NF-κB and p38 MAPK, leading to COX2 up-
regulation is functionally linked to the oxidative stress response and chronic inflammation
commonly observed in aging. In addition, Sprague Dawley rats over-expressing Regucalcin
(Rgn, a Ca2+-binding protein also known as senescence protein-30) have shown some signs
of delayed aging, mainly regarding sperm quality [98]. These include a higher percentage of
viable sperm, a lower total amount of oxidant molecules and decreased lipid peroxidation
relative to their wild-type littermates [98].
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Another illustration of a genetically modified animal model that is not only short-lived,
but which also displays signs of premature testicular aging is CDGSH iron sulfur domain
2 (Cisd2)-deficient mice. Cisd2 is a redox active protein localized to the endoplasmic
reticulum. It is considered to be relevant for the maintenance of endoplasmic reticulum
and mitochondrial structure and function; its expression decreases with age [99]. The
alterations that have been reported in Cisd2-deficient mice include reduced Leydig cell
and Sertoli cell number, decreased circulating testosterone, increased LH/testosterone
ratio, and decreased expression of steroidogenic mRNAs (Lhcgr, Star, Cyp11a1, Hsd3b6,
Cyp17a1, Hsd17b3), appropriately modeling primary testicular dysfunction observed in
aging men [100].

New evidence is being reported that necroptosis mediates, at least, some of the
alterations observed in aged testes. Receptor-interacting protein kinase 3 (RIPK3) is one
of the kinases involved in the activation of necroptosis, which is a form of programmed
necrotic cell death caused by the tumor necrosis factor family of cytokines [101]. Upon
activation, RIPK3 phosphorylates pseudokinase mixed lineage kinase domain-like (MLKL),
causing it to form oligomers and translocate to the plasma membrane, where it disrupts
membrane integrity, resulting in necrotic cell death. While conducting a study analyzing
the impact of necroptosis on the progression of atherosclerosis [102], a group of authors
found that the testes of kinase RIPK3 knockout mice looked remarkably young, even at
advanced ages. A comprehensive follow-up study [103] revealed that the RIPK3-dependent
phosphorylation of MLKL is detected in spermatogonial stem cells in the testes of old, but
not young, wild-type mice. They also reported that in aged wild-type mice, the number of
cleaved caspase-8 and cleaved caspase-3 positive cells decreased within the seminiferous
tubules, but increased in the Leydig cell population. This reduction in caspase-8 may
explain how it is that necroptosis, but not apoptosis, occurs in the seminiferous tubules of
aged mice.

In addition, mice with genetically Leydig cell-specific impairment of autophagy (Atg7
or Atg5 knockout) display aging-related alterations in the Leydig cell population, such
as decreased number of mitochondria, uptake of cholesterol and testosterone synthesis,
which ultimately lead to a reduction in serum testosterone levels in these animals [104].

Chemically-accelerated reproductive aging rodent models have also been used in
the last few decades, mainly the D-galactose (D-gal)-injected model, which is typically
established by administering consecutive subcutaneous D-gal injections to animals for ap-
proximately six to eight weeks. Although it has been frequently used for aging research in
extra-gonadal tissues, it has not been extensively used for studies of testicular aging. D-gal
is a reducing sugar that normally exists in the body. However, when D-gal concentration
exceeds normal levels, it is converted to aldehydes and H2O2 [105]. Studies performed
on D-gal or D-gal/NaNO2 injected mice or rats have shown decreased testicular weight
and volume [106,107], decreased sperm count, increased numbers of immotile and abnor-
mal sperm [106–111], reduced serum testosterone levels [106,110–113], increased apop-
totic index [107,110], increased lipid peroxidation [108,110–114], decreased total antioxi-
dant capacity [111,113,114], increased expression of pro-inflammatory cytokines TNF-α,
IL-1β and IL-6 [110] and activation of the p19/p53/p21 pathway, which is associated to
senescence [110,111].

However, the use of physiologically aged animals is still a very desirable aim for
researchers in testicular aging as a way of validating the different alterations found in
the testes of genetically modified organisms. In this context, the male Brown-Norway
rat is generally used as a model for reproductive aging, given that it does not become
obese and it experiences fewer age-related tumors of the endocrine or reproductive system
than other rat strains, thus providing a disease-free model for studying male reproductive
aging [115]. Testicular morphometry showed age-related reductions in tubule diameter,
decreased total sperm count, and smaller Leydig cell volume [115–118]. With the use of
electron microscopy and tracers, disruption of the functional integrity of the blood–testis
barrier was reported in this model, along with striking changes in the appearance of
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Sertoli cells [119]. Microarray and protein analyses revealed lower expression levels
of adherens junctions-related proteins, including Jam2, Ocln, cdh2, ctnna, cldn11, and
some GTPases (Rac1 and cdc42) involved in the recruitment of cadherins to the adherens
junctions [120]. These structural alterations have substantial effects on spermatogenesis.
However, perhaps the most significant use of this experimental model has to do with
the extensive analysis of testosterone biosynthesis during aging. Interestingly, in the
Brown-Norway rat, testosterone levels decrease with age despite unchanging LH and
increasing FSH levels, just as was reported in aging men, but without loss of Leydig
cells [115–118,121,122]. Early studies have demonstrated that testicular fragments, as
well as Leydig cells purified from aged Brown-Norway rats, exhibit a reduced maximal
hCG-stimulated testosterone production compared to those of young adults [123,124]. In
this context, multiple defects have been identified in the steroidogenic pathway of aged
Leydig cells, including decreased LH-stimulated cAMP production, reduced expression
and/or activity of key players in the steroidogenic pathway (Star, Tspo, Cyp11a1, Hsd3b,
Cyp17a1, Hsd17b), decreased autophagic activity of Leydig cells, and increased cellular
lipofuscin accumulation [125–133]. Interestingly, aged Brown-Norway rat Leydig cells
showed increased expression of Cox [121,126,133] and decreased testicular expression of
antioxidant defenses (Catalase, Sod1, Sod2, Peroxiredoxin1, GSH) [134,135].

Sprague Dawley [135–138] and Wistar rats [130,139,140] have also been used as phys-
iologically aged models by several authors. The effects of aging resulted in decreased
sperm count [136–138], viability [137], and kinematics [138], reduced testosterone serum
levels [139], testicular weight [137], seminiferous tubules size [138], testosterone concentra-
tion [137] and expression levels of antioxidant defenses (Gpx4, Prx4, Gstm5, Sirt1) [138],
endoplasmic reticulum stress and unfolded protein response proteins (Grp78, Atf6, Atf4,
p-Perk, p-Ire1, and Xbp1) as well as increased endoplasmic reticulum stress-related apopto-
sis proteins expression (Caspase 12, Chop, and Caspase 3) and TUNEL-positive apoptotic
germ cells [137]. Aged Leydig cells also showed increased lipid peroxidation, reduced
glutathione levels, lower expression levels or catalytic activity of antioxidant enzymes
(Sod1, Sod2, Gpx1) [134], and decreased autophagic activity of Leydig cells [130]. Inter-
estingly, autophagy has been reported to be involved in the maintenance of testosterone
levels in the rat testis during aging, because treatment with rapamycin, an autophagy
activator, enhanced LH-stimulated steroidogenesis in Leydig cells from aged, but not
young rats [130].

Naturally aged mice (e.g., C57BL/6, Swiss mice) have also been employed in testicular
aging studies, showing decreased serum testosterone levels alongside signs of increased
testicular inflammation (higher levels of IL-1β and IL-6) and interstitial senescence (i.e.,
up-regulation of p53, p21, p16, and TGF-β expression and increased nuclear translocation
of transcription factor FOXO4 in aged Leydig cells) [141]. Age-related changes in the
expression levels of key steroidogenic components (decreased Star, Cyp11a1, Cyp17a1, and
Hsd17b1), endoplasmic reticulum stress markers (increased Grp78 and Chop), and antioxi-
dant defenses (decreased Sod2, Gpx4, and Sirt1) were reported in testicular tissue [142].
Because knocking out Nrf2, a master regulator of phase 2 antioxidant genes, further re-
duces serum testosterone levels [143], these results support the hypothesis that, over time,
increases in oxidative stress contribute to, or cause, the reduced testosterone production
that characterizes aged Leydig cells. Some authors have also, reported increased apoptotic
events [103] and ROS levels [144] in aged mouse Leydig cells. In addition, an increased
number of testicular macrophages were reported [138] and the typical interdigitations
between testicular macrophages and Leydig cells were not found in the testis of aged
mice [145]. Additionally, lipofuscin granules, like those found in Leydig cells from aging
mice, were observed in the cytoplasm of testicular macrophages [145]. Because of their in-
tense oxygen metabolism and being an important source of ROS production, mitochondria
have been frequently implicated in lipofuscinogenesis. However, although mitochondria
of murine aging testicular macrophages progressively diminished in number and accumu-
lated lipofuscin granules, they generally preserved normal morphology [145]. Since the
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appropriate microenvironment, formed by macrophages and other interstitial components,
is necessary for Leydig cell steroidogenesis [132], increased number of macrophages in the
testes of aged animals might result in the disruption of Leydig cell endocrine function.

Lately, other naturally-aged experimental models have been employed in the studies of
testicular function. These included non-human primates, the rhesus macaque [73,146,147]
and the common marmoset [73,148,149], as well as alternative rodent species, such as
naked mole-rats [150,151] and Syrian hamsters [152]. However, studies that focused mainly
on age-related alterations in the testes of these experimental models are either scarce or
non-existent. For instance, the naked mole-rat has an extraordinary maximum lifespan
of 30 years, showing very few age-associated deficits and maintaining high locomotory
activity, heart health, bone quality, and reproductive capacity for about 75% of their
lifespan [150,151,153]. Although interest in naked mole-rats has increased dramatically
over recent years because of their many unusual traits, none of the reports have addressed
testicular aging per se; they have focused on the differences between the breeder and
non-breeder males of this species [153–155].

Non-human primate models are of particular interest for pre-clinical testing due to
their close evolutionary history with humans. Old World apes such as chimpanzees are very
long-lived, with animals in captivity living up to 60 years, making it difficult to employ
them in aging-related research. Additionally, they have been classified as endangered
species by the International Union for Conservation of Nature (IUCN). Thus, although they
are the closest living relatives of humans, research using chimpanzees has virtually stopped.
New World monkeys such as the common marmoset (Callithrix jacchus) are the shortest-
lived anthropoid primates. With an average lifespan of 5 to 7 years and a maximum lifespan
of 16.5 years, they have become a standard non-human primate aging model [147] and
have been used in some interesting studies. Regarding testicular aging, testosterone has
been found to decrease in aging male marmosets, but they remain capable of reproduction,
and no known phenotypic changes are associated with the decreased testosterone [147,156].
More recently, using a mass spectrometry-based proteomics approach, a comprehensive
analysis of age-related alterations in the testicular proteome of the common marmoset
has been reported [157]. Findings included an increase in the levels of anti-proliferative
proteins (e.g., Cdkn2a, Prelp, and Ogn) and actin-binding proteins that inhibit contractility
and thus presumably affect the function of testicular peritubular cells (namely, Cnn1, Cald1,
and tropomyosins). Moreover, immunostaining studies have revealed increased collagen
deposition in the testes of old animals, which is associated with fibrosis. By isolating
testicular peritubular cells from young Callithrix jacchus testes and culturing them for a
low (2–3) or high (>10) number of passages, an in vitro model of cellular senescence was
established. An in-depth proteome analysis of these cell cultures revealed that senescent
testicular peritubular cells had lower expression levels of proteins involved in smooth
muscle activity (mainly, Cnn1, Acta2, Myh11, and desmin). In addition, the secretome
analysis showed decreased abundance of several proteins (e.g., fibronectin, laminins,
collagens, peroxiredoxin 4, superoxide dismutase 1 and 2) [158].

The Syrian hamster (Mesocricetus auratus) is one of the most widely used rodents
for biomedical research, representing 13% of total laboratory animals used to investigate
human diseases [159]. Because of the phylogenetic similarities that hamsters and humans
share, Syrian hamsters have several advantages over other rodents and have therefore
become the preferred model for the study of several human diseases, such as cancer,
atrial thrombosis, epilepsy, muscular dystrophy, periodontal, pancreatic and inflammatory
diseases [159]. However, there were very few studies of testicular aging in this species.
Our group has described that, although body weight, testicular weight, testicular volume,
and testicular density remained unchanged throughout the aging process in our hamster
colony, we detected a significantly higher number of seminiferous tubules in aged hamsters
(18–22 month-old) than in young adult animals (5 month-old) [152]. Mukherjee and
Haldar [160], however, did detect significantly reduced testicular weight in aged hamsters
(24 month-old). Using Picrosirius red staining and polarization microscopy we were
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able to showcase the increased fibrotic thickening of the tubular wall and the higher
level of disorganization of the collagen-containing tubular wall in aged hamsters [152].
Classic inflammatory markers were significantly increased in testes of aged hamsters in
comparison to young animals. They included IL-1β, NLRP3, and COX2 expression, as
well as PGD2 production and testicular macrophage numbers [152]. Regarding the redox
status of aged Syrian hamster testes, our group reported an age-dependent increase in
testicular lipid peroxidation and antioxidant enzyme catalase expression [152], along with
a marked decrease in testicular concentration and content of the naturally occurring non-
enzymatic antioxidant melatonin [152]. Mukherjee and Haldar, [160] also reported lower
testicular melatonin concentration and higher levels of lipid peroxidation in aged hamsters;
however, the activity of antioxidant enzymes (Sod, Catalase, Gpx) was decreased in their
animals. They also showed the age-related decrease in plasma testosterone levels and
testicular expression of steroidogenic components (Star and Cyp11a1) and the subtype
1 melatonin receptor. In a different study, no histological differences were detected between
the interstitial tissue of young and old hamsters unless transmission electron microscopy
was used. In aged animals, Leydig cells exhibited signs of cellular degeneration, with
fewer mitochondria, a greater number of lysosomes, a strongly vacuolated cytoplasm,
and numerous clumps of chromatin, while macrophages were characterized by numerous
cytoplasmic extensions and slightly kidney-shaped heterochromatic nucleus. However,
Leydig cells and macrophages maintained contact through cytoplasmic projections from
the Leydig cells located in cytoplasmic invaginations of the macrophages [161].
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3. Interventions to Reverse Aging-Related Testicular Alterations

There have been a number of reports on the beneficial effects of different interventions
on the structure and/or function of the human testis, but mostly in pathological conditions
such as testicular torsion, ischemia/reperfusion, diabetes, and idiopathic infertility, or by
following the exposure to various toxic agents (e.g., cadmium, cyclophosphamide, busulfan,
methotrexate, liponavir, bisphenol A or microwave radiations). To our knowledge, there is
no available information about successful interventions that have been implemented in
elderly men to improve testicular function. For this reason, this review will only focus on
those reports that have addressed some aspects of testicular aging using either naturally,
chemically-induced or, genetically-accelerated aged animals (Figure 2).

3.1. Common Anti-Inflammatory Drugs

We failed to find information regarding potential actions of steroidal drugs (e.g., pred-
nisone, cortisone, and methylprednisolone) on the aging testis. In contrast, some studies
have investigated the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) in cellular
and animal models of testicular aging. Incubation of aged Leydig cells in the presence
of the COX2 inhibitor NS398 led to a significant increase in testosterone production [121].
Furthermore, in aged rats fed the COX2 inhibitor DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-
(4-methylsulphonyl)phenyl-2(5H)-furanone], blood testosterone concentrations and tes-
ticular StAR expression levels increased over those found in rats receiving no DFU [121].
These results were expected, given that aged testes and aged Leydig cells express higher
levels of COX2 [83,121,126,133,152] and that PGF2α was reported to inhibit hCG-induced
testosterone production in hamster Leydig cells [162,163]. Although the impact of other
NSAIDs such as indomethacin, paracetamol, aspirin, and ibuprofen on testes is currently
being studied in young and middle-aged men, no data on the impact of these drugs on
testicular aging are available at present. It is discouraging that all four of these mild
analgesics were shown to cause multiple endocrine disturbances in organo-cultured adult
human testis [164–166] and human testicular peritubular cells [167].

3.2. Common Antioxidant Compounds

Several studies have indicated that common oral antioxidants (e.g., vitamin C, vitamin
E, vitamin D, selenium, folate, zine, and carnitine) improve sperm quality (i.e., sperm
count, motility, and morphology) both in men and in animal models reviewed by [168,169].
However, these studies have been focused on infertility-related sperm characteristics in
young, rather than older, men. In addition, individual studies investigating the therapeutic
effect of such products in aged experimental animals are scarce.

With age, renal synthesis of 1,25-dihydroxy-vitamin D3 or calcitriol (the active form of
vitamin D) declines. Vitamin D supplementation has been found to alleviate the manifes-
tations of male reproductive aging. Jeremy et al. [107,114] subcutaneously administered
vitamin D (40–400 UI/kg) twice a week for 6 weeks to D-gal-induced aged rats. Their
studies show that vitamin D supplementation resulted in a decrease in apoptotic germ cells,
and an increase in proliferating germ cells. Vitamin D also significantly decreased testicular
peroxidation and increased the activities of antioxidant enzymes Sod and catalase [107].
In addition, the administration of vitamin D to D-gal-induced aged rats produced sig-
nificant improvements in sperm parameters, testicular histology, and serum testosterone
levels [114].

Melatonin exerts antioxidant actions in many, and likely all, species. It has been proposed
to have evolved as an antioxidant to protect organisms from the increasing concentration
of oxygen in the environment and the free radicals that naturally ensued. Melatonin is also
known to have anti-inflammatory, anti-apoptotic, and anti-cancer actions, reviewed by [170].
Melatonin is a neurohormone that is produced primarily by the pineal gland; however, it
can reach the testis, pass through the blood–testis barrier and directly modulate testicular
activity [171]. Testicular melatonin levels show an age-dependent decrease at least in Syrian
hamsters [152,160]. To the best of our knowledge, our studies [152] and those of Muratoğlu
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et al. [172] and Mukherjee and Haldar [160] were the only ones that addressed the potential
effects of melatonin on testicular histology/function in naturally aged animal models.

Muratoğlu et al. [172] used aged Wistar albino rats that were subcutaneously injected
(in the afternoon) with either melatonin (10 mg/kg) or saline over a period of 21 days.
In their study, the authors reported that melatonin partially reverted the characteristic
atrophic lesions of aged testes, increased the germinal epithelium height and reduced
the number of TUNEL-positive apoptotic cells compared to non-treated aged rats. In
contrast, melatonin administration did not reverse the aging-related increase in lipid
peroxidation, an unexpected result considering the unequivocally antioxidant properties of
melatonin. The authors used a dose of melatonin based on previous studies from Akbulut
et al. [173] in which melatonin seemed to have some antioxidant effect on the gastric
mucosal tissue of aged rats. However, the time of melatonin administration is crucial, at
least for studies involving steroidogenic-related alterations. In this context, no significant
changes in the levels of serum testosterone have been recorded in melatonin-treated aged
rats by this group [172]. This outcome was unexpected because melatonin was shown
to dose-dependently inhibit hCG-induced testosterone production in vitro [174,175], and
afternoon melatonin injections, even a single dose, were reported to inhibit testicular
steroidogenesis in rats [176]. Unexpectedly, aged Syrian hamsters that received a daily
morning (10 a.m.) intraperitoneal 10 mg/kg dose of melatonin at 10:00 a.m. for 7 days did
experience a significant increase in plasma testosterone levels and testicular Star expression.
However, in this study, testicular melatonin concentration did not increase following
intraperitoneal melatonin administration, suggesting that some of the beneficial effects of
melatonin administration might not be due to the actions of melatonin itself [160].

As stated before, the intervention methods for assessing the possible beneficial effects
of melatonin in testicular aging have been subcutaneous or intraperitoneal injections. This
approach may not have been optimal because it can lead to potential adverse effects on
animal well-being and because the final testicular melatonin levels are uncertain. Both
of these negative aspects can affect subsequent results. In view of these limitations, we
have decided to use a unique approach based on a distinctive characteristic of Syrian
hamsters which respond to a simple modulation of photoperiod by an increase in testicular
melatonin levels. By transferring aged Syrian hamsters from a long-day (LD, 14 h light
per day) to a short-day (SD, 6 h light per day) photoperiod for 16 weeks, we ensure that
testicular melatonin increases, with concentrations remaining within a physiological range,
thus minimizing the potential for detrimental effects [152]. In fact, testicular melatonin
concentration in aged hamsters that had been maintained in a SD-photoperiod for 16 weeks
was completely restored to the levels in LD-young animals, or even slightly surpassed
these levels. Under these conditions, we found crucial improvements in testicular overall
status in SD-aged hamsters compared to LD-aged hamsters, including a reduced expres-
sion of inflammatory markers (IL-1β, NLRP3, and COX2 expression, as well as PGD2
production and testicular macrophage number) and a decreased pro-oxidant environment
(decreased testicular lipid peroxidation and elevated expression of the antioxidant en-
zyme Catalase) [152]. Supporting these results, the numbers of apoptotic germ cells and
macrophages, as well as COX2 expression, PGD2 production and lipid peroxidation, were
also reduced in testes of long-lived Ames dwarf and GHRHKO mice accompanied by an
increased testicular melatonin concentration [83] and unpublished data.

In addition to its antioxidant actions, studies on brain function have shown that
melatonin exerts a dual effect, activating autophagy under age-related neurodegenerative
and neurodestructive conditions, but blocking autophagy under specific pathological
conditions (i.e., exposure to neurotoxic agents such as methamphetamines and kainic
acid, ischemia, and reperfusion) [177]. A recent study by Wang et al. [178] suggested that
melatonin regulates the crosstalk between autophagy and apoptosis via the activation of
SIRT3 in Leydig cells resulting in ameliorated testicular injury. However, this study was
not performed in aged animals. Mice with genetically Leydig cell-specific impairment of
autophagy display aging-related alterations which ultimately lead to a reduction in serum
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testosterone levels [104]. In summary, it appears that the potential of melatonin to influence
testicular aging, especially to target autophagic flux, has not yet been fully explored.

3.3. Nutrient-Sensing Pathway Inhibition

The use of calorie restriction interventions has proven to be a useful tool to extend
lifespan and delay the onset of age-related diseases in numerous organisms ranging from
yeast to mammals reviewed by [179]. However, a negative effect of calorie restriction on
reproduction has been documented, especially when the degree of restriction is more severe.
For example, food intake restrictions of 40–50% caused a reduction of mean, maximal, and
basal LH levels and LH pulse amplitude in rats [180] and reduced testicular weight and
plasma testosterone levels in white-footed mice [181]. In contrast, mild calorie restriction
(20%) in long-lived GHR knockout mice and short-lived GH-Tg mice did not have any
effects on testicular testosterone content or expression of Fshr, Ar, Hsdd3, Cyp17a1 [182].
In addition, adult-onset mild calorie restriction (10–20%) for 12 months in wild-type mice
did not significantly impact plasma testosterone levels or testicular weight and testosterone
concentration [183]. In studies performed on Leydig cells isolated from aged Brown-
Norway rats that had been maintained under a 40% level of calorie restriction, Chen
et al. [184] reported that almost all of the major changes in gene expression (genes related
to cholesterol metabolism and steroidogenic enzymes) that were seen in aged-Leydig cells
were not reversed by short-term or long-term exposure to caloric restriction. Overall,
despite the documented benefits for health and lifespan, only mild calorie restriction is,
apparently, not deleterious to testosterone production and this intervention does not seem
to have a clear beneficial effect on testicular aging.

Rapamycin is a well-known inhibitor of mammalian target of rapamycin (mTOR) nutri-
ent signaling pathway and inducer of autophagy [185]. It is considered a calorie restriction
mimetic. Regarding testicular function, the mTOR pathway is associated with cell-specific
effects contributing to testosterone production by Leydig cells, Sertoli cell proliferation, redox
balance, and metabolic activity, Sertoli cell–blood-testis barrier dynamics, and prolifera-
tion/apoptosis of germ cells reviewed by [186]. Rapamycin administration extends murine
lifespan, reflecting its anti-aging properties [187–190]. In the testis, however, rapamycin
does not seem to have anti-aging effects. In fact, in vivo studies performed in rats and mice
showed that rapamycin increased testicular degeneration following an orderly loss of all
stages of spermatogenesis from the most mature to least differentiated cells (i.e., spermatids,
spermatocytes, differentiating spermatogonia, and primary spermatogonia) [188] due to inhi-
bition of proliferation [191] and differentiation [192] of spermatogonia. There is an ongoing
long-term study to test the effect of a daily dose of rapamycin on longevity and healthy aging
in a cohort of middle-aged marmosets (mixed sexes) [193]. The results of this work should
indicate whether rapamycin will affect the testes of this non-human primate species similarly
to its effects in laboratory rodents. Different results were seen in in vitro conditions by Li
et al. [130]. In Leydig cells isolated from young and aged Sprague Dawley rats, enhancement
of autophagic activity with rapamycin was associated with antioxidant properties (decreased
ROS levels) in aged rat Leydig cells, but not in young cells.

Metformin (dimethyl biguanide) is a synthetic derivative of guanidine, isolated from
the extracts of Galega officinalis. Metformin is an oral anti-diabetic drug that has been rec-
ommended as the first-line therapy for patients with type 2 diabetes mellitus [194]. Like
rapamycin, metformin has been described as a calorie restriction mimetic. It is also an
mTOR inhibitor and an inducer of autophagy, although indirectly so and via multiple mecha-
nisms [179]. In animal models, multiple beneficial effects of metformin have been reported
across species with the magnitude of these benefits varying with the dosage, sex, and age at
onset of treatment. However, longevity was extended by metformin administration only in
Caenorhabditis elegans, reviewed by [195], and in only one of the tested strains of mice [196]. An
extensive review by Tseng [197] summarized the effects of metformin on male reproductive
health, specifically on erectile dysfunction, steroidogenesis, and spermatogenesis (showing
beneficial effects on all issues, mostly in animal models). However, none of the studies were
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performed in aged animals or aged men. We can only conclude that not enough research
on this topic has been published; thus, there are many opportunities to add to the current
resources of anti-aging therapies in testicular aging.

Collectively, the results of the interventions that inhibit nutrient-sensing pathway
are somewhat counterintuitive and remind us that particular attention has to be given to
identifying testicular responses to any anti-aging therapy that was developed on the basis
of its effects on extra-gonadal tissues.

3.4. Senolytics and Senomorphics

One of the hallmarks of aging is an increased number of senescent cells which
secrete a variety of bioactive factors called senescence-associated secretory phenotype
(SASP) [198,199]. Targeting senescent cells has recently emerged as a therapeutic target
for treating age-related diseases. In this context, senolytics are compounds that selectively
and actively eliminate senescent cells by inducing apoptosis, whereas senomorphics are
compounds that suppress SASP by targeting pathways such as p38 MAPK, NF-κB, IL-1α,
mTOR, and PI3K/AKT, without inducing apoptosis. Some of these compounds have been
classified as calorie restriction mimetics as well [179].

The first generation of senolytic drugs include different compounds such as Dasatinib,
Quercetin, Fisetin, Navitoclax, Curcumin, Luteolin, and FOXO4-related peptide, among
others [199]. Many of these are naturally occurring flavonoids, once known as vitamin
P, commonly found in various types of herbs, vegetables, and fruits. We will only refer
to those compounds that have been employed to assess potential beneficial effects on
testicular senescence/aging. On the other hand, senomorphics include polyphenols such
as Resveratrol and Apigenin, Metformin, Cortisol/Corticosterone, Wogonin, Kaempferol,
and NDGA [200]. The beneficial actions of many of these plyphnenols on testicular
steroidogenesis have been reviewed by Martin and Touaibia [201].

In a recent study, Hamza et al. [113] have developed a D-gal-induced aging mouse
model. Using this model, the authors showed that daily intraperitoneal administration of
Quercetin (20 mg/kg) or Resveratrol (20 mg/kg) for 30 days significantly decreased testic-
ular lipid peroxidation and increased antioxidant enzymes activities (Catalase, Glutathione
reductase). In aged Leydig cells, there was also an up-regulation of Cox2 expression and a
reduction in StAR gene expression and testosterone production [121]. However, incubation
of aged Leydig cells in the presence of a Cox2 inhibitor can restore testosterone production.
Interestingly, flavonoids such as Luteolin [202], and Apigenin [203] can promote StAR
expression and steroidogenesis by inhibiting Cox2-dependent signaling in in vitro cell
cultures. In addition, beneficial effects of Resveratrol following the exposure to various
toxic agents has been reviewed by Pasquariello et al. [204] and are beyond the scope of this
review since these reports were not conducted in aging experimental animals.

Curcumin is a bioactive substance found in turmeric and that has strong antioxi-
dant attributes mostly related to its free radical scavenger properties [205]. Muratoğlu
et al. [172] have investigated the effects of intraperitoneal administration of curcumin
(6 and 30 mg/kg) over a period of 21 days in the testis of aged Wistar albino rats. They
reported a general improvement of testicular histology describing uniform seminiferous
tubules with normal interstitial histology, increased germinal epithelium height, and a
decreased number of TUNEL-positive apoptotic cells compared to non-treated aged rats.
Overall, these general testicular improvements resulting from curcumin administration
were not accompanied by beneficial effects on plasma testosterone levels. Moreover, the
observed increase in testicular antioxidant defenses, such as GSH concentration, was not
sufficient to reverse the lipid peroxidation found in aged testes [172]. The beneficial effects
of curcumin following the exposure to various toxic agents has been reviewed by Martins
et al. [206], and are beyond the scope of this review.

FOXO4 (Forkhead box O4) is a transcription factor that maintains senescent cell viabil-
ity by targeting p53 to the nucleus and preventing it from inducing apoptosis senescence-
associated genes, such as p53. FOXO4-DRI is a peptide antagonist designed to block the
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interaction of FOXO4 and p53 [207], thus causing p53 to be excluded from the nucleus and
directed to mitochondria for induction of apoptosis, ultimately eliminating the senescent cells.
In a recent study of Zhang et al. [141] FOXO4-DRI treatment of naturally aged C57BL/6 mice
alleviated testicular senescence phenotype by decreasing the expression levels of senescence-
associated proteins (p53, p21, p16, and TGF-β) and inflammatory markers (IL-1β and IL-6)
and by improving serum testosterone levels. This intervention might be of relevance for
humans given that in human testes FOXO4 was specifically expressed in Leydig cells [141].
Even though no significant difference in FOXO4 protein levels was detected between testes
from young and old men, a clear increase in FOXO4 nuclear translocation was found in
Leydig cells in old men. These findings suggest the potential efficacy of FOXO4-DRI for the
treatment of the age-associated male late onset hypogonadism [141].

3.5. Herbs and Nutraceuticals from Traditional Oriental Medicine

A growing number of reports have demonstrated that some prescriptions of Tradi-
tional Chinese Medicine could play distinct roles in anti-aging therapy. Chinese compound
prescriptions are usually composed of several kinds of herbs, each of which contain multi-
ple active constituents. Traditional Chinese Medicine not only involves multiple bioactive
components with various pharmacological activities, but might also generate other bioac-
tive (or inactive) metabolites when delivered in vivo. Hence, it is difficult to determine
whether the anti-aging effect is due to the synergistic therapeutic efficacies or to a single
mechanism. Some authors have employed Traditional Chinese Medicine recipes while
others have attempted to use single components. We will attempt to summarize those re-
ports that have addressed possible anti-inflammatory, anti-oxidative, and/or anti-apoptotic
properties in naturally, chemically- or genetically-induced aged animals.

Wuzi Yanzong recipe is a classical Traditional Chinese Medicine prescription com-
prised of five components: Plantaginis semen, Rubi fructus, Schisandrae chinensis fructus,
Lycii fructus, and Cuscutae semen. Treatment of 18 month-old Sprague Dawley rats with
Wuzi Yanzong recipe for 4 months significantly increased sperm count and viability, tes-
ticular weight, and testosterone concentration, while decreasing testicular concentration
of estradiol. Furthermore, the Wuzi Yanzong recipe significantly decreased the number
of TUNEL-positive cells, possibly by up-regulating the expression levels of endoplasmic
reticulum stress-responsive proteins (Grp78, p-Perk, Atf4, p-Ire-1α, Xbp1, and Atf6), and
down-regulating the expression levels of pro-apoptotic proteins (p-Jnk, Caspase 12 and
Chop) in testicular germ cells [137].

Cordyceps militaris Linn. is a valuable edible mushroom used extensively as a crude
medicament and food in Asian countries. Among the components of C. militaris, cordy-
cepin, also known as 3-deoxyadenosine, a purine nucleoside derivative, is a well-studied
active constituent with significant biological properties (i.e., anti-tumor, anti-viral, anti-
inflammatory, and anti-atherosclerotic effects) [208]. Because of its structural similarity
to adenosine, certain enzymes cannot discriminate between the two molecules. There-
fore, cordycepin is readily phosphorylated intracellularly, enabling its participation in
several physiological and biochemical reactions. With an oral administration of a daily
dose of 20 mg/kg of cordycepin, Kopalli et al. [138] observed many improvements in aged
Sprague Dawley rats including increased testicular expression levels of genes involved
in antioxidant defenses (Gpx4, Prx4, Gstm5, and Sirt1) and hormone receptors genes (Ar,
Fshr, Lhr) as well as improvement in sperm quality (motility and progressiveness).

Goji berry is a herbal medicine widely used in Asian countries. It is the fruit of
Lycium chinense P. Mill., commonly referred to as a “superfood” because of its nutritive and
antioxidant properties; it has become very popular over the last decade. It contains various
compounds such as betaine, β-sitosterol, scopoletin, β-carotenes, phenolic compounds,
and polysaccharides [209–211]. Recently, Jeong et al. [212] used intragastric gavage to
administer goji berry (150–300 mg/kg/day) to aged Sprague Dawley rats for six weeks.
The authors found that goji berry improved serum testosterone levels while decreasing
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testicular apoptosis (reduced Bax/Bcl-2 ratio) and minimizing oxidative damage (decreased
8-OHdG levels and increased antioxidant enzyme Sod activity).

Ginsenosides are the main active ingredients of Panax ginseng. Studies have shown
that ginsenosides such as Rg1 display many pharmacological effects, such as relieving
fatigue, improving immunity, slowing aging, inhibiting metastasis of cancer cells, and
regulating blood glucose [211]. Studies performed on D-gal-injected chemically-induced
aging mice showed that daily intraperitoneal injections of Rg1 (20 mg/kg) for 28 days
reduced aging-related decline in serum testosterone levels and improved overall testicular
appearance by reducing spermatocyte apoptosis and the number of senescent cells (the
latter possibly by down-regulation of p53, p21, and p19 expression) [110]. Regarding the
oxidative status of the testis, lower lipid peroxidation and higher total antioxidant capacity
followed ginsenoside Rg1 administration. Moreover, Rg1 was able to reduce testicular
expression levels of inflammatory markers (TNF-α, IL-1β, and IL-6) in aged-mice [110].

Icariin is a flavonoid isolated from Herba epimedii, a traditional Chinese and Ko-
rean herbal medicine and it is considered to be the main active component in this plant.
Makarova et al. [213] reported that erectile dysfunction was reversed by oral administration
of icariin to aged rats. Studies performed by Zhao et al. [214] on aged Sprague Dawley
male rats revealed that icariin (100–200 mg/kg) effectively ameliorated the age-related
decline in testicular function by increasing testicular and epididymal weights and indices,
sperm count, sperm viability, testicular testosterone concentrations, the seminiferous tubule
diameters and the height of the seminiferous epithelium. The potential use of icariin to
promote testosterone secretion was reported also in earlier studies [215,216]. Although not
focused on testicular aging, Chen et al. [216] have reported that icariin can induce testicular
expression of steroidogenesis-related genes (Lhr, Star, Cyp11a1, Cyp17a1, and 3β-HSD1)
which could explain the beneficial effect observed by Zhao et al. [214]. These authors also
reported an increase in antioxidant enzyme Sod activity and a decrease of testicular lipid
peroxidation, but these beneficial effects were dose-dependent (50–100 mg/kg). When the
dose of icariin was increased to 200 mg/kg, lipid peroxidation was increased above the
levels measured in non-treated aged rats.

Other flavonoid-enriched plant extracts or herbs have also shown antioxidant prop-
erties. These include herba euphorbiae humifusae, the dried whole plant of Euphorbia
humifusa Willd. Administration of this preparation to D-galactose-induced aged mice
improved testicular Sod activity and decreased lipid peroxidation [217].

The origins of hazelnut (also known as filbert and cobnut) can be traced to Asia and
Europe. In Traditional Chinese Medicine, hazelnut is known for its ability to tonify blood
and qi (also ki or ch’i in Wade–Giles Romanization, is believed to be a vital force forming
part of any living entity). The effects of a hazelnut supplemented diet on the reproductive
system of young and old male rats were investigated by Kara et al. [218]. Supplementing
Sprague Dawley rats’ food with hazelnut (3 g hazelnut/kg body weight) for 30 days
improved testicular histopathological variables, sperm quality, seminal plasma and plasma
oxidative stress as well as seminal plasma vitamin E, and plasma testosterone levels in
both young and old male rats.

3.6. Probiotics, Prebiotics, and Synbiotics

Probiotics are live microorganisms that, when administered in adequate amounts, confer
a health benefit to the host. The term prebiotic is defined as a substrate that is selectively
utilized by host microorganisms, conferring a health benefit. Combining both terms, the
denomination ‘synbiotics’ arose, which represents a mixture comprising live microorganisms
and substrate(s) selectively utilized by host microorganisms that confers a health benefit on
the host. Elderly people, in general, suffer from changes in the gut microbiota composition,
leading to a gradual shift toward a reduced bacterial diversity. This implies a decline in valu-
able microorganisms that exert beneficial health effects, such as protection against pathogens
and presenting anti-inflammatory properties [219]. Some very interesting reports have been
published on the antioxidant and anti-inflammatory properties of different synbiotics in
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naturally (C57BL/6 mice), genetically (SAMP8 mice), or chemically-induced (d-gal-induced
Sprague Dawley rats or C57BL/6 mice) aged rodent models. No indications for effects at
the testicular level were reported in these studies, reviewed in [219]. There is, however a
report from Poutahidis et al. [220] in which aged Swiss mice on a normal diet were given
oral Lactobacillus reuteri supplementation. Testes from Lactobacillus reuteri-fed mice were larger
compared to aged control mice. These mice also displayed increased Leydig cell number and
size, increased serum testosterone levels, and higher sperm concentration. These findings
suggest that probiotic organisms may offer practical options for the management of male
reproductive disorders frequently associated with aging.
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4. Concluding Remarks

In-depth understanding of the mechanisms of aging and senescence is one of the key
elements of modern cell biology research. To be able to answer such questions as: How is
the aging process initiated? What are its stages? and What are their consequences? will
facilitate the design of strategies that can slow down these processes.

Collectively, data generated by our group and by other investigators indicate that a
key hallmark of the testicular aging process is chronic low-grade inflammation, named
inflammaging. Inflammaging can be triggered by diverse stimuli, such as the accumulation
of senescent cells or dysfunction of the immune system. In such a model, the sustained
presence of senescent cells over time is associated with the secretion of numerous pro-
inflammatory cytokines, growth factors, and matrix remodeling enzymes that impair
proper tissue function and promote the aging process. However, in some processes, such
as wound healing and liver fibrosis, the elimination of senescent cells could be detrimental;
thus, more work will be needed to develop reliable anti-aging therapies based on targeting
senescent cells with senolytics and/or senomorphics. Additionally, according to the
oxidation–inflammation theory of aging, there is an underlining interdependence between
oxidative stress and the occurrence of inflammatory processes. In this regard, results
from our group and from others have also made clear that an imbalanced redox status
(leading towards a pro-oxidant microenvironment) is another hallmark of testicular aging.
Therefore, compounds with antioxidant properties (many of which have no deleterious or
cytotoxic effects and are present in many foods or herbs) might be excellent candidates to
reduce, if not eliminate, the important effects of aging-related testicular oxidative stress.
Non-invasive delivery is another potential advantage of these compounds.

After reviewing the current literature, we conclude that there is a lack of research on
the effects of different commonly accepted anti-inflammatory and anti-oxidative therapies or
interventions on testicular aging. Because no single therapy is likely to produce all the desired
beneficial effects, the combination of different approaches might result in better outcomes. In
this context, more research on animal models is needed to identify the combinations that might
have synergistic effects. Lastly, translation of animal model-based results to possible anti-aging
therapies in elderly men is difficult because of the extremely limited availability of testicular
tissue from healthy aging men that could be used for research. Therefore, the possible success
of such therapies will have to rely on more readily available data such as restoration of plasma
testosterone levels and reversal of androgen deficiency-related alterations in aging men (low
libido, erectile dysfunction, poor semen quality, low energy, sleep disturbance, depressed
mood, impaired cognition, osteoporosis, and loss of muscle mass or increased body mass
index). Although reproductive aging does not necessarily include male infertility, it promotes
the development and progression of several comorbidities. Consequently, if successful, anti-
aging therapies will not only exert direct effects on testicular physiology, but will also enhance
overall health and quality of life in aging men.
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