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Acquired CARD11 Mutation Promotes BCR
Independence in Diffuse Large B Cell Lymphoma
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Diffuse large B cell lymphoma (DLBCL) is an aggressive
non-Hodgkin lymphoma that is molecularly and clini-
cally heterogeneous. Gene expression studies have
revealed how DLBCL can be divided into germinal
center and activated B cell (ABC) subtypes. The ABC
subtype is associated with constitutive activation of the
NF-κB pathway, commonly as a consequence of ge-
netic activation of the B cell receptor (BCR) pathway.1

Components of the BCR pathway that are activated by
mutation include CD79B, MYD88, and CARD11.
Chronic stimulation of the BCR in ABC DLBCLmay also
result from engagement of the BCR by self-antigens in
the tumor microenvironment. These preclinical obser-
vations suggest a role for the targeted inhibitors of the
BCR pathway in the treatment of DLBCL.1

DLBCL is most commonly present as malignant infil-
tration of lymph nodes. However, extranodal disease is
seen in one third of cases. Some forms of DLBCL have an
apparent tissue–specific restriction that allows them to
be defined as specific disease subtypes. These special
site forms of DLBCL include primary CNS lymphoma,
primary testicular lymphoma, and primary cutaneous
DLBCL (PCDLBCL). For reasons that remain mysterious,
PCDLBCL most commonly involves the lower leg and
PCDLBCL-leg type (PCDLBCL-LT) is recognized as a
specific entity in the WHO classification of lymphoma.2 It
predominantly affects older patients and is associated
with poor response to conventional therapy.3 The ma-
jority of PCDLBCL-LTs exhibit an ABC DLBCL gene
expression profile and are strongly enriched for genetic
activation of the BCR pathway, suggesting a patho-
genesis shared with nodal ABC DLBCL.4,5

Drugs that target the BCR pathway include inhibitors of
the downstream kinases BTK, SYK, and P110delta.
Inhibitors of BTK have led to dramatic responses in
patients with chronic lymphocytic leukemia (CLL) and
mantle cell lymphoma. The use of BTK inhibitors is now
incorporated into standard therapy for these conditions,
and the genetic basis of acquired resistance in CLL,
dominated by acquired mutation of BTK or PLCG2, has
been well-studied.6,7 By contrast, the role of BCR in-
hibition in DLBCL remains less clear and little is known
about the genetics of acquired resistance.

A 75-year-old male presented with rapidly enlarging
cutaneous nodules. These initially involved the feet

and legs, but subsequently emerged on the arms and
abdomen. A computed tomography scan showed no
lymph node enlargement. Biopsy revealed sheets of
large lymphoid cells expressing PAX5, CD20, BCL2,
MUM1, and weak BCL6. CD10 staining was negative.
The proliferation fraction was 90%. A diagnosis of
PCDLBCL was made. Because of comorbidity, he was
initially treated with rituximab, gemcitabine, cyclo-
phosphamide, vincristine, and prednisolone with
partial response. At relapse two years later, he was
retreated with rituximab and gemcitabine, and sub-
sequently oral etoposide with minimal response to
either therapy. He was referred to our tertiary lym-
phoma service for further management. Clinical ex-
amination revealed cutaneous nodules up to 25mm in
diameter affecting the feet, legs, arms, and abdomen.
A repeat biopsy showed features identical to his
original diagnostic biopsy (Fig 1A), and computed
tomography scan confirmed exclusively cutaneous
disease. He was commenced on oral therapy with BTK
and SYK inhibitors. By day 28, he had a near-complete
resolution of his cutaneous lesions, which further
improved by 6 months (Fig 1B). With ongoing therapy,
his remission lasted for 13 months before the recur-
rence of rapidly growing cutaneous nodules and lymph
node involvement. A repeat biopsy confirmed recur-
rent DLBCL with immunophenotype identical to his
diagnostic biopsy. The patient was managed with
palliative radiotherapy.

The rapid clinical response and prolonged remission,
followed by later re-emergence of tumor, suggested the
acquisition of new genetic alterations driving resistance
to BCR inhibition.We therefore performedwhole-exome
sequencing using DNA extracted from biopsies at initial
diagnosis, immediately prior to BCR inhibition, and at
relapse. The patient provided written informed consent
for genetic analysis and publication of clinical photo-
graphs. This study was approved by the East of England
Cambridge SouthResearch Ethics Committee (approval
reference number 07/MRE05/44).

Full variant and copy number data are presented in the
Data Supplement. Notable genetic alterations de-
tected prior to BCR inhibition included amplification of
Chr18q21 (including BCL2, MALT1, and TCF4),
amplification of Chr13q31 (including miR17-92), and
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homozygous deletions of GNA13 and RB1 (Fig 2A and
Appendix Fig A1). We observed gains of CD79A and SPIB
and single copy loss of PRDM1 and TNFAIP3 (A20). We did
not identify mutation of MYD88 or CD79B (Fig 2A and
Appendix Fig A2). Importantly, many of the identified ge-
netic alterations are predicted to enhance activity of the
BCR and NF-κB pathways1 (Fig 2B). These data suggest
that this patient’s tumor matched the biology of ABC DLBCL

and relied on chronic active BCR signaling to maintain
NF-κB activity.

We then screened all genetic alterations acquired during
BCR inhibition to identify those that might drive resistance.
We identified 34 protein-altering mutations that arose
during exposure to BCR inhibition, including the known
DLBCL driver genes—ARID1A and CARD11 (Figs 2A and
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FIG 1. (A) Histology and immunohistochemistry from tumor biopsy showing a diffuse infiltration by large atypical
cells with predominantly centroblast-like morphology expressing CD20, MUM1, BCL2, weak BCL6, no CD10, and
MIB1 proliferation fraction 90%. (B) Images of selected lesions on the forearm, hand, popliteal fossa, and abdomen
taken prior to therapy (top row), at 28 days (middle row), and at 6 months (bottom row) of B cell receptor–targeted
therapy. H&E, hematoxylin and eosin.
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2B and Data Supplement). Copy number analysis showed a
new single copy loss of the CDKN2A locus (Data Supple-
ment). We manually examined the loci of PLCG2 and BTK,
mutations that are commonly acquired in BTKi-resistant
CLL, and confirmed both genes to be wild type at all
timepoints. Alteration of TP53 was not detected. The

majority of altered genes lacked any known association with
BCR signaling. CDKN2A loss is common in ABC DLBCL;
however, we considered it unlikely that single copy loss
could mediate resistance to BCR inhibition. In contrast,
CARD11 is a critical scaffold protein that, together with
BCL10 andMALT1, functions downstream of SYK and BTK
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FIG 2. (A) Summary of whole-exome sequencing of samples taken from three different timepoints; diagnosis, prior to BCR-targeted therapy, and at
the time of relapse.Mutations and copy number changes are indicated within each cell. Gray indicates nomutation or copy number change identified.
(B) A simplified schematic showing the critical signaling components of the BCR pathway that converge onto activation of canonical NF-κB.
Components targeted pharmacologically in this patient are indicated. Created with BioRender.com. (C) Sanger sequencing from samples at the
indicated timepoints confirms the acquisition of an A to Cmutation in CARD11, which results in the activating, coiled-coil domain K215Tmutation. (D)
Ibrutinib sensitivity assay in the ABC DLBCL line U2932 transduced with either empty vector or CARD11 WT or K215T. Data show mean and SEM of
five independent experiments. BCR, B cell receptor; VAF, variant allete frequency.
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in the BCR pathway to activate canonical NF-κB signaling.1

Activating mutation in the coiled-coil domain of CARD11
was previously proposed as a mechanism of resistance to
BCR inhibition in mantle cell lymphoma8 and primary re-
sistance in DLBCL.9 The acquired K215T mutation in our
patient is located in the coiled-coil domain and has been
previously shown to activate NF-κB.10 We confirmed the
near-clonal presence of the CARD11 K215T mutation at
relapse (variable allele frequency 40%) but zero mutant
reads at this position in either of the two pretreatment bi-
opsies (read depth, 180 and 210, Appendix Fig A3). Sanger
sequencing verified the acquisition of the activating
CARD11 K215T mutation in the relapse sample but not at
diagnosis or in the pretreatment sample (Fig 2C). To es-
tablish the ability of this mutation to mediate resistance, we
expressed CARD11 WT or K215T in the ABC DLBCL line
U2932 and treated cells with the BTK inhibitor ibrutinib.
CARD11 K215T induced drug resistance, with IC50 in-
creased by three orders of magnitude (Fig 2D). Taken to-
gether, these data strongly suggest that CARD11 mutation
was the genetic driver of the acquired resistance in this case.

The limited information about acquired resistance to BCR
inhibition in DLBCL suggests potential differences com-
pared with that of CLL. The latter is predominantly asso-
ciated with mutation of BTK and PLCG2.6,7 CARD11
mutation is identified in 10%-15% of DLBCL at
presentation11 but is rarely identified (, 1%) in CLL.12 This
suggests that the BCR signal in CLL and DLBCL may be
qualitatively different and therefore that genetic mecha-
nisms of resistance to BCR inhibition may also differ.
However, establishing the genetic basis of resistance to
BCR inhibition in DLBCL presents specific challenges that
contrast with the situation in CLL. First, patients with DLBCL
receiving BCR inhibitors are typically treated simulta-
neously with multiagent immunochemotherapy regimens,
making it hard to establish which mutations provide re-
sistance to which agent, or indeed if sensitivity to the BCR

inhibitor ever existed in the first place. Second, relapsing
DLBCL frequently presents as a rapidly progressive disease
that may preclude the opportunity for a repeat biopsy in
patients who are often treated palliatively. These factors
make analysis of rare exceptional responders especially
important for DLBCL. The genetics of our case recapitulate
the biology of ABC DLBCL, and importantly, we observed
clear initial sensitivity to therapy targeted exclusively to the
BCR pathway. Combined with the biopsy-accessible cu-
taneous location of disease, this provided a rare opportunity
to study genetic mechanisms of resistance to BCR inhi-
bition in ABC DLBCL.

Indeed, we have found only one other case describing the
genetic basis of acquired resistance to BCR inhibition in
DLBCL. This also involved a case of PCDLBCL-LT and also
reported acquisition of CARD11 mutation (interesting also
K215 mutant) in a patient who relapsed following an initial
response to a BTK inhibitor.13 However, the concurrent
finding of NFKBIE mutation and IgH-IRF8 translocation
reported in that study might also have contributed to re-
sistance, leaving the role of the CARD11mutation uncertain.
Our findings of acquired activating CARD11 mutation, the
absence of any likely alternative genetic explanation, and the
demonstrated ability of the K215T mutation to affect BTKi
resistance in vitro strongly suggest that CARD11mutation is
the dominant driver of BCR independence in our case.

As we move toward the introduction of precision medicine in
DLBCL and the real-time monitoring of clonal evolution, it will
become increasingly important to understand genetic
mechanisms of drug resistance. Our study uses the unique
features of this case of cutaneous DLBCL to highlight the
importance of CARD11 mutation as a driver of acquired re-
sistance to BCR inhibition in DLBCL. We speculate that such
casesmight be targeted successfully in the future by inhibition
of downstream targets such as MALT1 or NF-κB.14,15
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12. Puente XS, Beà S, Valdés-Mas R, et al: Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:519-524, 2015

13. Fox LC, Yannakou CK, Ryland G, et al: Molecular mechanisms of disease progression in primary cutaneous diffuse large B-cell lymphoma, leg type during
ibrutinib therapy. Int J Mol Sci 19:1758, 2018

14. Fontan L, Yang C, Kabaleeswaran V, et al: MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 22:812-824, 2012

15. Nagel D, Spranger S, Vincendeau M, et al: Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of
aggressive ABC-DLBCL. Cancer Cell 22:825-837, 2012

n n n

Case Report

JCO Precision Oncology 149

http://www.asco.org/rwc
https://ascopubs.org/po/author-center
https://ascopubs.org/po/author-center
https://openpaymentsdata.cms.gov/
https://openpaymentsdata.cms.gov/


APPENDIX
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FIG A1. Copy number change detected at the indicated timepoints. The position of known lymphoma driver genes is indicated.
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