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Abstract: A certain minimum plasma concentration of (Z)-endoxifen is presumably required for
breast cancer patients to benefit from tamoxifen therapy. In this study, we searched for DNA variants
that could aid in the prediction of risk for insufficient (Z)-endoxifen exposure. A metabolic ratio
(MR) corresponding to the (Z)-endoxifen efficacy threshold level was adopted as a cutoff value for a
genome-wide association study comprised of 287 breast cancer patients. Multivariate regression was
used to preselect variables exhibiting an independent impact on the MR and develop models to predict
below-threshold MR values. In total, 15 single-nucleotide polymorphisms (SNPs) were significantly
associated with below-threshold MR values. The strongest association was with rs8138080 (WBP2NL).
Two alternative models for MR prediction were developed. The predictive accuracy of Model 1,
including rs7245, rs6950784, rs1320308, and the CYP2D6 genotype, was considerably higher than
that of the CYP2D6 genotype alone (AUC 0.879 vs 0.758). Model 2, which was developed using the
same three SNPs as for Model 1 plus rs8138080, appeared as an interesting alternative to the full
CYP2D6 genotype testing. In conclusion, the four novel SNPs, tested alone or in combination with
the CYP2D6 genotype, improved the prediction of impaired tamoxifen-to-endoxifen metabolism,
potentially allowing for treatment optimization.

Keywords: Tamoxifen; breast cancer; endoxifen; genome-wide association study; CYP2D6 genotype;
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1. Introduction

Tamoxifen is a selective estrogen receptor (ER) modulator that is highly effective for the
treatment of ER-positive breast cancer. To elicit its therapeutic effects, tamoxifen requires internal
metabolism. It is primarily biotransformed to N-desmethyl-tamoxifen (NDM-Tam) and 4-hydroxy-
tamoxifen (4-OH-Tam), which are further converted to the secondary metabolite 4-hydroxy-N-
desmethyl-tamoxifen (4-OH-NDM-Tam; endoxifen) [1]. Both 4-OH-Tam and endoxifen are considered
to be principal active metabolites, exhibiting similar antiestrogenic potency up to 100-fold higher
than that of other tamoxifen metabolites and the parent drug [2–4]: However, endoxifen is widely
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recognized as the most potent metabolite in terms of its relative contribution to the overall therapeutic
activity of the drug [2,5–8].

The rate-limiting step in tamoxifen metabolism directed to endoxifen production depends
primarily on cytochrome P450 2D6 (CYP2D6) activity, which oxidizes tamoxifen and NDM-Tam to
4-OH-Tam and endoxifen, respectively [5,9]. This enzyme is encoded by a highly polymorphic gene
comprising over 150 allelic variants, many of which are associated with absent or decreased activity
of the generated enzyme [10]. Based on the CYP2D6 genotype, individuals can be classified as an
ultrarapid metabolizer (UM), a normal metabolizer (NM; wild-type (WT)), an intermediate metabolizer
(IM), or a poor metabolizer (PM) in terms of CYP2D6 enzyme function [11,12]. Therefore, CYP2D6
genotyping is considered to have great potential for predicting the efficacy of tamoxifen treatment.
Unfortunately, the influence of impaired CYP2D6 enzyme activity (IM or PM) on patient clinical
outcomes is inconsistent [13–22]. Some methodological issues have been suggested to be the main
reasons for conflicting data in studies generating negative results [23–25], but not all of them have
been finally confirmed [26].

Nevertheless, it is not disputed that patients with low-activity CYP2D6 phenotypes produce
significantly less endoxifen than WT allele carriers, and systemic concentration of this metabolite
decreases in proportion to enzyme deficiency [4,15,27–31]. Hence, the therapeutic failure of tamoxifen
may be due to the functional impairment of the metabolism directed toward endoxifen production.
In a large retrospective study, a minimal threshold level of endoxifen to achieve the desired treatment
efficacy has been described: For patients with a metabolite concentration >5.97 ng mL−1 (lowest quintile),
a 26% lower breast cancer recurrence rate was observed relative to those with lower concentrations [28].
Similarly, threshold levels of 5.3 ng mL−1 [30] and 3.36 ng mL−1 [32] were later reported. However,
a recent prospective CYPTAM (The Netherlands National Trial Register: NTR1509) study of 667 patients
with early-stage breast cancer did not confirm an association between endoxifen concentration and
clinical outcome, neither grouping endoxifen concentrations into quantiles nor using 5.9 ng mL−1 as a
threshold [33]. Thus, further studies are needed to settle the existing controversy.

Although the CYP2D6 phenotype is currently considered to be the best predictor of tamoxifen
metabolism directed toward endoxifen production [9], it explains approximately 40% of interpatient
variability in endoxifen steady-state concentrations [4,27,34,35]. The use of concomitant medications,
some of which are strong CYP2D6 inhibitors [5,29,36–38], the genetic variability of other phase I or II
drug-metabolizing enzymes [4,21,39–42], weak compliance [43], or other unpredictable factors may
also significantly influence endoxifen exposure. Despite many attempts to improve the predictive
value of the CYP2D6 genotype and expected phenotype, there remains insufficient evidence to justify
the implementation of routine CYP2D6 testing in clinical practice [21,31,44–49].

We previously reported that the CYP2D6 genotype accounts for 51% of the variability in
tamoxifen metabolism directed toward endoxifen production, expressed as the metabolic ratio (MR) of
(Z)-endoxifen (the major isomer of endoxifen produced from tamoxifen [50]) plasma concentration
divided by the sum of concentrations of tamoxifen and other measured metabolites [27]. The metabolic
ratio is more useful than (Z)-endoxifen concentration alone, because it accounts for omitted drug doses
or the concomitant use of CYP2D6 inhibitors. Using simple linear regression, we estimated that an MR
value of 0.0146 corresponds to the predefined 6 ng mL−1 (Z)-endoxifen efficacy threshold level. Here,
we adopted a genome-wide association study (GWAS) approach to search for new DNA variants that
could assist in the prediction of impaired tamoxifen metabolism in Polish patients with breast cancer
treated with the standard daily dose (20 mg). Of 15 GWAS-selected single-nucleotide polymorphisms
(SNPs) associated with a below-cutoff (0.0146) MR value, four SNPs, tested alone or in combination
with the CYP2D6 genotype, significantly improved the prediction of impaired metabolism directed
toward endoxifen, which could potentially inform decisions to change the drug or dosing regimen
before treatment initiation.
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2. Material and Methods

2.1. Ethics Statement

All patients were recruited at the Maria Sklodowska-Curie Memorial Cancer Center and Institute
of Oncology in Warsaw, Poland. The local Ethics Committee approved the study (project identification
code 38/2011), and all subjects provided their informed consent for inclusion before they participated in
the study. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki.

2.2. Clinical Cohort

Between May 2012 and June 2014, 293 patients were recruited for a study of CYP2D6 genotype
association with plasma concentrations of tamoxifen and its metabolites. Details of the inclusion
criteria, study protocol, genotyping and mass spectrometry (MS) methodology, and primary results
were reported previously [27]. Briefly, all patients were Polish Caucasians, unselected women with
verified hormone receptor-positive breast cancer (median age at diagnosis: 55 years; range: 25–95 years)
receiving the standard treatment of 20 mg of tamoxifen daily for at least 1 month to ensure the
steady-state plasma concentration of tested compounds. The median time between the initiation of
tamoxifen treatment and blood sample collection was 21.5 months. Six patients had plasma drug
concentrations <10% of the mean tamoxifen level across all patients and were excluded from further
analyses. The clinical characteristics of the remaining 287 patients are listed in Table S1.

2.3. Quantifying Tamoxifen and Its Metabolites in Plasma

As previously described [27], whole blood samples were collected at study enrollment, and
plasma was immediately separated and stored at −80 ◦C until ultraperformance liquid chromatography
tandem MS (UPLC-MS/MS) analysis. For all samples, plasma concentrations of tamoxifen and its
14 key metabolites were measured, including the following: NDM-Tam, (Z)-endoxifen, (E)-endoxifen,
3-OH-NDM-Tam, 4′-OH-NDM-Tam, (Z)-4-OH-Tam, 3-OH-Tam, 4′-OH-Tam, (Z)-α-OH-Tam, (E)-α-OH-Tam,
Tam-N-oxide, Tam-N-β-D-glucuronide (Tam-N-gluc), (E/Z)-4-OH-NDM-Tam-β-D-glucuronide ((E/Z)-4-OH-
NDM-Tam-gluc), and(E)-4-OH-Tam-O-β-D-glucuronide((E)-4-OH-Tam-O-gluc). Allof theabovecompounds
and deuterated internal standards (Tam-d5, NDM-Tam-d5, and (Z)-4-OH-Tam-d5) were from Toronto
Research Chemicals (North York, ON, Canada). Details of the sample preparation method, MS/MS
parameters, and linearity ranges of the metabolite standards are included in File S1.

2.4. CYP2D6 Genotyping

Genomic DNA samples extracted from blood were genotyped for CYP2D6 alleles, according to the
nomenclature described at https://www.parmvar.org/gene/CYP2D6 [10], as previously reported [27].
Briefly, individual TaqMan allelic discrimination assays were performed for 11 SNPs, and 3 TaqMan
Gene Copy Number Assays were conducted to assess gene deletion or duplication (Thermo Fisher,
Waltham, MA, USA). Each CYP2D6 allele was assigned to one of four phenotypic categories, according
to its associated enzyme function. PM (nonfunctional) alleles included CYP2D6*3, *4, *5, *6, and *7; IM
(reduced-function) alleles were CYP2D6*9, *10, *17, and *41; NM (WT; fully functional) alleles included
CYP2D6*1 and *2; and UM (increased-function) alleles were duplicates of NM variants, such as
CYP2D6*1XN and *2XN. For the current study, patients were categorized into two groups of CYP2D6
functional activity: 1) Impaired metabolizers, who were presumed to have impaired metabolism of
tamoxifen toward endoxifen (with CYP2D6 diplotypes PM/PM, IM/PM, IM/IM, NM/PM, and NM/IM),
and 2) normal metabolizers, with predicted therapeutically effective tamoxifen metabolism (carrying
CYP2D6 diplotypes NM/NM and NM/UM).

https://www.parmvar.org/gene/CYP2D6
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2.5. Genome-Wide Microarray Analysis

For the current GWAS, 192 DNA samples were selected from the cohort described above based on
the ratio of the sum of two tamoxifen active metabolite ((Z)-endoxifen and (Z)-4-OH-Tam) plasma
concentrations to the sum of the concentrations of tamoxifen and the remaining measured compounds:
96 samples were from patients with the highest ratio, and 96 were from those with the lowest ratio.
Selected DNA samples were hybridized and analyzed individually on Illumina Human Omni2.5-Exome
BeadChip microarrays by a commercial organization (AROS Appl. Biotech., Aarhus N, Denmark).
The datasets from GWAS are available from the GEO database (Accession number: GSE129162).

2.6. Verification Genotyping

According to our previously described approach for the verification of GWAS findings [51],
loci were chosen that were represented by blocks of at least three SNPs associated with low (Z)-endoxifen
plasma concentrations (MR < 0.0146) at p < 10−3, including at least two SNPs in a block associated
at p < 10-4, for which the interval between all pairs of adjacent SNPs was <30 kb. On chromosome
22, associated SNPs formed three blocks with a total length of almost 436 kb, of which eight SNPs
were selected (range of p-values: 1.11 × 10−11 to 3.27 × 10−7) for further verification and multivariate
regression analysis to investigate their independent impact on the MR. For all other chromosomes,
the most strongly associated SNP (with the lowest p-value) at each identified locus was selected as an
index SNP for further verification using 287 DNA samples from tamoxifen-treated patients with breast
cancer, analyzed using TaqMan SNP Genotyping Assays (Thermo Fisher), a SensiMix™ II Probe Kit
(Bioline Ltd., London, UK), and a 7900HT Real-Time PCR system (Thermo Fisher) in 384-well format.

2.7. Statistical Analyses

2.7.1. GWAS and Individual Genotyping

Probes with missing signal reads in more than four samples were discarded. The chi-square test
was used to compare allele distribution between groups. A principal component analysis (PCA) was
carried out using theta values (representing the proportion of the signal for one variant to the sum
of signals for all variants at a given SNP) as input. Nine samples were discarded as outliers, and the
remaining samples were homogeneously spread on the planes of the first two principal components
(Figure S1). Distribution assumptions were further verified by visual inspection of a quantile–quantile
(Q–Q) plot of p-values (Figure S2). The calculated lambda value was 1.076, and together with the Q–Q
plot, this raised no concerns regarding the homogeneity of the final population. All calculations were
performed using the statistical software package R, version 3.4.1 [52].

The Hardy–Weinberg equilibrium of GWAS-selected SNPs was checked using the chi-square
test implemented in R and showed no significant deviation. The Cochran–Armitage trend test was
used for comparisons of allele frequencies. Odds ratios (ORs) and 95% confidence intervals (CIs) were
estimated by normal approximation and implemented in the EpiTools R package (CRAN-Package
epitools) [53]. The p-value significance threshold was Bonferroni-corrected for multiple comparisons
(0.05/18 variants = 0.00278). Power calculations were performed using R, assuming equal groups of
96 samples and allele frequency differences of 0.075–0.2 (Table S2).

2.7.2. Prediction Modeling

Prediction models were constructed using binary logistic regression implemented in IBM SPSS
statistics software, v.24. For prediction modeling, samples with no missing data (N = 262) were
used. MR values were binary-classified as 1 if MR < 0.0146 and 0 if MR ≥ 0.0146. Multivariate
regression analysis using the forward stepwise method (with an entry value of 0.05) was applied for
the preliminary selection of variables showing independent effects on the phenotype. Two approaches
for predictor preselection were applied. In Approach 1, predictors were chosen from a set of 13 SNPs
verified by individual genotyping, in addition to the CYP2D6 genotype. In Approach 2, predictors



J. Clin. Med. 2019, 8, 1087 5 of 16

from the same set of 13 SNPs were considered: However, two SNPs from the CYP2D6 gene region
were also used, rather than the entire CYP2D6 genotype.

Preselected variables were ranked according to their importance using the −2 log-likelihood
reduced model statistic. The impact of each variable on MR predictive accuracy was then evaluated
through calculation of the area under the receiver-operating characteristic (ROC) curve (AUC) parameter,
designated after the implementation of subsequent SNPs into the model. The proportion of total
variation in the MR explained by the tested variants was estimated using the Nagelkerke pseudo-R2

statistic. Final prediction models (Models 1 and 2) were selected (DNA variants that increased the
AUC value by ≥0.005 were retained in the model) and further evaluated through the calculation of
additional parameters, including sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) [54]. All parameters describing the predictive performance of the models were
assessed using a 10-fold cross-validation procedure, as described previously [55]. For this purpose,
the entire dataset was split randomly into 10 equinumerous parts indexed by k (k = 1, 2, . . . , 10).
For each k, the kth part was excluded, and the model was built using data from the other k−1 parts.
Parameters describing the accuracy of prediction were then calculated on the excluded kth part of the
data. Final AUC, sensitivity, specificity, PPV, and NPV values were estimated as the mean of errors of
the 10 models developed during the cross-validation procedure.

3. Results

A GWAS approach was applied to search for new DNA variants that could assist in the
prediction of impaired metabolism of tamoxifen toward endoxifen. DNA samples for both GWAS
and verification analyses were from tamoxifen-treated patients with breast cancer recruited for our
previous study of correlations between CYP2D6 genotype and plasma concentrations of the drug
and its 14 metabolites [27]: All patient CYP2D6 genotype data and concentration measurements were
derived from that study.

Based on the CYP2D6 allele set, each patient was assigned to one of seven genotype-predicted
functional groups: NM/UM, NM/NM, NM/IM, NM/PM, IM/IM, IM/PM, or PM/PM. Mean values of
the MR coefficient were above the predefined therapeutically beneficial level of 0.0146 in only NM/UM
and NM/NM patients, reaching 0.0201 ± 0.0076 for NM/UM patients and 0.0185 ± 0.0057 for NM/NM
patients (Table 1). For prediction modeling, these two groups of patients were referred to as normal
metabolizers, while others, including all those carrying at least one variant allele, were classified as
impaired metabolizers.

Table 1. CYP2D6 genotype frequency, steady-state plasma concentration, and metabolic ratio (MR)
of (Z)-endoxifen.

Total N = 287

Genotype Number of Patients (%) (Z)-endoxifen (ng mL−1)
Mean ± SD

Metabolic Ratio a

Mean ± SD

NM/UM 18 (6.3) 6.96 ± 3.75 0.0201 ± 0.0076
NM/NM 90 (31.4) 7.26 ± 3.18 0.0185 ± 0.0057
NM/IM 44 (15.3) 5.60 ± 3.26 0.0125 ± 0.0054
NM/PM 99 (34.5) 4.85 ± 2.46 0.0108 ± 0.0043
IM/IM 3 (1.0) 3.05 ± 1.91 0.0063 ± 0.0022
IM/PM 12 (4.2) 2.22 ± 0.87 0.0047 ± 0.0014
PM/PM 21 (7.3) 1.79 ± 0.66 0.0037 ± 0.0013

Mean values in bold font are higher than the thresholds of 6 ng mL−1 and 0.0146 for the (Z)-endoxifen concentration
and MR, respectively. NM, normal metabolizer; IM, intermediate metabolizer; PM, poor metabolizer; UM, ultrarapid
metabolizer; a, the MR coefficient was estimated as the (Z)-endoxifen plasma concentration divided by the sum of the
concentrations of the remaining measured compounds.
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3.1. Association Analyses

A MR value of 0.0146, previously described as corresponding to the (Z)-endoxifen threshold level
of 6 ng mL−1 [27], was adopted as the cutoff level in a GWAS using 192 DNA samples. According
to an approach successfully applied and discussed in detail in previous studies [51,56,57], 15 SNPs
were selected for further verification of their association with below-threshold MR values. Of these,
seven SNPs were at independent loci outside of chromosome 22, where there were blocks of at least
three SNPs associated with p < 10−3 at a distance of <30 kb from one another and at least two SNPs
associated with p < 10−4. Two of these blocks consisted of >10 SNPs. The most strongly associated
SNP (with the lowest p-value) at each locus was selected as a marker SNP for verification analyses.

On chromosome 22, three blocks of SNPs associated at p < 10−3, located close to one another,
were identified: Block 1, 28 SNPs; block 2, 6 SNPs; and block 3, 37 SNPs. In total, these three blocks
covered almost 436 kb. Given the strong associations with numerous SNPs in this region, eight variants
were selected (range of p-values: 1.11 × 10−11 to 3.27 × 10−7) for verification and further multivariate
regression analysis to investigate their independent impact on MR: Four SNPs from block 1, one from
block 2, and three from block 3 (Figure 1). Additionally, three CYP2D6 variants (rs3892097, rs28371725,
and rs1065852) indicative of the most frequently occurring functionally impaired CYP2D6 alleles
among Polish patients (*4, *41, and *10; Table S3) [27] were included in verification genotyping, as all
three SNPs were absent from the Illumina microarray used in this study.
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Figure 1. Long-range polymorphisms on chromosome 22, including single-nucleotide polymorphisms
(SNPs) located upstream and downstream of the CYP2D6 gene. Variants selected for verification from
blocks 1, 2, and 3 of associated SNPs are indicated in red, green, and blue, respectively.

The 18 SNPs finally selected (Table 2) were evaluated in 287 DNA samples using TaqMan-based
genotyping (for detailed genotyping data, see Table S4). In total, 15 SNPs (13 GWAS-selected and
two CYP2D6 variants) exhibited significantly different allele frequencies after adjustment for multiple
testing (p < 2.78 × 10−3) between the group with an MR below the 0.0146 threshold and that with
an MR above the threshold. Very strong associations (range of p-values: 1.78 × 10−15 to 1.36 × 10−7)
were observed for chromosome 22 SNPs, with the strongest for the WBP2NL gene variant rs8138080
(p = 1.78 × 10−15). Among loci outside chromosome 22, the most significant association was with
rs11780345 in TNFRSF10A (p = 5.57 × 10−5).

The minor alleles (MAs) of nine SNPs (including two from CYP2D6) were associated with an
increased risk of impaired drug metabolism and a low MR value, while those of the remaining six
SNPs showed a protective effect (Table 2). The strongest effects on the MR were observed for the
two SNPs in CYP2D6, rs3892097, and rs1065852 (odds ratio (OR) = 6.93, 95% confidence interval (CI)
= 3.92–12.24 and OR = 6.85, 95% CI = 3.98–11.77, respectively). Other than CYP2D6, the strongest
impacts were observed for rs5751222 (OR = 5.96, 95% CI = 3.55–10.00, p = 2.31 × 10−12) and rs8138080
(OR = 5.55, 95% CI = 3.52–8.75, p = 1.78 × 10−15). Among the GWAS-selected SNPs, eight were located
within protein-coding gene regions: One in an exon (rs1320308 in S100Z), one in a 3’-untranslated
region (rs7245 in NDUFA6), and six in introns. Two SNPs were variants of noncoding RNA (ncRNA)
genes, and three were intergenic.
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Table 2. Verification analysis of genome-wide association study (GWAS)-selected SNPs and the most
frequent CYP2D6 variants.

dbSNP ID a Region b MA MAF c OR (95% CI) p-Value

rs9844493
Chr3:67210593

A 0.482 1.59 (1.13–2.23) 3.74 × 10−3
intergenic

rs1320308
Chr5:76875427

A 0.447 0.51 (0.35–0.73) 1.59 × 10−3
S100Z exon 6 (E23A)

rs6950784
Chr7:155902980

G 0.519 1.93 (1.37–2.72) 4.42 × 10−4
intergenic

rs980729
Chr7:98697127

A 0.361 0.83 (0.59–1.1) 1.22 × 10−3
intergenic

rs11780345
Chr8:23194453

C 0.196 0.69 (0.49–0.97) 5.57 × 10−5
TNFRSF10A intron 9

rs11786748
Chr8:27924000

G 0.403 1.95 (1.35–2.82) 6.18 × 10−4
SCARA5 intron 3

rs7988513
Chr13:92232033

C 0.300 0.80 (0.57–1.14) 7.9 × 10−3
GPC5 intron 7

rs1052717
Chr22:41885425

A 0.304 0.36 (0.25–0.50) 1.36 × 10−7
SREBF2 intron 13

rs1894714
Chr22:41953130

T 0.188 4.31 (2.65–7.00) 7.48 × 10−9
LINC00634 ncRNA

rs11914200
Chr22:41982066

A 0.239 4.29 (2.82–6.55) 4.73 × 10−12
SEPT3 intron 4

rs8138080
Chr22:42000367

A 0.261 5.55 (3.52–8.75) 1.78 × 10−15
WBP2NL intron 2

rs7245
Chr22:42085845

G 0.326 0.28 (0.2–0.4) 7.52 × 10−13
NDUFA6 3′ UTR

rs5751222
Chr22:42121918

A 0.229 5.96 (3.55–10.00) 2.31 × 10−12
NDUFA6-AS1 ncRNA

rs5751247
Chr22:42237048

C 0.290 4.82 (3.09–7.52) 2.81 × 10−13
TCF20 intron 3

rs134906
Chr22:42293364

T 0.333 0.37 (0.26–0.52) 2.35 × 10−8
intergenic

rs28371725
Chr22:42127803

T 0.064 2.24 (1.11–4.50) 6.81 ×10−2
CYP2D6 intron 6 (SSV)

rs3892097
Chr22:42128945

T 0.093 6.93 (3.92–12.24) 1.98 × 10−12
CYP2D6 intron 3 (SSV)

rs1065852
Chr22:42130692

A 0.238 6.85 (3.98–11.77) 3.5 × 10−13
CYP2D6 exon 1 (P34S)

Bold font denotes significant associations (p < 2.78 x 10−3) in verification TaqMan-based genotyping
(Cochran–Armitage trend test). A metabolic ratio (MR) of 0.0146 was used as the specific cutoff value for comparison
groups: MR < 0.0146 (N = 175) and MR ≥ 0.0146 (N = 112). MA, minor allele; MAF, MA frequency; OR, odds ratio
(calculated for MA); CI, confidence interval; SSV, splice site variant; a, SNP identifier (ID) based on the National
Center for Biotechnology Information (NCBI) SNP database (https://www.ncbi.nlm.nih.gov/snp/); b, chromosome
position (GRCh38.p7) and NCBI ID of genes close to SNPs of interest (https://www.ncbi.nlm.nih.gov/snp/); c, MAF
based on the NCBI SNP database 1000 genomes (https://www.ncbi.nlm.nih.gov/snp/).

3.2. Predictive Performance

To evaluate the predictive performance of the selected DNA variants, two multivariate binary
logistic regression models were developed, and parameters describing the accuracy of prediction were
calculated. A multivariate regression analysis allowed for the preselection of variables exhibiting
an independent impact on the MR. Two approaches to the selection of predictors were applied.
In Approach 1, the CYP2D6 genotype and 13 additional SNPs that were selected in the current study
(Table 2) were tested to determine whether any of the new variables could improve the predictive
accuracy achieved by testing solely the CYP2D6 genotype. In Approach 2, the same set of 13 SNPs was
analyzed in addition to two SNPs from CYP2D6, rather than the full CYP2D6 genotype (as tested in
Approach 1). The goal of Approach 2 was to establish a simplified, alternative predictive model for
MR, avoiding the need for an analysis of the full CYP2D6 genotype.

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
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The application of a multivariate regression analysis in Approach 1 revealed five significant
variables, including the CYP2D6 genotype (p = 6.28 × 10−13), rs7245 (p = 1.38 × 10−3), rs6950784
(p = 7.94 × 10−4), rs1320308 (p = 6.26× 10−3), and rs11786748 (p = 0.047) (Table 3). Nagelkerke pseudo-R2

analysis indicated that the CYP2D6 genotype could explain 42.7% of total observed variation in the
MR, while the additional four SNPs explained a further 14.1% of the variability. The final prediction
model (Model 1) was built using the CYP2D6 genotype, rs7245, rs6950784, and rs1320308, each of
which increased the AUC value by ≥0.005 (Table 3). The AUC value for MR prediction based on the
CYP2D6 genotype alone was 0.758 (AUC values range from 0.5, indicating random prediction, to 1.0,
indicating perfect prediction). A noticeable increase in predictive performance was observed when an
additional three SNPs were included in the model, reaching a final AUC value of 0.879.

Table 3. Multivariate regression analysis considering a set of 13 SNPs and the CYP2D6 genotype
(Approach 1).

Variable/
dbSNP ID a Gene −2 Log

Likelihood Rank R2 b OR (95% CI) p-Value AUC c

CYP2D6
genotype CYP2D6 254.137 1 0.427 16.13 (7.58–34.48) 6.28 × 10−13 0.758

rs7245 NDUFA6 238.013 2 0.482 0.40 (0.22–0.70) 1.38 × 10−3 0.842
rs6950784 Intergenic 223.925 3 0.527 2.24 (1.40–3.59) 7.94 × 10−4 0.871
rs1320308 S100Z 214.671 4 0.556 0.48 (0.29–0.81) 6.26 × 10−3 0.879
rs11786748 SCARA5 210.654 5 0.568 1.68 (1.01–2.80) 0.047 0.880

Only variables significant (p < 0.05) in the multivariate regression analysis are shown, ranked according to their
importance and designated using the −2 log-likelihood reduced model statistic. Bold font denotes the variables that
changed the area under the receiver-operating characteristic curve (AUC) value by≥0.005, included in the final prediction
model (Model 1). Odds ratios (ORs) were calculated for the minor alleles categorized in an additive manner. The CYP2D6
genotype indicates diplotypes of impaired metabolism (PM/PM, PM/IM, IM/IM, NM/IM, and NM/PM) versus normal
metabolism (NM/UM and NM/NM). CI, confidence interval. a, SNP identifier (ID) based on the NCBI SNP database
(https://www.ncbi.nlm.nih.gov/snp/); b, Nagelkerke pseudo-R2 values calculated after sequential implementation of the
ranked SNPs; c, AUC value calculated after sequential implementation of the ranked SNPs.

In Approach 2, a multivariate regression analysis revealed six SNPs significantly associated with
the MR, including rs8138080 (p = 1.56 × 10−3), rs1320308 (p = 3.7 × 10−3), rs6950784 (p = 2.81 × 10−3),
rs7245 (p = 0.034), rs1065852 (p = 0.020), and rs11786748 (p = 0.028) (Table 4). Analysis of the selected
SNPs using Nagelkerke pseudo-R2 revealed that they could explain 48.5% of total variation in the MR,
which was more than the CYP2D6 genotype alone. The strongest association was observed for SNP
rs8138080 in WBP2NL, which explained the largest proportion of MR variation (33.7%). Prediction
Model 2 was developed using four SNPs (rs8138080, rs1320308, rs6950784, rs7245) that improved the
AUC by ≥0.005 (Table 4).

Table 4. Multivariate regression analysis considering a set of 15 SNPs, including two CYP2D6 variants
(Approach 2).

dbSNP ID a Gene −2 Log
Likelihood Rank R2 b OR (95% CI) p-Value AUC c

rs8138080 WBP2NL 278.432 1 0.337 3.73 (1.65–8.43) 1.56 × 10−3 0.718
rs1320308 S100Z 264.234 2 0.390 0.48 (0.29–0.79) 3.7 × 10−3 0.795
rs6950784 Intergenic 255.872 3 0.420 1.91 (1.25–2.92) 2.81 × 10−3 0.819

rs7245 NDUFA6 247.300 4 0.450 0.54 (0.30–0.95) 0.034 0.830
rs1065852 CYP2D6 242.012 5 0.468 2.78 (1.18–6.59) 0.020 0.817
rs11786748 SCARA5 237.058 6 0.485 1.70 (1.06–2.74) 0.028 0.813

Only SNPs significant (p < 0.05) in the multivariate regression analysis are shown, ranked according to their importance and
designated using the −2 log-likelihood reduced model statistic. Bold font denotes SNPs that changed the area under the
receiver-operating characteristic curve (AUC) value by ≥0.005, included in the final prediction model (Model 2). Odds ratios
(ORs) were calculated for the minor alleles categorized in an additive manner. CI, confidence interval. a, SNP identifier (ID)
based on the NCBI SNP database (https://www.ncbi.nlm.nih.gov/snp/); b, Nagelkerke pseudo-R2 values calculated after
sequential implementation of the ranked SNPs; c, AUC value calculated after sequential implementation of the ranked SNPs.

https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
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Next, prediction parameters were calculated for both models (Table 5). The overall AUC values for
Models 1 and 2 were 0.879 and 0.830, respectively. Model 1 had a sensitivity for MR prediction of 87.8%,
indicating that, of 156 individuals with MR levels <0.0146, 137 would be detected. The specificity for
Model 1 was 70.8%, indicating that 31 of 106 patients would be falsely positively predicted as having
an MR <0.0146. For Model 2, sensitivity and specificity values for MR prediction were only slightly
lower, at 80.1% and 64.2%, respectively. Overall, Model 2 is a potentially interesting alternative to the
entire CYP2D6 genotype testing.

Table 5. Parameters describing the accuracy of MR prediction using two binary logistic prediction models.

Parameter
Prediction Model Type

Model 1 Model 2

AUC 0.879 0.830
Sensitivity (%) 87.8 80.1
Specificity (%) 70.8 64.2

PPV (%) 81.6 76.7
NPV (%) 79.8 68.7

Model 1 included the CYP2D6 genotype, rs7245, rs6950784, and rs1320308. Model 2 included rs8138080, rs1320308,
rs6950784, and rs7245. The CYP2D6 genotype indicates diplotypes of impaired metabolism (PM/PM, PM/IM, IM/IM,
NM/IM, and NM/PM) versus normal metabolism (NM/UM and NM/NM). AUC, area under the receiver-operating
characteristic curve; PPV, positive predictive value; NPV, negative predictive value.

4. Discussion

It is in the best interest of patients with breast cancer to avoid suboptimal treatment and introduce
the appropriate therapy as soon as possible. Hence, there is a need to predict which patients are at risk
of not achieving a therapeutically beneficial level of (Z)-endoxifen during treatment with standard-dose
tamoxifen (20 mg daily). Promisingly, increasing the daily dose of tamoxifen from 20 to 30–40 mg
significantly raised endoxifen concentrations in CYP2D6 IM and PM patients to levels above or near
the efficacy threshold, without appreciable effects on quality of life [58–62]. Alternatively, the use
of an aromatase inhibitor, either with or without ovarian function suppression, has recently been
recommended for PM and IM patients [63], particularly since the switch from tamoxifen to anastrozole
did not increase the risk of recurrence in PM patients [13]. Hence, tamoxifen treatment outcomes may
be improved by ensuring the appropriate hormonal therapy regimen or dose.

Although the genetic polymorphism of CYP2D6 clearly has a major impact on (Z)-endoxifen
plasma level variability, there remains considerable controversy regarding its usefulness in clinical
practice. In this study, we used a GWAS approach to search for DNA variants that, alone or in addition
to the CYP2D6 genotype, could improve the prediction of failure to achieve therapeutically beneficial
(Z)-endoxifen exposure. We identified 13 novel variants outside CYP2D6 that showed significant
differences in allele frequency between patients with MR values below and above the 0.0146 threshold.
This previously delineated MR threshold, which correlates with a 6-ng mL-1 (Z)-endoxifen efficacy
threshold, was used because it is a better predictor of impaired metabolism directed to endoxifen than
plasma concentrations of this metabolite [27], distinguishing between the impact of concomitant use of
CYP2D6 inhibitors and poor compliance with treatment. The MR can account for 61% of variability in
(Z)-endoxifen absolute plasma levels [27].

We developed multivariate binary logistic regression models to evaluate GWAS-selected and
verified variants in terms of their independent impact on the MR and ability to predict impaired
tamoxifen metabolism. In addition to the CYP2D6 genotype, four novel SNPs were found to explain
a further 14.1% of MR variation, representing a total of 56.8% (Table 3). Prediction Model 1, which
included three SNPs (rs7245, rs6950784, and rs1320308) plus the CYP2D6 genotype, clearly improved
the accuracy of MR prediction relative to the solely CYP2D6 genotype-based model: The AUC value
increased by 0.121 to 0.879. The sensitivity of almost 88% indicates that only 12% of patients with an MR
below the beneficial level would be overlooked using Model 1 (Table 5). In addition, 29% of individuals
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would be falsely positively predicted, but this seems potentially less disadvantageous. It has been
shown that increasing the daily dose of tamoxifen does not tend to increase treatment-related toxicity,
regardless of the CYP2D6 functional group [59]. However, it should be taken into consideration that
the majority of studies reporting the safety of tamoxifen-dose escalation have concerned patients with
impaired drug metabolism and low endoxifen levels [61,62].

Several attempts have been made to improve CYP2D6 genotype-predicted phenotype-based
testing for prediction of the impaired metabolism of tamoxifen to endoxifen. Primarily, the CYP2D6
enzyme activity score (AS) was introduced to optimize the calibration of each patient’s metabolizer
phenotype [10]. This involves the assignment of an activity value to each CYP2D6 allele carried, with
values of 0, 0.5, and 1 for null, reduced-function, and fully functional alleles, respectively. The enzyme
AS is the sum of activity values for the patient’s particular allele combination and is used to classify them
into a specific phenotype group (UM, NM, IM, or PM): However, methods of phenotype grouping have
differed significantly among studies, strongly influencing the prediction of endoxifen exposure [34].
Hence, there is a need for further improvement and standardization of the CYP2D6 activity scoring
system and phenotype grouping, particularly to avoid the collapse of distinct IM diplotypes into a
composite phenotype group and take into account the reduced activity of the *10 allele relative to
other IM alleles or the real activity of the *2 allele, which appears to be closer to an IM than an NM
allele [31,63,64].

Recently, CYP2D6 diplotypes were reported to be the best predictors of plasma endoxifen variability,
compared to various diplotype-based phenotypical groupings [34]: Prediction values ranged from 39%
to 58%, depending on population ethnicity. In Caucasians, endoxifen plasma concentrations above
the efficacy threshold of 5.9 ng mL−1 could be predicted using CYP2D6 diplotypes, with AS ≥ 1 at
94% sensitivity and 59% specificity. Another approach indicated that besides CYP2D6, the CYP3A4*22
genotype, seasonal variation of sample collection (associated with vitamin D variation), and concomitant
use of CYP2D6-inhibiting drugs may be useful in the prediction of falling below beneficial levels of
plasma endoxifen concentration (R2 = 0.46) [35]. The sensitivity and specificity achieved by this model
at a probability threshold of 0.8 were 81% and 77%, respectively. Together with our results, these
observations clearly indicate that CYP2D6 genotype-based predictions can be significantly improved
by including other specific genetic or environmental variables into predictive models.

Of particular note, only six SNPs (five novel variants and the CYP2D6 variant rs1065852, which
defines the impaired allele *10) exhibited significant, independent impacts on the MR, accounting for
48.5% of MR variation (Table 4). The SNP with the strongest effect was rs8138080 in WBP2NL, which
explained almost 34% of MR variation. None of the tested CYP2D6 variants were finally included in
prediction Model 2, which was built using the same three SNPs as applied in Model 1 and WBP2NL
rs8138080 rather than the CYP2D6 genotype. Although the accuracy of MR prediction using Model 2,
measured by the AUC value, was slightly lower than that of Model 1 (by 0.049), it was clearly higher
than that of the CYP2D6 genotype-based model alone (by 0.072), indicating that prediction Model 2
may provide a valuable, simpler alternative to the entire CYP2D6 genotype testing.

The most important finding of this study is that four newly discovered SNPs, tested alone or in
addition to CYP2D6 genotype variants, appreciably improved the prediction of impaired metabolism
of tamoxifen toward endoxifen, i.e., rs7245 (NDUFA6), rs1320308 (S100Z), rs8138080 (WBP2NL),
and rs6950784 (intergenic). Although SNP associations generally do not imply direct functional
relationships, intriguingly, the three genes containing three of these SNPs are involved in breast
cancer. High levels of NDUFA6 expression were found to predict increased tamoxifen treatment
failure and tumor recurrence in high-risk ER-positive breast cancer patients at diagnosis [65]. Elevated
mRNA levels of S100Z have been associated with both shorter overall survival [66] and opposite,
longer, relapse-free survival and distant metastasis-free survival [67] in breast cancer patients. In the
current study, the MA of both NDUFA6 (rs7245) and S100Z (rs1320308) variants was associated with a
decreased risk of impaired metabolism of tamoxifen to endoxifen (OR = 0.28 and 0.51, respectively).
In turn, rs8138080 in WBP2NL exhibited the strongest association with a below-threshold MR value
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(OR = 5.55; p = 1.78 × 10−15), indicating an increased risk of impaired drug metabolism: However, its
effect on the MR is unlikely to be independent from those of CYP2D6 functional variants, since it was
not selected as an independent variable by multivariate regression analysis in our Approach 1.

Why patients with the same CYP2D6 genotype can differ significantly in the efficiency of tamoxifen
metabolism toward endoxifen remains largely unexplained. As we reported previously, over 30% of
Polish women with fully active CYP2D6 (NM/NM) may not achieve beneficial threshold levels of plasma
(Z)-endoxifen when receiving the standard dose of tamoxifen (20 mg daily) [27]. The use of CYP2D6
inhibitors or a low degree of compliance with therapy are known critical factors [41,47,63], and increasing
evidence suggests that differential regulation of CYP2D6 transcription may also contribute to this
interindividual variability [68]. Recent reports have revealed that long-range polymorphisms, located
downstream and upstream of CYP2D6, may alter its expression and consequently its activity [69–71].
The SNP rs8138080 in WBP2NL (126 kb downstream of CYP2D6), identified in the present study
as associated with a below-threshold MR value, has previously been reported as being associated
with lower CYP2D6 mRNA levels and enzyme activity [69]. In addition, two SNPs located ~127 and
~106 kb upstream of CYP2D6 (rs17478227 and rs5751247, respectively) are associated with significantly
decreased enzyme activity [69]. Conversely, rs5758550, located 115 kb downstream of CYP2D6,
is associated with enhanced expression of this gene [70]. In agreement with these reports, rs5751247 in
the transcription factor 20 (TCF20) gene was strongly associated with impaired tamoxifen metabolism
and a below-threshold MR value in the current study (OR = 4.82, p = 2.81 × 10−13). However, it was
not included in any of the predictive models developed by multivariate regression, suggesting that its
impact on the MR may not be independent.

Since long-range polymorphisms are in strong linkage disequilibrium (LD) with two functional
CYP2D6 SNPs, rs1065852 (100C>T) and rs3892097 (1846G>A), defining the decreased-activity allele
*10 (100C>T) and the nonfunctional allele *4 (1846G>A, 100C>T), it has been suggested that the effect
of long-range SNPs on CYP2D6 activity is most likely conferred by alleles *4 and *10 [69]: However,
the functional relationship between the variability of CYP2D6 mRNA expression and impaired enzyme
activity variants is unclear. Recently, two-fold higher levels of in vitro CYP2D6 promoter activity
were identified as associated with the MA (G) of the regulating enhancer rs5758550, compared to the
major (A) allele [71], indicating that at least some long-range variants may directly influence CYP2D6
expression. Therefore, it cannot be entirely ruled out that the rs7245 variant in NDUFA6, which
exhibited a protective effect for the risk of impaired tamoxifen metabolism, may act as another CYP2D6
expression enhancer. Although it remains in strong LD with impaired CYP2D6 metabolism alleles,
it was included by multivariate regression in both predictive models, either along with or without the
CYP2D6 genotype, suggesting that it has an independent impact on MR variability: Further functional
analyses are needed to verify this hypothesis. Together, it seems likely that there are additional genetic
variants that have roles in the transcriptional regulation of CYP2D6 expression, whose incorporation
into predictive models could significantly improve the prediction of failure to achieve beneficial
(Z)-endoxifen plasma concentrations during tamoxifen treatment.

5. Conclusions

Based on currently available data, the efficacy of tamoxifen treatment depends on meeting a
minimum threshold plasma level of (Z)-endoxifen. Accordingly, the identification of patients unlikely
to attain clinically sufficient (Z)-endoxifen exposure is of great interest in applications in individual
drug dose adjustments and therapy optimization. Since CYP2D6 activity has a major impact on
(Z)-endoxifen production, many attempts have been made to predict the risk of treatment failure with
standard-dose tamoxifen based on patient CYP2D6 genotype. In the current study, a GWAS analysis
revealed several novel DNA variants, both in the long-range CYP2D6 locus and outside chromosome
22, that were significantly associated with a below-efficacy threshold MR value. A multivariate
regression analysis indicated that three of these SNPs exhibited effects on MR variability independent
from the CYP2D6 genotype, and their inclusion in a predictive model, in addition to the CYP2D6
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genotype, increased the accuracy of prediction of impaired tamoxifen metabolism. Alternatively,
a model consisting of the same three SNPs and rs8138080 in WBP2NL, rather than the CYP2D6 genotype,
was proposed, that had a clearly higher predictive performance than the CYP2D6 genotype-based
model alone did. In summary, our results clearly indicate that CYP2D6 genotype-based predictions can
be significantly improved by including other specific genetic variables into predictive models. Many
lines of evidence suggest that variants modifying enzyme activity through transcriptional regulation
are of particular interest in this context.
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