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Abstract: In a context sensing system in which a sensor-equipped mobile phone runs an unreliable
context-aware application, the application can infer the user’s contexts, based on which it provides
personalized services. However, the application may sell the user’s contexts to some malicious
adversaries to earn extra profits, which will hinder its widespread use. In the real world, the actions
of the user, the application and the adversary in the context sensing system affect each other, so
that their payoffs are constrained mutually. To figure out under which conditions they behave well
(the user releases, the application does not leak and the adversary does not retrieve the context),
we take advantage of game theory to analyze the context sensing system. We use the extensive form
game and the repeated game, respectively, to analyze two typical scenarios, single interaction and
multiple interaction among three players, from which Nash equilibriums and cooperation conditions
are obtained. Our results show that the reputation mechanism for the context-sensing system in
the former scenario is crucial to privacy preservation, so is the extent to which the participants are
concerned about future payoffs in the latter one.

Keywords: context-aware; privacy protection; mobile application; game theory

1. Introduction

Nowadays, smart phones equipped with various sensors can access users’ privacy information,
including geographical coordinates, moving speed or call records. Users’ privacy information reflects
the contexts they are in, such as locations, mobility modes and social states, as well as their current
needs. Hence, context-aware applications arise, inferring a user’s contexts based on which some
personalized services can be provided. Examples of context-aware applications include GeoNote,
which calls attention to the user once he or she is at a particular location, and Gudong, which records
the user’s sports information and develops corresponding motion tasks.

However, once a context-aware application knows a user’s context information, the user cannot
know how the application will use it. In some cases, the application may sell user’s contexts to some
malicious adversaries to earn extra profits, thus hindering its widespread use due to information
disclosure. To solve this problem, it is key to control the release of user’s contexts. However, it is
challenging, because the user of a context-aware application needs to trade off between privacy
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protection and service quality. In detail, a user may reject releasing his/her contexts to the application
considering privacy protection, but such behavior means giving up personalized services provided by
the application completely, and vice versa.

Currently, most privacy protection techniques for mobile applications focus on location
protection, neglecting the diversity of users’ privacy and different degrees of users’ context sensitivity.
Limited research on context privacy preservation are MaskIt [1,2]. MaskIt [1] introduces an approach
to filter a user context stream that provably preserves privacy, a privacy check deciding whether to
release or suppress the current user context. However, the adversary is only allowed to make a fixed
attack and cannot adjust its strategies according to different context sensitivity; while in the real world,
the adversary will adapt its attacking strategies to different situations for achieving better profits.
For example, advertisers may push hotel advertisements if they have inferred that a potential user
will go to a new city. The work in [2] overcomes this shortcoming and considers a more sensitive
and realistic adversary in its framework of context privacy protection. It uses a two-player game
formulation involving a mobile phone user and the adversary to analyze the context privacy problem.
Unfortunately, both [1,2] do not realize the important role that the application plays.

In fact, whether an adversary can obtain a user’s context information depends directly on whether
the application leaks it. Although leaking contexts will increase the application’s profits, it will
also harm the application’s credibility and the trust from the user. Thus, a reasonable strategy of
the application is to trade off between maintaining credibility and obtaining benefits by leakage.
Once considering the application’s strategy, the two-player game in the existing work needs to be
extended to the three-player game, which leads to different methods of analysis and conclusions.

Defining the context sensing system as the one consisting of the sensor-equipped mobile phone
user, the context-aware application and the malicious adversary, we analyze it by taking advantage
of the single three-player game model and the repeated one. Our aim is to figure out under which
conditions the user, the application and the adversary behave well (the user releases, the application
does not leak and the adversary does not retrieve the context). For single-stage game analysis,
we analyze the trade offs among the behaviors of the three parties, and then, we use the game tree to
formulate their one-round decision-making process. After analyzing the key impact factors on their
payoffs, for example the context sensitivity, the credibility of the application and the cost of retrieving
contexts, we construct payoff functions for the three parties, based on which we solve and analyze their
Nash equilibriums. For repeated game analysis, we study how the equilibrium results of a single-stage
game develop in repeated game and put forward a social norm that preserves context privacy, as well
as calculate the condition of three players in complying with the social norm. Our study shows that in
a single interaction among the players, the key of context privacy preservation is to establish a sound
reputation mechanism for context-aware applications, through which the issue of context privacy can
be eliminated utterly. As a consequence, trust between users and mobile applications can be built;
while in the multiple interactions among the players, the condition of the players not deviating from
the cooperation strategy is that the patience of the players to participate in the future game is in some
reasonable range. In this case, the punishment from the social norm will effectively prevent the action
of privacy leakage.

The rest of the paper is organized as follows. Section 2 introduces related work. We then provide
the single-stage game analysis based on the extensive form game formulation in Section 3. Section 4
presents the repeated game analysis. Then, numerical analysis is described in Section 5. Finally,
we conclude in Section 6.

2. Related Work

As previously described, many approaches have been proposed to protect the privacy of mobile
phones [3–6], while most studies on privacy preservation for mobile applications focus on location
preservation. To this end, the anonymization technique is widely used, of which k-anonymization is the
classic one. K-anonymization requires there to be a certain amount of indistinguishable records in the
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quasi-identifier, so that adversaries cannot distinguish the specific user, thus preserving privacy [7–9],
while k-anonymization falls short in some scenarios, for example when the k individuals are in the
same sensitive location.

Anther important privacy protection approach is achieved by encryption [10,11]. Encryption is a
special algorithm to change the original information, so that even if an unauthorized user gets access
to encrypted information, he or she still cannot understand the actual meaning of it, having no idea of
the decryption method. It is usually used to protect data in storage or in transit. As its computational
complexity is high, it is not applicable for a mobile phone user.

From the perspective of methodological research, game theory has been widely applied to many
strategic interaction scenarios, including natural disasters and homeland security. The work in [12]
proposes a model for allocating defensive investment between terrorism and natural disasters by
applying game theory to identify equilibrium strategies for both the attacker and defender in the
model. The work in [13,14] introduces the game-theoretic optimization framework in which the insurer
decision model interacts with a utility-based homeowner to help understand and manage the insurer’s
role in catastrophe risk management. The work in [15] is the first game-theoretic study for modeling
and optimally disrupting a terrorism supply chain in a complex four-player scenario.

MaskIt [1] and [2] are the only research works studying the context privacy preservation.
MaskIt [1] is a middleware deciding whether the user releases current contexts for privacy protection.
Even when the adversary knows the correlations between contexts, MaskIt [1] can prevent it from
finding out in what sensitive context the user is. The work in [2] proposes a framework of context
privacy in the case that the adversary can adapt attack strategies according to the historical records
of contexts. However, as noted earlier, [1,2] do not take into account the application’s capability to
participate in the decision-making process, which stimulates our work.

3. Single-Stage Game Analysis Based on the Extensive Form Game Formulation

In this section, we analyze the context privacy issue of the context sensing system in a single
interaction among three players in detail.

3.1. Problem Statement and the Extensive Form Game Formulation

As illustrated in Figure 1, a context-sensing system consists of the user, the application and the
adversary, which are in conflict. Actually, the actions of the user, the application and the adversary in
the context sensing system affect each other, so that their payoffs are constrained mutually. In detail, the
mobile phone user can determine whether to release these sensing data to the application, for it should
trade off between gaining personalized services and protecting individual privacy. In the meantime, the
application needs to decide whether to expose extracted contexts to malicious adversary. The leakage
of the privacy may harm its credibility, but gain profits from the adversary, so the application needs
to trade off between maintaining credibility and making a profit by leakage. Due to computational
constraints and limited bandwidth used for retrieving contexts, the adversary cannot carry on the
attack continually, which has already been adopted by [2]. Hence, the adversary needs to determine
when to retrieve the contexts from the application in order to trade off between obtaining contexts and
lowering the cost of retrieval. The adversary’s decisions affect those of the user and the application.
For example, if the adversary chooses not to retrieve the context, the user will feel safe to release his or
her context, and the application will not leak it in a later stage.

To analyze the context privacy issue of the context sensing system in a single interaction
among three players, we use the extensive form game model, which takes advantage of the game
tree, depicted in Figure 2. The game tree can be represented as a three-tuple Σ = (N, A, h).
N = {user, applicationm, adversary} is the set of the players in the game. A = {α1, α2, β1, β2, γ1, γ2}
is the arc set, indicating the players’ actions. α1 and α2 are respectively releasing temporal context c
to the application and not. β1 and β2 are respectively leaking c to the adversary and not. Similarly,
γ1 and γ2 are respectively retrieving c from the application and not. h : ωi → Rn is the set of players’
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payoffs when reaching the play ωi. As shown in the game tree, the user has two choices α1 and α2, and
if he or she chooses α1, the application will also have two actions, β1 and β2, and so does the adversary.
Ultimately, there will be six different paths (note that when the user chooses α2, the application has to
choose β2, because the application receives nothing from the user then), which reaches six kinds of
plays ωi (i = 1, ..., 6). For example, if the user releases his or her current context, and the application
chooses to leak it, and the adversary retrieves it; their game will reach the play ω1, so that their payoffs
are hu(ω1), ha(ω1) and had(ω1) accordingly.

...

Mobile Phone User Context-aware Application Malicious Adversary

Sensing Data

Context-based 

Service

Extracted 

Context

GPS

Gravity Sensor

Accelerometer

Distance Sensor

Sensors

Figure 1. The context sensing system.
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Figure 2. The game tree of context privacy protection.

3.2. Payoff Function

Since each player’s strategy is driven by his or her payoff, we introduce each player’s payoff in
detail as follows. Especially, in this paper, each player’s strategy is defined as the probability of taking
the above actions. For example, the strategy of the user is the probability of α1, releasing the current
context c. Let η, λ and θ respectively refer to the players’ strategies, the probability to release, leak and
retrieve context.
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3.2.1. The User’s Payoff Function

According to the analysis before, a user should trade off between service quality and privacy
protection. In fact, context privacy loss is closely related to the sensitive context. For example, going to
the cinema may not be so sensitive, while going to the hospital may be a very important privacy issue
for most users. To measure the degree of the context privacy loss, we use the following formula:

Sens(c) =
∞

∑
t=0

∑
cs∈Cs

τt|Pr[Ct = cs|C0 = c]− Pr[Ct = cs]|, (1)

where 0 < τ < 1 is the discount factor of the context privacy, Pr the probability, Ct the context
happening at time t and C0 the context happening at time 0. cs is a certain sensitive context of the user,
and Cs is the set of it.

According to Equation (1), the context sensitivity of c is the accumulated difference between
the prior belief and the posterior one after viewing the user’s present context being in the sensitive
context from the future perspective [2]. The prior belief refers to a prediction of the user being in
a certain sensitive context cs. The larger the difference above, the less the adversary would learn
information about the user being in a private state from the released data. To this end, we consider
context sensitivity as the measure of the degree of context privacy loss.

Based on the analysis above, when a user releases c, which will be leaked by the application and
further be retrieved to the adversary, the user’s payoff is:

Uu(c) =


Q(c)− k1 Sens(c) i f η = 1, λ = 1 and θ = 1,

Q(c) i f η = 1 and λ = 0 or θ = 0,

0 i f η = 0,

(2)

where Q(c) is the profit of being served by the application after releasing c and k1 > 0 is the coefficient
reflecting the negative impact of the context privacy loss on the user’s payoff. When a user releases c,
which will be leaked by the application and further be retrieved for the adversary, the user’s payoff is
Q(c)− k1 Sens(c). Obviously, if the user does not release c, its payoff will be zero. Additionally, if the
application does not leak or the adversary does not retrieve c, his or her payoff will be Q(c) without
any privacy loss.

3.2.2. The Application’s Payoff Function

Obviously, the credibility of the application is positively related to the user’s profit of being served
by the application and negatively related to context privacy loss. Here, when the user releases, and the
application leaks c; the credibility of the application because of providing services and leaking privacy
can be formulated as:

Cre(c) = Q(c)− k2 Sens(c), (3)

where k2 > 0 is the coefficient reflecting the negative impact of selling context on the application’s
credibility; while, when the user does not release c, the application can do nothing, without any
services provided to the user and any contexts leaked to the adversary, thus with zero credibility as
a consequence.

If the application leaks a context to the adversary, it will gain some certain profits. Additionally
obviously, the more sensitive the context is, meaning higher value to the adversary, the more profits
the application will gain.
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Thus, the application’s payoff is:

Ua(c) =


Q(c) + (k3 − k2) Sens(c) i f η = 1, λ = 1 and θ = 1,

Q(c) i f η = 1 and λ = 0 or θ = 0,

0 i f η = 0,

(4)

where k3 > 0 is the coefficient reflecting the positive impact of selling c on the application’s payoff.
When the application leaks c released by the user and further retrieved by the adversary, its payoff
is Q(c)− k1 Sens(c). However, if the application does not leak c or the adversary does not retrieve,
leading to zero context privacy exposure, the application’s payoff is Q(c).

3.2.3. The Adversary’s Payoff Function

The adversary’s payoff by retrieving c depends on how valuable the retrieved context is, which is
proportional to the context sensitivity. Thus, his or her payoff is:

Uad(c) =


k4 Sens(c)− C i f η = 1, λ = 1 and θ = 1,

Q(c) i f λ = 0 and θ = 1,

0 i f θ = 0,

(5)

where C is the cost of retrieving a context and k4 > 0 is the coefficient reflecting the positive impact of
retrieving the context on the adversary’s payoff. When the adversary retrieves a context released by
the user and leaked by the application, its payoff is k4 Sens(c)− C. Besides, when the application does
not leak c, the payoff of the adversary to retrieve is −C, and the payoff of the adversary not to is zero.

In summary, the payoffs of the players in every play ωi (i = 1, 2, ..., 6) are shown in Table 1 below,
where hu(ωi), ha(ωi) and had(ωi) denote the payoffs of the user, the application and the adversary
respectively in the play ωi.

Table 1. The payoff of the players in different plays.

Payoff
Play

ω1 = (α1, β1, γ1) ω2 = (α1, β1, γ2) ω3 = (α1, β2, γ1) ω4 = (α1, β2, γ2) ω5 = (α2, β2, γ1) ω6 = (α2, β2, γ2)

hu(ωi) Q(c)− k1 Sens(c) Q(c) Q(c) Q(c) 0 0
ha(ωi) Q(c) + (k3 − k2) Sens(c) Q(c) Q(c) Q(c) 0 0
had(ωi) −C + k4 Sens(c) 0 −C 0 −C 0

For example, in play ω1, their actions are α1, β1, γ1, which means the user releases, the application
leaks and the adversary retrieves c. Accordingly, their payoffs are hu(ω1) = Q(c) − k1 Sens(c),
ha(ω1) = Q(c) + (k3 − k2) Sens(c) and had(ω1) = −C + k4 Sens(c).

3.3. Solving and Analyzing the Nash Equilibrium

3.3.1. The Solution of the Nash Equilibrium

To solve each player’s Nash equilibrium, we transform the extensive form game to the strategic
one. The probability s(ωi) of each play ωi can be represented as the function of η, λ and θ. For example,
the probability of s(ω1) and s(ω2) is respectively η λ θ and η λ (1 − θ). The rest can be deduced
by analogy.

Based on the player’ payoff h(ωi) ∈ {hu(ωi), ha(ωi), had(ωi)} and the probability s(ωi) in each
play ωi, the player’s mathematical payoff expectations E can be calculated by the equation as follows:

E =
6

∑
i=1

s(ωi) h(ωi). (6)
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Thus, with a given c, the mathematical payoff expectation of the user, the application and the
adversary, namely E(Uu(c)), E(Ua(c)) and E(Uad(c)), is listed below:

E(Uu(c)) = Q(c) η − k1 Sens(c) η λ θ (7)

E(Ua(c)) = Q(c) η + (k3 − k2) Sens(c) η λ θ (8)

E(Uad(c)) = −C θ + k4 Sens(c) η λ θ. (9)

In the context sensing system, all of the players try to maximize their payoffs by adjusting their
strategies. For example, the user tries to maximize E(Uu(c)) by the way of controlling the probability
of releasing c. Similar situations happen to the application and the adversary. Their optimal strategies
can be obtained by solving the equations as follows:

∂E(Uu(c))
∂η

= Q(c)− k1 Sens(c) λ θ = 0

∂E(Ua(c))
∂λ

= (k3 − k2) Sens(c) η θ = 0

∂E(Uad(c))
∂θ

= −C + k4 Sens(c) η λ = 0

(10)

As a result, we can obtain the following two propositions.

Proposition 1. When k3 > k2, the optimal strategies of the user, the application and the adversary are
respectively η = C

k4 Sens(c) , λ = 1 and θ = Q(c)
k1 Sens(c) .

Proof of Proposition 1. When k3 > k2, obviously ∂E(Ua(c))
∂λ ≥ 0, which means E(Ua(c)) is

non-decreasing. Thus, when λ = 1, E(Ua(c)) takes the maximum value. Putting λ = 1 into the
other two equations, we can easily get η = C

k4 Sens(c) and θ = Q(c)
k1 Sens(c) .

Proposition 2. When k3 < k2, the optimal strategies of the user, the application and the adversary are
respectively η = 1, λ = 0 and θ = 0.

Proof of Proposition 2. When k3 < k2, obviously ∂E(Ua(c))
∂λ ≤ 0, which means E(Ua(c)) is

non-increasing. Thus, when λ = 0, E(Ua(c)) takes the maximum value, making η = 1, θ = 0 is
easily obtained through the other two equations.

Due to k2 reflecting the negative impact of selling context on the application’s payoff and k2

reflecting the positive one, Proposition 2 indicates that the key of context privacy preservation is
to establish a sound reputation mechanism for context-aware applications, through which the issue
of context privacy can be eliminated utterly. As a consequence, trust between users and mobile
applications can be built.

3.3.2. The Analysis of the Nash Equilibrium

According to the two theorems above, k3 and k2 are critical factors influencing the strategies of the
user, the application and the adversary in the single interaction among them. k3 > k2 represents that,
given the same context sensitivity, the profits of the application by leaking the context are more than
its credibility losses. In that case, the application will leak the contexts definitely, which is consistent
with λ = 1. Similarly, k3 < k2 means that the profits of the application by context leakage are less than
its credibility losses. Then, the application will choose not to leak the context, which is also consistent
with λ = 0.
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When k3 > k2, the solution above should satisfy the following constraints:
0 ≤ δ =

C
k4 Sens(c)

≤ 1

0 ≤ θ =
Q(c)

k1 Sens(c)
≤ 1,

(11)

that is, {
k4 Sens(c)− C ≥ 0

k1 Sens(c)−Q(c) ≥ 0
(12)

From Table 1, when the adversary chooses γ1, its payoff is either of k4 Sens(c) − C and −C.
Additionally, when it chooses γ2, its payoff is zero. If k4 Sens(c)− C ≤ 0, the adversary’s payoff of γ1

is always less than its payoff of γ2, which means the pure strategy Nash equilibrium exists. This does
not accord with the precondition of the mixed strategy Nash equilibrium. Thus, there is the constraint
k4 Sens(c)− C ≥ 0.

Similarly, when the user chooses α1, his or her payoff is either of Q(c) − k1 Sens(c) and Q(c).
Additionally, the user’s payoff of α2 is zero. If Q(c)− k1 Sens(c) ≥ 0, the user’s payoff of α1 is always
greater than his or her payoff of α2, which means the pure strategy Nash equilibrium exists. This does
not accord with the precondition of the mixed strategy Nash equilibrium, either. Thus, there is the
constraint Q(c)− k1 Sens(c) ≤ 0, that is k1 Sens(c)−Q(c) ≥ 0.

4. Repeated Game Analysis

It should be noted that the user, the application and the adversary can interact with each other
repeatedly, which means we can model their interactive process as a repeated game. In this case,
the players will take into account the future payoffs while taking strategies. Besides, it is possible for the
adversary to use some technological means to conceal the identity of the leaking application at a certain
cost to get better payoffs. Therefore, we conduct repeated game analysis from the two scenarios,
the adversary to conceal the identity of the application and not to.

4.1. Not Concealing the Identity of the Application

We fist analyze the context privacy issue of the context sensing system where the players can
interact with each other repeatedly, when the adversary does not have the capability or is not willing
to conceal the identity of the application.

Compared to the single-stage game, the repeated game may lead to some more complex
equilibrium results. The solution of the repeated game is to find the equilibrium strategy path
with stable characteristics, and the equilibrium path is connected by the results of every stage game.

When k3 < k2, the result of optimal strategies, η = 1, λ = 0 and θ = 0 is the only pure strategy
Nash equilibrium. According to [16], the only subgame perfect Nash equilibrium solution of the
repeated game is that each game player adopts the Nash equilibrium strategy of the original game
in each stage, if the original game has only one pure strategy Nash equilibrium. Therefore, the
equilibrium results of the corresponding repeated game will be that the user releases, the application
does not leak and the adversary does not retrieve the context in every stage game. Then, the players
all behave well, and the context privacy is protected.

As for k3 > k2, the result of optimal strategies, η = C
k4 Sens(c) , λ = 1 and θ = Q(c)

k1 Sens(c) , is a mixed
strategy Nash equilibrium. When it comes to the repeated game, some problems arise. There is no
final stage in the infinite repeated game, so the backward induction method cannot be used. Besides,
in the process of infinite accumulation, the total payoff of almost all paths is infinite, so that we cannot
weigh the pros and cons of different paths. In order to solve the problems above, we introduce a
discount coefficient δ that discounts future earnings to the current stage. Then, the total payoff can be
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a finite number that can be compared. Given the discount coefficient δ and a certain path of the infinite
repetitive game, if a player’s payoffs in each stage are as follows, π1, π2, π3 . . ., then the total payoff of
the player is:

π = π1 + δπ2 + δ2π3 + · · · =
∞

∑
i=1

δi−1πi. (13)

From the equation above, it can be noted that the discount coefficient of the player reflects the
player’s preference for time; the larger δ indicates that the player pays more attention to the the game
gains in the latter stage. In this paper, we use δu, δa and δad to represent the discount coefficients of the
user, the application and the adversary, respectively.

When k3 > k2, only the mixed strategy Nash equilibrium exists, and we can use the total payoff
represented above to solve the equilibrium results. We put forward a social norm, which is consistent
with real situations. Generally, the user always releases its information, until it discovers information
disclosure for continuous n1 times, and then, it refuses to release. The application first chooses not to
leak information and switches to leak once it finds that the adversary retrieves the information for
continuous n2 times to maximize its payoff. Additionally, the application cannot leak if the user did
not release. As for the adversary, the original strategy is not to retrieve and switches to retrieve once it
finds the application leaked information for continuous n3 times. Additionally, it will switch to not
retrieve once it finds that the application did not leak for n4 times for the purpose of maximizing its
payoff, as well.

Next, we want to study the players’ inner motivation of insisting on the social norm, which means
that a player who chooses to deviate from the norm will gain less in the later stages. In order to
describe the problem more specifically and without loss of generality, we let n1 = 1, n2 = 1, n3 = 1,
n4 = 2. We claim that our analytical method is general, which can be suitable for other scenarios when
n1, n2, n3 and n4 are under different settings.

If all of the players take the social norm above, the strategy path in the infinite repeated game will
be (1, 0, 0)→ (1, 0, 0)→ (1, 0, 0)→ · · · . Therefore, the total payoff of the user, the application and the
adversary Uui(c), Uai(c) and Uadi(c) can be calculated respectively as follows:

Uui(c) = Q(c) (1 + δu + δ2
u + δ3

u + · · · ) =
Q(c)

1− δu
(14)

Uai(c) = Q(c) (1 + δa + δ2
a + δ3

a + · · · ) =
Q(c)

1− δa
(15)

Uadi(c) = 0 (1 + δad + δ2
ad + δ3

ad + · · · ) = 0. (16)

Let us consider the first case, the deviation of the application’s strategy. We reasonably assume
that it starts off from the first round, so that the new strategy path will be (1, 1, 0) → (1, 1, 1) →
(0, 0, 1)→ (0, 0, 1)→ (0, 0, 0)→ (0, 0, 0) · · · .

As a result, the application’s total payoff of deviations Uaid(c) will be:

Uaid(c) = Q(c) + (Q(c) + (k3 − k2) Sens(c)) δa. (17)

Then, we consider the second case, the deviation of the adversary’s strategy. Similarly,
we reasonably assume that it starts off from the first round, so the new strategy path will be
(1, 0, 1) → (1, 1, 1) → (0, 0, 1) → (0, 0, 1) → (0, 0, 0) → (0, 0, 0) · · · . Therefore, the adversary’s
total payoff in this case Uadid(c) will be:

Uadid(c) = −C + (k4 Sens(c)− C) δad − C δ2
ad − C δ3

ad. (18)

Finally, we consider the last case, where the application and the adversary deviate at the same
time, the first round. Then, the strategy path is (1, 1, 1)→ (0, 0, 1)→ (0, 0, 1)→ (0, 0, 0)→ (0, 0, 0) · · · .
Therefore, the new total payoffs of the application and adversary will be:
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U,
aid(c) = Q(c) + (k3 − k2) Sens (19)

U,
adid(c) = −C + (k4 Sens(c)− C) δad − C δ2

ad. (20)

In order to avoid the deviation of the players, the payoffs need to satisfy the following inequality:
Uaid(c) < Uai(c)

Uadid(c) < Uadi(c)

U,
aid(c) < Uai(c)

U,
adid(c) < Uadi(c)

(21)

As a consequence, when k4 <= 3 C
Sens(c) , the second and last equation in (21) are constant,

and we can get the discount coefficient range as follows:{
δa >

(k3 − k2) Sens(c)
Q(c) + (k3 − k2) Sens(c))

(22)

While k4 > 3 C
Sens(c) , the discount coefficient range is:


δa >

(k3 − k2) Sens(c)
Q(c) + (k3 − k2) Sens(c))

δad <
k4 Sens(c)− C−

√
k2

4 Sens(c)2 − 4 C Sens(c)− 3 C2

2 C

(23)

That is to say, when the discount coefficients satisfy the ranges, above which are related to the
value of k4, the players will lose the motivation to actively deviate from the social norm; therefore, the
context privacy of the user can be protected.

4.2. Concealing the Identity of the Application

In this section, we analyze the context privacy issue when the adversary has the capability to
conceal the identity of the application. Specifically, when the adversary launches an attack on the user
whose contexts have been leaked, the adversary can use some technical means to avoid the identity
exposure of the application that leaked the context. Hence, the user does not know which application
is the unreliable one and releases his or her contexts to the application as usual. Thus, the adversary
can receive the context privacy safely. We assume that concealing the identity of the application will

cost the adversary at C2. In this case, the strategy path will be (1, 0, 1) −→ (1, 1, 1)
C2−→ (1, 1, 1)

C2−→
(1, 1, 1) −→ · · · . Therefore, the total payoff of the adversary changes into:

U
′′
adid(c) = −C + (k4 Sens(c)− C− C2) δad + (k4 Sens(c)− C− C2) δ2

ad + (k4 Sens(c)− C− C2) δ3
ad + · · ·

= −C + (k4 Sens(c)− C− C2)
δad

1− δad
.

(24)

When U
′′
adid(c) < Uadi, that means δ3 < C

k4 Sens(c)−C2
; the application will choose not to deviate

from the social norm.
In summary, when considering the adversary’s action of concealing the identity of the application

and k4 <= 3 C
Sens(c) , the range of the players’ discount coefficient is:


δa >

(k3 − k2) Sens(c)
Q(c) + (k3 − k2) Sens(c)

δad <
C

k4 Sens(c)− C2

(25)
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Additionally, when k4 > 3 C
Sens(c) , the range of discount coefficient becomes:

δa >
(k3 − k2) Sens(c)

Q(c) + (k3 − k2) Sens(c)

δad < min{ C
k4 Sens(c)− C2

,
k4 Sens(c)− C−

√
k2

4 Sens(c)2 − 4 C Sens(c)− 3 C2

2 C
}

(26)

Only if the players’ discount coefficients satisfy the ranges above can the players be sure not to
actively deviate from the social norm.

5. Numerical Analysis

In this section, we conduct a numerical analysis to verify our analytical framework of the
single-stage game model and the repeated one.

5.1. Numerical Analysis of the Single-Stage Game Model

When k3 < k2, establishing a sound reputation mechanism for context-aware applications can
preserve context privacy effectively, so there is no need to conduct the simulation for this scenario.
Let us see the results in single stage game first. Actually, we have conducted extensive simulations,
which depict consistent results. Due to page limitations, we only show the results when Sens(c) = 0.3,
Q(c) = 2, C = 1.5. Figures 3–6 show how the strategies and payoffs of every player change as k1

and k4 vary. The results show that the application’s strategies are only relevant to k2 and k3, which
indicates that whether the application leaks context privacy to the adversary just depends on how
it weighs the credibility from the user and profits by leakage, while the user and the adversary are
deeply affected by each other. The probability η of the user to release a context will decrease as k4

increases. k4 reflects the positive impact of retrieving c on the adversary’s payoff. Thus, increasing
k4 means the retrieving context has more positive impact on her or his payoff, which will promote
retrieving and indirectly restrain the user form releasing contexts. The probability θ of the adversary
to retrieve a context will decrease as k1 increases. k1 reflects the negative impact of the context privacy
loss on the user’s payoff. Increasing k1 means that context privacy loss has more negative impact on
the user’s payoff, which will restrict release and indirectly restrict the adversary’s retrieval. As to the
payoffs of the three players, when k1 and k4 change, their variation trend is almost changeless, because
when the optimal strategies are achieved, the players’ payoffs tend to be constants, so that the players
do not have motivation to adjust their strategies any more. This result reveals the meanings of the
Nash equilibrium.
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Figure 3. Impact of k1 on strategies.
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5.2. Numerical Analysis of the Repeated Game Model

Then, let us see the numerical analysis in the repeated game. Figures 7–9 show, when k3 > k2 and
Sens(c) = 0.3, how the strategies and payoffs of the application and the user’s payoff change as δa and
the difference between the two coefficients k3 and k2 change. Figure 7 shows that the application’s
strategies will change from 1–0 when δa exceeds a certain value, which depends on k3− k2. Specifically,
as k3 − k2 increase, the critical value will increase, which is coincident with Equations (22) and (23).
As illustrated above, k2 is the coefficient reflecting the negative impact of selling context on the
application’s credibility. Because the application’s credibility depends on the user’s impression on
the application, k2 can be controlled by the user to protect its privacy. Figure 7 reflects that when k3

remains unchanged and k2 is increased by the user, the application’s strategy becomes zero more easily,
requiring a smaller δa. Even though the application’s bad behavior has a small effect on its payoff
in the future, it will tend to behave well, not leaking the context. From Figures 8 and 9, the payoffs
of the application and the user will always increase as δa increases. Simultaneously, the two figures
respectively reflect that when k3 remains unchanged and k2 is increased by the user, the payoffs of
the user and the application increase more easily as δa increases, requiring a smaller δa to increase the
payoffs. Even though the application’s bad behavior has a small effect on its payoff in the future, the
payoffs of the user and the application still increase. Additionally, from Figure 8, when δa is equal to
the critical value, the payoff of the application to leak context and that of not doing so to will reach the
same value. Furthermore, when δa is larger than the critical value, the payoff of not leaking contexts
will be larger than the payoff of leakage, that is to say, letting δa be larger than the critical value is the
condition of the application not deviating from the social norm.

Figure 7. Impact of k3 − k2 and δa on the application’s strategies.

Figure 8. Impact of k3 − k2 and δa on the application’s payoffs.
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Figure 9. Impact of k3 − k2 and δa on the user’s payoffs.

Figures 10–12 show, when k3 > k2 and Sens(c) = 0.3, how the strategies and payoffs of adversary
and user’s payoff change as δad and k4 change. The results show that the adversary’s strategies will
change from 1–0 when δad is less than a certain value, which depends on k4. Specifically as k4 increases,
the critical value will decrease, which is coincident with Equation (22). Besides, Figure 11 shows that
the payoffs of the adversary when he or she does not take the initiative to retrieve contexts will be
more than those when he or she does. Therefore, the condition of the adversary in not deviating from
the social norm is that δad is smaller than a critical value. In this case, the payoffs of the user will also
increase, as shown in Figure 12.

In the single-stage game model, the players’ strategies are directly related to some coefficients
in their payoff functions, such as the coefficient reflecting the negative impact of the context privacy
loss on the user’s payoff k1 and the coefficient reflecting the positive impact of retrieving context on
the adversary’s payoff k4, while in the repeated game model, the players’ strategies are more affected
by the discount factors, illustrating the influence of their current strategies on their payoffs in the
future. Additionally, the coefficients k1, k2, k3 and k4 affect the trend of the players’ strategies indirectly.
In other words, they affect the players’ strategies and payoffs by deciding the critical value of the
discount factors.

Figure 10. Impact of k4 and δad on the adversary’s strategies.
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Figure 11. Impact of k4 and δad on the adversary’s payoffs.

Figure 12. Impact of k4 and δad on the user’s payoffs.

6. Conclusions

This paper studies the issue of context privacy preservation about the context-aware application.
Considering that the mobile phone user, context-aware application and malicious adversary in the
context sensing system all can adjust their strategies to maximize their payoffs in the real world, we
use game theory to formulate the decision-making process of the three players. Specifically, we use
the extensive form game to describe their single interaction and construct their payoff functions.
Then, we obtain the optimal solution by calculating the Nash equilibriums of the game. After that,
we analyze the equilibrium result from the respective repeated game and then put forward a social
norm that can preserve privacy, as well as calculate the condition of three players complying with
the social norm. The numerical analysis indicates how the players’ strategies and payoffs change
when relevant parameters change. We can draw the conclusion that the reputation mechanism for the
context-aware application and the player’s preference for time are crucial, the first of which has a great
effect on the application’s strategy in the one-round interaction and the second of which will influence
the strategy of the application and the adversary greatly in multiple interactions. If the reputation
mechanism can be designed properly, the application will be motivated to protect the user’s privacy
when maximizing its payoffs. Then, the adversary does not have the chance to retrieve the context
privacy, and the user has complete trust in the application, which accords with the requirement of
mobile applications’ development; while in multiple interactions, players will consider the payoffs
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in the future. If the players’ preference for time is in a reasonable specific range, the fear of being
punished in the future will effectively prevent the action of privacy leakage.
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