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Abstract

Alzheimer’s disease (AD) is the main cause of dementia in our increasingly aging population. The debilitating cognitive and
behavioral symptoms characteristic of AD make it an extremely distressing illness for patients and carers. Although drugs
have been developed to treat AD symptoms and to slow disease progression, there is currently no cure. The incidence of AD
is predicted to increase to over one hundred million by 2050, placing a heavy burden on communities and economies, and
making the development of effective therapies an urgent priority. Two proteins are thought to have major contributory
roles in AD: the microtubule associated protein tau, also known as MAPT; and the amyloid-beta peptide (A-beta), a cleavage
product of amyloid precursor protein (APP). Oxidative stress is also implicated in AD pathology from an early stage. By
targeting eIF4A, an RNA helicase involved in translation initiation, the synthesis of APP and tau, but not neuroprotective
proteins, can be simultaneously and specifically reduced, representing a novel avenue for AD intervention. We also show
that protection from oxidative stress is increased upon eIF4A inhibition. We demonstrate that the reduction of these
proteins is not due to changes in mRNA levels or increased protein degradation, but is a consequence of translational
repression conferred by inhibition of the helicase activity of eIF4A. Inhibition of eIF4A selectively and simultaneously
modulates the synthesis of proteins involved in Alzheimer’s disease: reducing A-beta and tau synthesis, while increasing
proteins predicted to be neuroprotective.
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Introduction

Alzheimer’s disease (AD) is the main cause of dementia in our

aging population, and currently there is no effective treatment. At

the cellular and molecular level, AD is characterized by the

presence of extracellular plaques of the peptide amyloid-beta (Ab),

and also by intracellular neurofibrillary tangles of tau protein

(reviewed in [1]). The precise molecular basis of AD has been the

subject of an enormous amount of research, and the details are still

the subject of some disagreement. Nevertheless, it is clear that

amyloid precursor protein (APP, NM_000484) and tau

(NM_016835) play important roles in disease progression, and

both have been identified as promising therapeutic targets

[2,3,4,5,6,7]. Reducing the levels of APP and tau has been shown

to slow disease progress in animal models, and current therapies

target disease models based on these two proteins, albeit with

incomplete success. For example, even a modest reduction of

soluble Ab has been shown to have a dramatic effect on amyloid

plaque formation in animal models [8], and reduction of tau

protein levels ameliorates the neurotoxic effects of Ab in mice

overexpressing APP [9]. Oxidative stress is also implicated as an

important factor in AD progression, and increasing the levels of

proteins involved in reducing oxidative stress are predicted to

impact beneficially on AD symptoms (reviewed in [10,11]).

Oxidative stress is likely an early event in AD progression, and

has been shown to increase Ab formation by increasing APP levels

and processing [12,13]. Ab itself has oxidant properties, leading to

a positive feedback loop and further increase in Ab levels [14,15].

In addition to increasing the likelihood of plaque formation,

increased Ab levels also lead to hyperphosphorylation of tau

protein, an increase in neurofibrillary tangle formation, and

consequent further oxidative stress [14]. Markers of oxidative

stress, including modification of DNA, RNA, lipids and proteins,

are increased in brains of AD patients, and in animal models [11].

In contrast to other cell types, the high metabolic rates and levels

of pro-oxidants, coupled with less efficient anti-oxidant responses,

makes cells of the CNS particularly prone to oxidative stress [10].

In mouse models incorporating both Ab and tau pathologies, Ab
and tau proteins were found to act synergistically to inhibit

mitochondrial oxidative phosphorylation, and increase cellular

levels of reactive oxygen species [16].

The regulation of protein synthesis at the level of translation is

particularly important in neuronal cells for a number of reasons.

Firstly, neurons tend to be metabolically very active, placing heavy

demands on the protein synthesis machinery. Secondly, the

lengths of many of the cells of the CNS means that controlling

the rates of translation of localized mRNA pools will likely offer

faster and more flexible control of gene expression than changes in
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the levels of transcription, which would necessarily involve

transport of either newly synthesized mRNA or protein.

The most abundant eukaryotic translation initiation factor is

eIF4A, an RNA helicase which facilitates translation initiation by

unwinding otherwise inhibitory mRNA structure. The 59 untrans-

lated regions (59 UTRs) of APP and tau mRNAs are known to be

long and structured, and hence represent a barrier to the initiating

ribosome during protein synthesis. Additionally, both APP and tau

mRNAs are able to initiate translation in a cap-independent

manner via internal ribosome entry sites (IRESes) [17,18]. We

have recently shown that eIF4A is required for a number of

mammalian IRESes [19]. We therefore propose that inhibiting

eIF4A will reduce the efficiency of APP and tau protein synthesis,

but not that of housekeeping proteins. Interestingly, it has been

reported that decreasing the stability of RNA structures within

portions of the APP 59 UTR is correlated with increased

expression [20]. We have used hippuristanol, a potent and specific

inhibitor of eIF4A, to test this model. Hippuristanol, a poly-

oxygenated steroid isolated from the Gorgonian Isis hippuris has

been shown to be a potent and specific inhibitor of the helicase,

RNA binding and ATP hydrolysis properties of eIF4A [21]. APP,

tau and Ab levels were found to be reduced in hippuristanol

treated SH-SY5Y cells, whereas proteins involved in defence from

oxidative stress are increased (e.g. SOD1, TXN and NDUFB2).

We show that these changes are due to differences in de novo

protein synthesis rates mediated via the 59 UTRs, and not to

variation in transcription or protein turnover, and that cell

viability under oxidative insult is increased.

Results

Polysomal redistribution of mRNAs following
hippuristanol treatment

To test the effects of eIF4A inhibition on the translation of

proteins involved in AD, hippuristanol was used to treat cultured

mammalian cells for ten minutes (HeLa, N2a and SH-SY5Y), and

the polysomal associations of APP, tau, TXN (thioredoxin;

NM_003329), SOD1 (superoxide dismutase 1; NM_000454),

NDUFB2 (NADH dehydrogenase (ubiquinone) 1 beta subcom-

plex, 2; NM_004546), b-actin (NM_001101) and PABP (poly-A

binding protein; NM_002568) were each determined in treated

and control cells using sucrose density gradient centrifugation

followed by northern analysis (figure 1). Sucrose density gradient

centrifugation separates mRNAs according to their ribosomal

load, with actively translated (polysomal) mRNAs partitioning

towards the bottom of the gradient due to their increased density,

whereas subpolysomal mRNAs are less dense and partition

towards the top of the gradient. The polysomal distributions of

b-actin and PABP were unchanged following hippuristanol

treatment (figure 1A), however, it is clear that the mRNAs

encoding APP and tau shift subpolysomally following hippurista-

nol treatment indicating a reduction in translation of these

transcripts (figure 1B). In contrast, mRNAs encoding SOD1,

TXN, and NDUFB2 (which have been proposed to have

neuroprotective roles [22,23,24] increase in polysomal association

(figure 1C).

Changes in AD associated protein levels in hippuristanol
treated cells

To determine whether these changes in polysomal association

result in alterations to the cellular concentrations of proteins

involved in AD, western analysis was performed using antibodies

specific to APP, tau, TXN, Ab and b-actin (figure 2). APP

concentrations in SH-SY5Y cells were markedly reduced at 4 and

24 hours following 10 mM hippuristanol treatment, and tau

protein levels showed a reduction at 4 hours followed by a partial

recovery by 24 hours following treatment (figure 2A). Conversely,

TXN levels increased slightly 4 hours following hippuristanol

treatment and returned to control levels within 24 hours. APP is

cleaved to generate the Ab peptide, and it is the aberrant

aggregation of this peptide into extracellular plaques that is

characteristic of AD pathology. Western blotting of concentrated

media shows a reduction of secreted Ab peptide 24 hours

following hippuristanol treatment of SH-SY5Y cells (figure 2A).

Treatment with 20 mM and 30 mM hippuristanol increases this

reduction of APP, tau and Ab levels (data not shown).

Hippuristanol reduces APP and tau protein synthesis
To establish whether the observed changes in APP, tau and

TXN protein levels in hippuristanol treated cells were due to

changes in new protein synthesis rather than turnover, synthesis

rates were measured by immunoprecipitation following 35S-

methionine labeling of SH-SY5Y cells (figure 2B). Levels of APP

and tau synthesis were markedly reduced following hippuristanol

treatment, whereas TXN synthesis was unaffected. To determine

the effects of hippuristanol on extracellular levels of Ab,

immunoprecipitation from the media of hippuristanol treated

and control SH-SY5Y cells was performed using an antibody

specific to Ab following 35S-methionine labeling. A decrease in

extracellular Ab was observed by western blotting of the media of

treated cells (figure 2B) and also by ELISA (figure 2C).

Changes in mRNA levels are not responsible for the
observed changes in protein levels

To confirm that the changes in the levels of these proteins were

due to translational rather than transcriptional effects, northern

analysis of total cellular RNA was performed (figure 3). mRNA

levels for APP, tau and TXN did not decrease following

hippuristanol treatment for 4 or 24 hours, in parallel with the b-

actin control, confirming that hippuristanol was not inhibiting

transcription.

The 59 UTRs of APP and tau are sufficient to mediate
repression in a luciferase reporter model

Our model predicts that the specific reduction of APP and tau

protein levels following eIF4A inhibition depends on features in

the 59 UTRs of these mRNAs. To test this, we cloned the 59 UTR

sequences of APP, tau, SOD1 and TXN upstream of the firefly

luciferase open reading frame in pGL4.14 Following co-transfec-

tion of these constructs with a control Renilla luciferase open

reading frame containing a short unstructured 59 UTR into SH-

SY5Y cells we observed that expression from the APP and tau

59UTR constructs was markedly reduced (to 21% and 8% of

controls respectively) following hippuristanol treatment, but the

SOD1 and TXN 59 UTR containing plasmids were relatively

resistant to this inhibition (75% and 76% of controls

respectively)(figure 4). To eliminate the possibility that cryptic

promoter elements within these 59 UTR sequence could

undermine these assays, the cmv promoter in these constructs

was deleted by AseI restriction digestion and religation, which

completely ablated luciferase activity (data not shown).

eIF4A inhibition increases cell proliferation in response to
oxidative stress

SH-SY5Y cells were treated with hydrogen peroxide to induce

oxidative stress. Upon treatment of control cells with hydrogen

peroxide, there is a small but reproducibly significant reduction in

eIF4A Inhibition and AD
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viability. However, treatment with 10 mM hippuristanol confers

significantly higher viability upon cells undergoing oxidative stress

compared with those in which eIF4A is uninhibited (figure 5).

Discussion

We have demonstrated that a small molecule inhibitor of

protein synthesis can specifically down-regulate APP and tau

protein levels in cultured cells of neurological origin. In addition,

secreted Ab levels are also reduced. In contrast, the polysomal

association and protein levels of control genes predicted to have

neuroprotective functions are resistant to this inhibition. Despite

vast amounts of research, current treatment for Alzheimer’s

disease relies on alleviating symptoms rather than reversing disease

progression. The search for novel approaches to AD therapy is,

therefore, as important as ever.

Upon treatment with hippuristanol, mRNAs encoding APP

and tau become associated with fewer ribosomes, indicating a

Figure 1. eIF4A inhibition changes the polysomal association of certain mRNAs. Cultured cells (SH-SY5Y, N2a or HeLa) were treated with
10 mM hippuristanol (+) or DMSO control (2) for 10 minutes, lysed and mRNA fractionated on a 10%–50% sucrose gradient. OD260nm absorbance
was determined with simultaneous 1 ml fraction collection to determine subpolysomal and polysomal fractions (fraction number and subpolysomal
or polysomal association indicated). Northern analysis was performed to determine the positions of mRNAs for: A Actin and PABP which do not
change in polysome associations; B APP and tau which become less polysomally associated; C TXN, NDUFB2 and SOD1 which become more
polysomally associated. Relative levels of RNA are indicated by dark grey (DMSO control) and light grey (10 mM hippuristanol) bars beneath each
fraction, as percentages of the total amount RNA in each gradient.
doi:10.1371/journal.pone.0013030.g001
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Figure 2. Expression of proteins associated with AD is altered by eIF4A inhibition. A Western analysis was performed on lysates from SH-
SY5Y cells treated with 10 mM hippuristanol (+) or DMSO control (2) for 4 or 24 hours with antibodies specific to APP, TAU and TXN (bands of around
70 kDa, 60 kDa and 12–14 kDa respectively). The 70 kDa band was detected by the APP specific antibody representing a cleavage product specific to
K+ isoforms [53]. Secreted A-beta was measured by western analysis of cell culture media. The 56 kDa product is interpreted as an aggregate of A-
beta, as has previously been reported for western analysis of brain tissue [51]. Protein levels were normalized to actin, and mean relative proportions
of protein with standard errors are indicated beneath each gel image. Significant differences (p#0.05 by t-test) are indicated by asterisks. B.
Immunoprecipitation following 35S-methionine labeling demonstrates a reduction in novel synthesis of APP, TAU but not TXN when SH-SY5Y cells are
treated with 10 mM hippuristanol. Secreted A-beta levels are also reduced, as determined by immunoprecipitation from cell culture medium. Mean
relative proportions of protein with standard errors are indicated beneath each gel image. Significant differences (p#0.05 by t-test) are indicated by
asterisks. C. Secreted A-beta levels in the medium of 96105 SH-SY5Y cells were assayed by ELISA 24 hours following treatment with 10 mM

eIF4A Inhibition and AD
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reduction in their translation. Eukaryotic translation is regulated

primarily at initiation, in which a complex of translation factors

assembles at the 59 end of an mRNA molecule to recruit the

translational machinery [25]. 59 UTRs of mRNAs vary signifi-

cantly in their length, and in their potential to form secondary

structure [26]. Increased 59 UTR length and structure represents a

barrier to the scanning ribosomal subunit, and increases the

requirement for eIF4A, a DEAD-box RNA helicase which forms

part of the initiation complex [27], and is the most abundant

translation initiation factor. To confirm that the 59 UTRs of APP

and tau are particularly dependent on eIF4A we used a luciferase

reporter system in which candidate 59 UTRs are positioned

upstream of a luciferase open reading frame.

The requirement for eIF4A in experimental translation systems

has been shown to be proportional to 59 UTR structure [27], and

the small number of mRNAs that have been shown to be regulated

by eIF4A contain long structured 59 UTRs [19,28,29,30,31].

Additionally, experiments involving the APP 59 UTR upstream of

a reporter open reading frame showed an inverse correlation

between 59 UTR structure and reporter expression [20]. Analysis

of mammalian mRNA structure has determined that messages

predicted to be ‘‘difficult’’ to translate due to increased length,

structure and other regulatory features in the 59 UTR tend to

encode regulatory rather than housekeeping proteins, and it is this

subset of mRNAs that will be particularly reliant on eIF4A for

efficient expression [32]. Consistent with this, hippuristanol

Figure 3. mRNA levels do not account for the change in protein levels following hippuristanol treatment. Northern analysis 4 or
24 hours following 10 minutes 10 mM hippuristanol treatment, using probes specific to APP, TAU, Actin and TXN, indicates no significant decrease in
these mRNA levels. Mean relative proportions of RNA with standard errors are indicated in the charts beneath each gel image.
doi:10.1371/journal.pone.0013030.g003

hippuristanol (+), demonstrating a modest but reproducible decrease in comparison to control cells (2). Means and standard errors of 6 replicates are
shown p = 0.05.
doi:10.1371/journal.pone.0013030.g002
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appears to be well tolerated by cultured cells at the concentrations

used, and has a specific and reversible effect on translation [21].

We therefore envisage a model in which inhibition of eIF4A

reduces the expression of a subset of regulatory and stress response

genes, while leaving housekeeping functions unaffected. The

increased polysomal association of TXN, SOD1 and NDUFB2

indicates that RNA-RNA interactions necessary for optimal

translation may be stabilized in the absence of active eIF4A.

eIF4A may have a particular role in neuronal translation, as

suggested by the restriction of expression of BC1/BC200 RNA to

neuronal tissue, where it is thought to interact with and inhibit

eIF4A [33]. Patterns of BC200 expression are markedly different

in the brains of people with Alzheimer’s disease in comparison

with those of the healthy elderly, although whether this is a

response to AD or a contributing factor is unclear [34].

Additionally, HuD, which is essential for neuronal development,

has recently been found to interact with eIF4A [35]. Two almost

identical, and so far functionally indistinguishable, isoforms of

eIF4A exist in mammalian cells: eIF4AI and eIF4AII. eIF4AI

expression is upregulated during retinoic acid induced neural

differentiation of P19 cells indicating a specific role in translation

of neuronal mRNAs [36]. eIF4AII has been implicated in neural

patterning where it has been proposed to up-regulate a subset of

mRNAs based on their 59 UTR structure [37]. Data from the

human protein atlas suggest that eIF4AII is more highly expressed

in both glial and neuronal cells than eIF4AI, a pattern also

reflected in malignant gliomas [38]. Additionally, the eIF4AI/II

paralogue, eIF4AIII, which is localized to the nucleus in most cell

types and not usually thought to be involved in translation, is

found to be associated with (cytoplasmic) mRNAs in somatoden-

dritic regions of neurons [39]. eIF4AIII in these cells has been

linked to increased mRNA decay, and eIF4AIII knockdown is

associated with an increase in protein synthesis and increased

synaptic strength. Interestingly, eIF4AIII has been shown to be

inhibitory to eIF4AI/II dependent translation in vitro [40]. We

therefore propose a model in which 59 UTR length and structure

increase the sensitivity of APP and tau mRNAs to eIF4A

inhibition, whereas housekeeping mRNAs and at least a subset

of mRNAs predicted to be neuroprotective are resistant to this

inhibition.

It is known that the mRNAs of tau and APP contain elements in

their 59 UTRs that regulate their translation, including IRESes

[17,18], and it is plausible that these confer an increased

requirement for eIF4A helicase activity to facilitate 40S ribosomal

subunit scanning. We have recently demonstrated such a

requirement for eIF4A for the cellular IRESes of n-myc, l-myc

and c-myc mRNAs [19]. Additionally, at 194 and 320 nts

respectively, the 59 UTRs of APP (NM_000484) and tau

(NM_016835) are long in comparison to those of SOD1, TXN

and NDUFB2 (148, 63 and 64 nts respectively; NM_000454,

NM_003329, NM_004546).

Other modulators of translation initiation are also likely to be

important in regulating gene expression in AD, in particular the

eIF2alpha kinases PKR and PERK, which can, like hippuristanol,

regulate translation initiation. PKR and PERK are two stress

induced eIF2alpha kinases which inhibit global translation rates by

phosphorylating the translation initiation factor eIF2alpha,

preventing eIF2alpha recycling. Active PKR (and inhibited

eIF2alpha) are increased in AD models and in patients’ brains,

and correlate with decreased cognitive ability [41]. PERK is also

increased in AD neurons, where it is associated with an increase in

aberrant tau protein accumulation [42], and Ab production [43].

Interestingly, the PI3 kinase inhibitors wortmannin and LY294002

have been proposed to decrease secreted Ab in a high-throughput

cell based assay, with wortmannin showing similar effects in a

mouse AD model [44]. Although no strong conclusions were

drawn as to the mechanism responsible for this Ab reduction, it is

consistent with inhibition of translation via the mTOR pathway.

SOD1 (superoxide dismutase-1) is responsible for metabolizing

superoxide radicals, and hence protecting cells from oxidative

stress, a proposed causative factor in AD. Overexpression of

SOD1 in neuronal cells protects against the toxic effects of Ab in

cultured neuronal cells [45,46]. In mice models of AD, increased

SOD1 expression ameliorates the cerebrovascular toxicity associ-

ated with APP overexpression [23]. TXN (thioredoxin) is also

Figure 4. Translational inhibition of APP and tau is mediated
via the 59 UTR. Firefly luciferase reporter plasmids containing the 59
UTR of APP, tau, SOD1 or TXN upstream of a destabilized firefly
luciferase open reading frame were transfected into SH-SY5Y cells +/2
10 mM hippuristanol. The dramatic reduction of luciferase expression in
the APP and tau 59 UTR constructs following hippuristanol treatment is
not mirrored by the SOD1 and TXN 59 UTR containing plasmids.
Luciferase activity was normalized to a cotransfected Renilla control
reporter and means and standard errors of at least three replicates are
shown.
doi:10.1371/journal.pone.0013030.g004

Figure 5. Hippuristanol treatment protects cells from oxidative
stress. SH-SY5Y cells were pre-treated with hippuristanol or DMSO
control for 4 hours, followed by 50 mM H2O2 or control treatment for
two hours. After a 22 hour recovery period, viability was determined by
WST assay. Significant differences (p#0.05 by t-test) are indicated by
asterisks.
doi:10.1371/journal.pone.0013030.g005
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involved in combating oxidative stress and has been shown to have

neuroprotective roles [24]. TXN expression is lower in the brains

of AD sufferers than in unaffected individuals. Moreover, in

cultured neuronal cells, TXN is oxidized by Ab indicating a role in

defence against Ab mediated oxidative stress. Overexpression of

TXN in cultured neuronal cells can protect against the toxic

effects of Ab [47]. NDUFB2 (NADH-ubiquinone oxidoreductase 1

beta subcomplex, 2) is encoded in the nucleus, but is part of the

multisubunit mitochondrial NADH:ubiquinone oxidoreductase

(complex I), which has been identified as a factor linking oxidative

stress and aging, including cognitive aging [22,48]. Interestingly,

complex I proteins have been found to be deregulated in triple

transgenic AD mice (expressing mutant tau, APP and PS1) which

exhibit both Ab and tau pathologies [16]. In addition, NDUFB2 is

known to be upregulated during ischemic shock, and is proposed

to have a role in regulating cellular oxidant levels [49].

The simultaneous inhibition of APP and tau translation by

eIF4A inhibition, in concert with increased expression of proteins

protective against oxidative stress could therefore represent a new

approach for AD intervention. It is well established that oxidative

stress occurs early in AD pathology, and that neuronal cells are

particularly susceptible to oxidative damage. We have demon-

strated that hippuristanol treatment protects against hydrogen

peroxide treatment in cultured cells, indicating an additional

neuroprotective role for eIF4A inhibitors. We propose that the

nature of the 59 UTRs of the mRNAs tested determines their

response to eIF4A inhibition: the mRNAs encoding APP and tau

contain long structured 59 UTRs, in contrast to those of TXN,

SOD1 and NDUFB2. Moreover, APP and tau 59 UTRs contain

IRES elements, allowing cap-independent translation initiation

[17,18]. Although little is known of the translation factor

requirements for cellular IRESes, we have recently shown that

the myc family of IRESes requires eIF4A for proper function [19].

We can therefore speculate that this may also be the case for the

APP and tau IRESes, and this is currently under investigation. We

propose that housekeeping genes, which tend to have short,

unstructured 59 UTRs are largely unaffected by the concentration

of hippuristanol used. However, it is more difficult to propose an

explanation for the increase in synthesis of the neuroprotective

proteins tested. We can speculate that RNA structure elements (or

RNA:RNA or RNA:protein interactions) in the 59 UTR is

required for optimal translation, and that these are stabilized by

the absence of eIF4A helicase activity, but this remains to be

tested. The involvement of HuD – eIF4A interactions in control of

neuronal genes indicates that interactions of eIF4A with other

proteins may be important [35]. Nevertheless it is clear that eIF4A

inhibition has differential effects on the synthesis of proteins

involved in Alzheimer’s disease, and that these effects could

represent a novel approach to AD intervention.

Materials and Methods

Cell culture
Two 15cm plates of cultured cells (SH-SY5Y, N2a or HeLa)

were used per treatment. Cells were grown to 70% confluency

then treated with 10 mM hippuristanol (a kind gift from Prof Ya-

Ching Chen, National Taiwan University), or DMSO control for

10 minutes, at which point translation elongation was arrested by

the addition of cycloheximide (1 mg/ml) on ice. Cells were lysed

(300 mM NaCl, 15 mM MgCl2, 15 mM Tris-HCl pH 7.5,

0.1 mg ml21 cycloheximide, 1 mg ml21 heparin, 1% triton X-

100) then cytoplasmic extract was loaded onto 10%–50% sucrose

gradients (300 mM NaCl, 15 mM MgCl2, 15 mM Tris-HCl

pH 7.5, 0.1 mg ml21 cycloheximide, 1 mg ml21 heparin) and

centrifuged at 38,000 rpm for two hours. OD260nm absorbance

was determined with simultaneous 1 ml fraction collection.

Oxidative stress assay: SH-SY5Y cells were pre-treated with

10 mM hippuristanol for 4 hours. Cells were washed twice with

PBS then replaced with media, 10 mM hippuristanol, 50mM H2O2

(or controls) and incubated at 37uC for 2hours. After this time

treatment media was removed, cells were washed twice and fresh

media only was added to each well. After a 22 hour recovery

period, 10ml WST-1 (Roche, Mannheim, Germany) was added to

the 90ml recovery media in each well and cell viability measured

after 45 minutes following manufacturer’s instructions.

Analysis of mRNA and protein levels
Northern analysis was performed on the gradient fractions to

determine the positions of mRNAs for b-actin, PABP, APP, tau,

SOD1, NDUFB2 and TXN, using probes derived from PCR

products to the coding regions of these genes. Northern analysis of

polysome gradients was quantified using Image Quant (GE

Healthcare), expressing the value for each gradient fraction as a

percentage of the total for the whole gradient. Each experiment

was performed as at least three independent replicates and a

typical example shown. Northern blots of total cellular RNA were

quantified using the gel analysis function of ImageJ [50] and values

for each protein corrected for loading errors by comparison with

actin controls, and expressed as a fraction of paired control

(DMSO) and experimental (10 mM hippuristanol) samples. Means

and standard errors of at least three replicates of each experiment

are shown. Western analysis was performed on lysates from SH-

SY5Y cells treated with 10 mM hippuristanol (+) or DMSO control

(2) for 4 or 24 hours with antibodies specific to APP, Ab, tau,

TXN, and b-actin (Primary antibodies used in this study were all

sourced from Cell Signaling Technology, Beverly, MA, USA: anti-

APP (2452); anti-ß-Amyloid (2454); anti-tau (4019); anti-TXN 1

(2285). Secreted Ab was measured by western analysis of SH-

SY5Y cell culture media. 500ml of medium was taken from each

well of a 12 well plate 24 hours after treatment. Medium was then

concentrated by microcon column (Millipore, Billerica, MA, USA)

to a final volume of 20ml. Four independent biological replicates

were conducted per treatment. A 70 kDa band was detected by

the APP specific antibody representing a cleavage product specific

to K+ isoforms [14]. The 56 kDa product is interpreted as an

aggregate of Ab, as has previously been reported for western

analysis of brain tissue [51]. Western blots were quantified using

the gel analysis function of ImageJ [50], and values for each

protein corrected for loading errors by comparison with tubulin

and actin controls, and expressed as a fraction of paired control

(DMSO) and experimental (10 mM hippuristanol) samples. Means

and standard errors of at least three replicates of each experiment

are shown. Significance was determined by t-test, a p value#0.05

indicated by an asterisk. Immunoprecipitation was performed

following 35S-methionine labelling using the above antibodies, as

described in [52]. Immunoprecipitation experiments were quan-

tified using the gel analysis function of ImageJ [50] and expressed

as a fraction of paired control (DMSO) and experimental (10 mM

hippuristanol) samples. Means and standard errors of at least three

replicates of each experiment are shown. Significance was

determined by t-test, a p value#0.05 indicated by an asterisk.

ELISAs were performed using a kit designed to detect human Ab
1–42 (reference KHB3441, Invitrogen, Paisley, UK), following

manufacturer’s instructions. SH-SY5Y medium for ELISAs was

collected 24 hours following treatment with 10 mM hippuristanol

or DMSO control, before addition of protease inhibitors (EDTA

free, Roche, Basel, Switzerland, plus 25mM NaF) and glycerol

phosphate (50 mM).
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Luciferase reporter assays
Firefly luciferase reporter plasmids were constructed by

inserting the cmv promoter from pGL3.1 (Promega, Madison,

WI), amplified using primers (CMV F, CTGGCCGGTAC-

CTCGCGATGTACGGGCCAGAT and CMV R, CTCGA-

GAAGCTTAAGTTTAAACGCTAGCCAGC), and inserted be-

tween the KpnI and HindIII sites of pGL4.15 and pGL4.80 to

create pGL4.15cmv and pGL4.80cmv respectively. A cloning

intermediate, php15, was created by inserting part of the human

ODC 59 UTR (accession NM_002539) amplified using primers

(ODCHP F, GATTACAAAGCTTCTCGAGGGGCGAATAC-

GAATTCGTCA and ODCHP R, GATTACAAAGCTTT-

TAATTAAGGATCCGTCTTCCCGCCGCC) into the HindIII

site of pGL4.15cmv. TXN and SOD1 59 UTRs were amplified

from SH-SY5Y cDNA using primers (TXN F GATACACTC-

GAGTTTGGTGCTTTGGATCCATT, TXN R GATACAT-

TAATTAACTTGGCTGCTGGAGTCTGAC, SOD1 F GA-

TACACTCGAGGTTTGGGGCCAGAGTGGGCG, SOD1 R

GATACATTAATTAAAACTCGCTAGGCCACGCCGA), and

match nucleotides 1–63 of NM_003329 and 1–148 of

NM_000454 respectively. APP and tau 59 UTRs were synthesised

by Genscript (Piscataway, NJ), to match nucleotides 1–194 of

NM_201414 and 1–320 of NM_001123066 respectively, flanked

by XhoI and PacI restriction sites. Following restriction digestion

with XhoI and PacI, these APP, tau, SOD1 and TXN 59 UTR

sequences were inserted between the XhoI and PacI sites of php15 to

generate pGL4.15cmvAPP5, pGL4.15cmvtau5, pGL4.15cmvSOD1.5

and pGL4.15cmvTXN5 respectively. 800 ng each of the

pGL4.15cmv[59 UTR] plasmids and control pGL4.80cmv plasmid

was co-transfected into each well of a 24 well plate containing sub-

confluent SH-SY5Y cells. Following recovery for 4 hours, the cells

were split into a 96 well plate, and allowed a further 4 hours recovery.

10 mM hippuristanol or DMSO control was added, and cells harvested

after 4 hours. Luciferase levels were assayed using the Dual Luciferase

Assay (Promega, Madison, WI) following manufacturer’s instructions.
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