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Recent studies have provided evidence of interactions among the gut microbiota
(GM), local host immune cells, and intestinal tissues in colon carcinogenesis. However,
little is known regarding the functions exerted by the GM in colon cancer (CC),
particularly with respect to tumor clinical classification and lymphocyte infiltration.
In addition, stool, usually employed as a proxy of the GM, cannot fully represent
the original complexity of CC microenvironment. Here, we present a pilot study
aimed at characterizing the metaproteome of CC-associated colonic luminal contents
and identifying its possible associations with CC clinicopathological features. Colonic
luminal contents were collected from 24 CC tissue specimens immediately after
surgery. Samples were analyzed by shotgun metaproteomics. Almost 30,000 microbial
peptides were quantified in the samples, enabling the achievement of the taxonomic
and functional profile of the tumor-associated colonic luminal metaproteome. Upon
sample aggregation based on tumor stage, grade, or tumor-infiltrating lymphocytes
(TILs), peptide sets enabling discrimination of sample groups were identified through
discriminant analysis (DA). As a result, Bifidobacterium and Bacteroides fragilis
were significantly enriched in high-stage and high-grade CC, respectively. Among
metabolic functions, formate–tetrahydrofolate ligase was significantly associated with
high-stage CC. Finally, based on the results of this pilot study, we assessed the
optimal sample size for differential metaproteomic studies analyzing colonic luminal
contents. In conclusion, we provide a detailed picture of the microbial and host
components of the colonic luminal proteome and propose promising associations
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between GM taxonomic/functional features and CC clinicopathological features. Future
studies will be needed to verify the prognostic value of these data and to fully
exploit the potential of metaproteomics in enhancing our knowledge concerning
CC progression.

Keywords: colon lumen, colorectal cancer, gut microbiota, metaproteome, tumor-infiltrating lymphocytes

INTRODUCTION

The development of colorectal cancer (CRC) is a complex and
heterogeneous process, involving both genetic and epigenetic
alterations, as well as other relevant factors, such as diet,
exposition to microbes, and host immunity (Kuipers et al.,
2015). For many years, CRC diagnosis and prognosis have been
based exclusively on clinicopathological criteria, building on
histopathological classifications and tumor staging systems. The
application of molecular genetics methodologies has widened the
knowledge concerning the CRC pathogenesis, providing bases
for new molecular classifications and for the identification of
more accurate prognostic and predictive indicators (Nguyen and
Duong, 2018). Current trends recognize increasing prognostic
meaning to the tumor microenvironment, with specific focus on
the antitumoral immune response, including tumor-infiltrating
lymphocytes (TILs) (Taube et al., 2018). Functional morphology
analyses enabled a more in-depth evaluation of relative
frequencies of lymphoid subpopulations and led to conceive an
“immunoscore,” which proved to be more effective than the
tumor-node-metastasis (TNM) staging as a prognostic parameter
(Pagès et al., 2018).

The gut microbiota (GM) is constituted by a huge number of
microbial species living close to the colorectal epithelium and is
able to regulate key physiological processes, including immune
response and metabolism (Wong and Yu, 2019). Several large
metagenomic studies discovered associations between specific
GM signatures and the colon adenoma-carcinoma sequence,
providing evidence for the key role of the GM in the evolution
of CRC (Nakatsu et al., 2015; Tilg et al., 2018). In particular,
a strong and positive association between the abundance of
Fusobacterium nucleatum and CRC severity has been observed
(Brennan and Garrett, 2019; Lee et al., 2019). It is also known
that the interaction between the GM and local host immune
cells can lead to regression or progression of intestinal tumors
(Leman et al., 2020). Furthermore, food composition is largely
recognized as a key risk factor for CRC. In addition, diet is known
to affect gut health via its effects on GM metabolism, which in
turn influences host immunity, gene expression and epigenetic
modulation (O’Keefe, 2016).

Among the “omic” approaches employed to analyze the GM,
metaproteomics has been demonstrating its ability to take a
detailed picture of the biological functions carried out by the
members of complex microbial communities in a given health or
disease state (Tanca et al., 2017a; Heintz-Buschart and Wilmes,
2018). In a recent, pilot metaproteomic study, Long et al. (2020)
compared the fecal metaproteome between newly diagnosed
patients with CRC and healthy controls, finding 341 microbial
proteins (mainly related to iron intake/transport, oxidative stress,

and DNA replication) with significantly different abundance
between the two sample groups. Although reporting interesting
and promising results, this study did not investigate the possible
correlations between GM functions and CRC stratification based
on site, grade, or stage, and did not provide information
concerning the relationship between TILs and microbial proteins.
In addition, although stool can be considered a reasonable proxy
of the GM, it cannot fully reproduce the original complexity
of the tumor-associated colon microenvironment; even more
importantly, microbial communities can rapidly modify their
expression patterns in response to several environmental stimuli
occurring while passing through the distal colon and remaining
in the rectal ampulla, as well as in the time between evacuation
and sample collection (Tanca et al., 2017b; Tang et al., 2020).

In view of the above, we performed a pilot study based
on the metaproteomic characterization of the tumor-associated
colonic luminal contents collected from 24 patients with
colon cancer (CC). The aims of this pilot study were: (i)
to functionally characterize the microbiota of colonic luminal
content samples collected during CC surgery by metaproteomics;
(ii) to investigate the associations between metaproteomic
features (taxa and functions) and the clinicopathological features
of CC (stage, grade, and TILs) using several statistical approaches,
including discriminant, enrichment, and correlation analyses;
(iii) to carry out a power analysis aimed at estimating the sample
size needed to find robust, statistically supported results when
employing a metaproteomic approach.

MATERIALS AND METHODS

Samples
The study was conducted in accordance with the code of ethics
of the World Medical Association (Declaration of Helsinki).
The study protocol was reviewed and approved by the Bioethics
Committee of the “Azienda Sanitaria Locale di Sassari” (n.
2032/CE, 13/05/2014), and written informed consent was
obtained from each patient.

Patients with histological diagnosis of CC subjected to
surgical resection in the Surgery Unit of the Sassari University
Hospital from June 2014 to December 2015 were included
in the study. Exclusion criteria were hereditary CRC, other
malignancy, multiple tumor recurrence, previous radiotherapy
or chemotherapy treatment, severe diarrhea, incomplete
clinicopathological information about the tumor, and scarce
amount of colonic luminal material. Patients were not subjected
to any preoperative bowel preparation. Colonic luminal contents
overlaying the resected lesion (generally comparable to solid
stool according to their texture and appearance) were collected
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under sterile conditions in the operatory room immediately after
surgery. Based on the inclusion/exclusion criteria, 24 samples
were considered for this pilot study.

All samples were immediately frozen and stored at −20◦C
until use. Then, samples were thawed at 4◦C to collect
two equal portions (weighing approximately 150 mg each),
with the first being subjected to protein extraction for
(meta)proteomic analysis and the second to DNA extraction for
metagenome sequencing.

Surgical specimens were processed according to
histopathology procedures, and hematoxylin and eosin (H&E)-
stained slides were analyzed by an experienced pathologist to
achieve a final diagnosis of CC histotype and differentiation
grade, according to the criteria of the World Health Organization
(Bosman et al., 2010). Tumor staging was performed according
to the American Joint Committee on Cancer (AJCC) Staging
Manual (Amin et al., 2017). Further clinicopathological data
were obtained from medical records.

The assessment of TILs was determined by two independent
pathologists on H&E slides, based on the recommendations by
the International TILs Working Group, as previously described
(Fuchs et al., 2020).

Metaproteome Analysis
Protein extraction from colonic luminal content samples was
performed as described earlier for fecal samples (Tanca et al.,
2014). Accordingly, samples were resuspended in an extraction
buffer (2% SDS, 100 mM DTT, 20 mM Tris-HCl pH 8.8) and
incubated at 95◦C for 20 min in a thermoblock (FALC, Treviglio,
Italy). After adding a steel bead (5 mm diameter; Qiagen,
Hilden, Germany) to each sample, the samples were sequentially
incubated at −80◦C for 10 min, subjected to bead beating for
10 min (30 cycles/s in a TissueLyser LT mechanical homogenizer,
Qiagen), incubated at −80◦C for 10 min, then at 95◦C for
10 min, subjected to bead beating for 10 min (30 cycles/s), and
centrifuged at 20,000 × g for 10 min. The supernatant was
collected as a protein extract.

Protein extracts were processed according to a modified
filter-aided sample preparation (FASP) protocol (Wisniewski
et al., 2009; Tanca et al., 2013). Accordingly, the protein extracts
were diluted with UA solution (8 M of urea in 100 mM of Tris-
HCl, pH 8.8), loaded onto an Amicon Ultra-0.5 filtration device
(30 kDa cutoff; Merck, Darmstadt, Germany) and centrifuged
at 14,000 × g for 15 min. Then, 200 µl of UA solution, 100
µl of 50 mM iodoacetamide in UA solution, 100 µl of UA
solution, additional 100 µl of UA solution, and 100 µl of 50 mM
ammonium bicarbonate were sequentially added to the sample,
followed by centrifugation. Finally, trypsin (1 µg in 50 mM
ammonium bicarbonate solution) was added to each sample,
followed by incubation at 37◦C overnight. Peptide mixtures
were collected by centrifugation; a final elution with 100 µl
elution solution (20% acetonitrile, 0.2% formic acid) was also
performed. Peptide mixtures were concentrated and resuspended
in 0.2% formic acid.

Liquid chromatography-tandem mass spectrometry
(LC-MS/MS) analyses were carried out in service using a
Q-Exactive Orbitrap mass spectrometer (Thermo Fisher

Scientific, Waltham, MA, United States), operating with an
EASY-spray source, interfaced with an Easy-nLC 1000 LC system
(Thermo Fisher Scientific). Peptide mixtures were concentrated
and desalted using StageTips, in-house made according to the
protocol described by Rappsilber et al. (2007). Then, peptides
(load range 1–2 µg per run) were separated by LC with a C18
EASY-spray column (PepMap RSLC C18, 75 µm × 500 mm,
2 µm, 100 Å, Thermo Fisher Scientific) at 35◦C with a flow
rate of 250 nL/min for 135 min, using the following three-step
gradients of eluent B (0.2% formic acid in 95% acetonitrile)
in eluent A (0.2% formic acid in 5% acetonitrile): 1–30% for
115 min, 30–60% for 10 min, and 60–95% for 10 min. Samples
were run in a randomized order and a blank run was carried
out after each sample. The mass spectrometer was set up in
a data-dependent MS/MS mode under direct control of the
Xcalibur software (version 4.1.31.9), where a full scan spectrum
(from 300 to 1,700 m/z) was followed by the MS/MS spectra. The
instrument was operated in a positive mode. The temperature
of the ion transfer capillary, the spray voltage, and the S-lens
RF level were set to 250◦C, 1.6 kV, and 50, respectively. The
mass spectra were acquired with full MS mode at a resolution of
70,000 within a mass range of 300–1,700 m/z, with 1.0 × 106 of
automatic gain control (AGC) target and 120 ms of maximum
ion injection time. After ion activation/dissociation, the 12 most
abundant peaks (Top 12 method) were measured with higher
energy C-trap dissociation at a normalized collision energy of
25%. The MS/MS spectra acquisition was carried out with a
resolution of 35,000, with 5.0× 105 of AGC target and 120 ms of
maximum ion injection time. Dynamic exclusion was set to 30 s
and nitrogen was used as the collision gas.

Peptide identification was performed using Proteome
Discoverer (version 2.4; Thermo Fisher Scientific), with
Sequest-HT as the search engine and Percolator for peptide
validation, setting the false discovery rate (FDR) threshold to
1%. Search parameters were as follows: precursor mass range
350–3,500 Da; minimum peak count 5; S/N threshold 1.5,
enzyme trypsin; maximum missed cleavage sites 2; peptide
length range 6–50 amino acids; precursor mass tolerance
10 ppm; fragment mass tolerance 0.02 Da; static modification
cysteine carbamidomethylation; and dynamic modification
methionine oxidation. Searches were conducted in parallel
against 3 sequence databases: (i) a collection of metagenomic
sequences obtained in-house from a pool of the study samples
(generated as described in the section “Generation of a Custom
Metagenomic Database”; 147,265 sequences in total); (ii) a
public human gut metagenome dataset1 (9,878,647 sequences
in total) (Li et al., 2014); (iii) a human proteome database
(retrieved from UniProtKB/Swiss-Prot, release 2019_06; 42,420
sequences in total). The identified peptides matching with
sequences belonging to the first two databases used in this
study (i.e., custom and/or public human gut metagenomes)
were pre-classified as “microbial” and subjected to a further
taxonomic filtering (Unipept assignment to Archaea or
Bacteria, see below). The identified peptides matching with

1ftp://ftp.cngb.org/pub/SciRAID/Microbiome/humanGut_9.9M/GeneCatalog/
IGC.pep.gz

Frontiers in Microbiology | www.frontiersin.org 3 April 2022 | Volume 13 | Article 869523

ftp://ftp.cngb.org/pub/SciRAID/Microbiome/humanGut_9.9M/GeneCatalog/IGC.pep.gz
ftp://ftp.cngb.org/pub/SciRAID/Microbiome/humanGut_9.9M/GeneCatalog/IGC.pep.gz
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-869523 April 8, 2022 Time: 15:39 # 4

Tanca et al. Cancer-Associated Colonic Lumen Metaproteome

sequences belonging to the human database were classified as
“human.”

The “Spectrum Files RC” node was used to perform offline
mass recalibration, while the “Miinora Feature Detector” node
was used for label-free MS1 quantitation. After mass recalibration
and feature alignment, the optimal settings for the determination
of retention time and mass tolerance windows were calculated
by the Minora algorithm, based on the distribution of mass
accuracy and retention time variance. A consensus feature list
was created by the software based on the outputs of the “Feature
Mapper” and “Precursor Ions Quantifier” nodes. For all peptides
significantly matching with at least an MS2 spectrum in at least
one sample, the corresponding MS1 signals were mapped across
runs and then quantified by taking the maximum peak intensity.
Peptide intensities were considered as abundance measure. The
abundance of a given (taxonomic or functional) feature was
estimated by summing the intensity values of all peptides having
that feature among their annotations.

The Unipept web application (v.4.0)2 was used to carry
out taxonomic annotation (via the lowest common ancestor
classification) of the identified peptide sequences (Gurdeep Singh
et al., 2019). Protein sequences matching with at least an MS
spectrum with FDR > 1% (217,360 sequences) were subjected to
functional annotation by alignment against a database containing
all bacterial sequences from UniProtKB/Swiss-Prot (release
2019_09) using DIAMOND (blastp module, e-value threshold
10−4); Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologous group (KOG) information was then retrieved from
the UniProt website via the “retrieve” tool based on the
corresponding accession numbers (UniProt Consortium, 2019).
Among the different types of functional annotation available in
UniProt, the KOG annotation was chosen as less ambiguous
than the “Protein name” annotation and more specific than the
“Protein family” annotation. Furthermore, proteins with no KOG
annotation but sharing the same protein name (according to
UniProt) were given a custom functional annotation (having a
code starting with “CKO”), in order to minimize the functional
information loss.

Generation of a Custom Metagenomic
Database
The DNA was extracted from colonic luminal content samples
with the QIAamp Fast DNA Stool Mini Kit (Qiagen). DNA
quantification was carried out using a QubitTM Fluorometer
with the dsDNA High Sensitivity assay kit (Life Technologies,
Carlsbad, CA, United States, now Thermo Fisher Scientific).
A DNA pool was prepared by mixing an equal volume of DNA
extract from each sample to carry out a shotgun sequencing
of the whole gut metagenome. The DNA was subjected to
tagmentation and ligation of MiSeq adaptors according to
the instructions of the Nextera XT kit (Illumina, San Diego,
CA, United States). Libraries (average size of 500 bps) were
validated by capillary electrophoresis on a chip using the
BioAnalyzer 2100 instrument with the High Sensitivity DNA
Kit (Agilent Technologies, Santa Clara, CA, United States),

2https://unipept.ugent.be

quantified with the Qubit dsDNA High Sensitivity assay kit,
and finally normalized. Libraries were sequenced in service
using a MiSeq sequencer (Illumina). The MiSeq Reagent Kit
v3 from Illumina was used (following the manufacturer’s
specifications) to generate paired-end reads of 201 bases in length
in each direction.

Raw reads were either filtered and clustered without
assembly or assembled into contigs. In the first case, read
processing was carried out using fastq_mergepairs (parameters:
fastq_truncqual 3, fastq_minovlen 8), fastq_filter (parameters:
fastq_truncqual 15, fastq_minlen 205), and cluster_smallmem
(identity threshold 1) tools from the VSEARCH suite v.2.13.6
(Rognes et al., 2016). In the second case, read assembly into
contigs was carried out using MetaVelvet v.1.2.02 (Namiki
et al., 2012), by setting 61 as k-mer length, 200 as insert
length, and 300 as minimum contig length. Open reading
frame (ORF) finding was carried out using FragGeneScan v.1.31
(Rho et al., 2010), training for Illumina sequencing reads
with about 0.5% error rate. Clustered reads and assembled
contigs (amino acid sequences) were appended in a single
fasta file, which was subjected to removal of redundant
sequences using CD-HIT (Fu et al., 2012) and used as
sequence database for peptide identification (refer to the section
“Metaproteome Analysis”).

Statistical Analyses
Alpha diversity was calculated as richness and Shannon’s index
(Shannon, 1948). For each sample, richness was defined as the
number of non-zero abundance peptides, whereas Shannon’s
index was computed using the formula H =

∑
i pi ∗ ln(pi)

where pi is the relative abundance of the ith peptide in a sample.
To deal with the different number of peptides measured in
different samples, we defined pi ∗ ln(pi) = 0 for all peptides with
abundance equal to zero. Differences among groups (defined
based on gender, age, tumor site, tumor stage, and TILs,
as illustrated in Supplementary Figures 4, 5) were tested
using Wilcoxon rank sum or Kruskal–Wallis non-parametric
tests for patients’ or tumor characteristics with two or more
categories, respectively.

Beta diversity among the groups was evaluated by performing
the principal component analysis (PCA) on peptide intensity
data using the web application ClustVis3 (Metsalu and Vilo,
2015). To calculate the proportion of variability in the whole
metaproteomic dataset explained by each clinical variable, we
applied the principal component partial R-square (PCPR2)
method (Fages et al., 2014). Briefly, this method is composed of
two main steps: (1) for each clinical variable and each eigenvector
of the PCA, the mutual R2 parameter (proportion of variance
explained) is computed from a one-way ANOVA test; (2) for
each clinical variable, the proportion of variability explained on
the whole dataset is calculated as the sum of the R2 parameters
weighted by the PCA eigenvalues.

Discriminant analyses (DAs) were performed on log-
transformed peptide intensities using sparse partial least squares
regression (sPLS) implemented in the Bioconductor package

3https://biit.cs.ut.ee/clustvis_large
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mixOmics (v.6.14.1) (Rohart et al., 2017). Briefly, sPLS performs
variable selection and integration into a single step (based
on LASSO regression) to maximize the covariance between
the biomarker matrix and the clinical variable to discriminate.
The optimal analysis parameters (number of components and
number of peptides) were selected through a cross-validation
procedure implemented in the mixOmics package. We repeated
the analysis 1,000 times, splitting the dataset into training set
and test set to identify the optimal set of discriminating the
peptides and reduce the overfitting as much as possible. Finally,
we identified those peptides selected at least in 50% of the dataset
permutations. The classification/discrimination performance was
evaluated via hierarchical clustering based on the Euclidean
distance (complete linkage method) and represented through
heatmaps. Accuracy and area under the curve (AUC) were used
as classification metrics. Accuracy was computed as the number
of correct predictions out of the total; AUC was calculated as the
average of 20 training cross-validation sets (80–20% split at each
iteration), as implemented in the mixOmics package.

Each set of discriminating peptides was tested for
over-representation about specific taxa and functions. Significant
enrichments were obtained via the Fisher test comparing the
observed vs. expected proportions of peptides in a specific
category. We implemented a permutation procedure to
control for multiple testing and the hierarchical nature of the
microbial peptides annotation. We computed the empirical
p-values using 10,000 permutations in which the peptides
were assigned to a random category, obtaining the expected
distribution under the null hypothesis of no associations.
Sensitivity analysis was performed to identify the most
robust results, among the identified enrichment. The whole
procedure described above, from variable selection to over-
representation analysis, was repeated starting from the residual
of the regression of log-peptide intensities on age, sex, and the
other clinical characteristics (e.g., discrimination analysis for
tumor site was adjusted for age, sex, grade, stage, and TILs).
We described as statistically significant the enrichments with
the empirical p-value lower than 0.05 in the main and/or in the
sensitivity analysis.

Correlation analyses were carried out starting from the results
of the enrichment analyses. Specifically, for each set of microbial
peptides contributing to a significant enrichment, we ran a
canonical correlation analysis (CCA) against the human peptide
dataset (rCCA function in mixOmics). Briefly, this method looks
for a linear combination of the variables to reduce the number
of dimensions (human peptides) maximizing the correlation
with the reference matrix (microbial peptides). To simplify, the
method applies the same sPLS logic to continuous outcomes,
rather than to categorical values. Similarly, for each set of human
peptides contributing to a significant enrichment, we ran a CCA
against the microbial peptide dataset. Final, over-representation
of specific taxa and functions were performed as described above.

Finally, we performed a power analysis, to provide useful
information about the appropriate (minimum) sample size
for metaproteomic analyses in future studies. Since it is not
possible to derive an analytical formula for datasets in which
the number of variables exceed the observations, we computed

it empirically. We used a modified version of an algorithm4,
initially described to generate simulated mRNA data, to simulate
a metaproteomic dataset of 10,000 individuals using the observed
feature distribution (the whole sample set of this study) as the
reference, within which we defined two groups (5,000 individuals
each), randomly. Then, we manually included 300 differentially
abundant features between two groups, with effect size (log2FC)
equal to 1.25, 1.5, 2 (100 features each). Finally, we simulated
sampling from the reference dataset, for each N (sample size)
within 15 and 100 individuals per group, and we generated
1,000 random subsamples of the whole dataset. For each N, the
empirical power of the study was defined as the number of times
the differentially abundant features were correctly identified
as associated with the outcome of interest, out of the 1,000
simulations. We applied an FDR correction for multiple testing
to control the type I error. The described procedure ends in a final
output in which the empirical power of the study is a function of
N and log2FC.

RESULTS

Taxonomic and Functional Profile of the
Tumor-Associated Colonic Luminal
Metaproteome
Colonic luminal content samples (overlaying the radically
resected lesion area) were collected immediately after surgery
from 24 patients with CC. As luminal contents were generally
comparable to feces in terms of appearance and texture,
an established sample preparation pipeline set up for the
metaproteomic analysis of fecal samples (Tanca et al., 2014)
was employed. Samples were therefore subjected to protein
extraction, FASP, and liquid chromatography/high-resolution
mass spectrometry analysis to study the CC-associated colonic
luminal metaproteome (i.e., the whole protein assortment of
the colon lumen microenvironment, including a microbial
and a human portion). To improve the identification yield
(Tanca et al., 2016), a custom metagenomic database was
generated by sequencing the pool of DNA extracts obtained
from the same samples subjected to metaproteomic analysis,
and used in parallel with publicly available sequence databases
for peptide identification. Setting the FDR threshold to
1%, a total of 48,764 peptides were quantified through
bioinformatic analysis of mass spectrometry data; peptide
intensity data were used as quantitative measure and associated
with taxonomic and functional annotations (refer to the section
“Metaproteome analysis” within “Materials and Methods” for
details concerning bioinformatic analysis). Based on taxonomic
filtering, 29,455 peptides were classified as microbial and
8,470 as human. Complete lists of microbial and host
peptides, along with their abundances and taxonomic/functional
annotations, are presented in Supplementary Datasets 1,
2, respectively.

Among the microbial peptides, 17,350 sequences could
be annotated down to the genus level and 8,792 down

4https://github.com/ConesaLab/MOSim
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to the species level; microbial peptides could be assigned
to 186 different genera (114 on average per sample,
ranging from 88 to 134) and 300 different species (178
on an average per sample, ranging from 139 to 205). As
illustrated in Figure 1A, Bacteroides showed the highest
median abundance among the genera (with B. vulgatus,
B. uniformis, B. massiliensis, B. plebeius, and B. dorei
being the main species identified in the metaproteome,
in descending order), followed by Faecalibacterium,
Clostridium (with C. perfringens as major species), and
Ruminococcus (in particular, R. bromii and R. bicirculans).
Fusobacterium resulted as the seventeenth most abundant
genus (interestingly, with F. mortiferum being much more
abundant than F. nucleatum), while the first archaeal genus
was Methanobrevibacter (specifically, M. smithii). Boxplots
showing taxa abundance distribution according to higher
taxonomic levels (phylum and family) are provided in
Supplementary Figure 1.

In functional terms, a total of 1,218 and 1,305 different
protein functions could be identified in the microbial and
host datasets, respectively (with 100 functions in common

between the two datasets). The most abundant microbial
functions detected in the tumor-associated colon lumen
metaproteome were mainly involved in carbohydrate transport
and metabolism, although response to stress, cell motility,
and translation were also represented; furthermore, the main
enzymatic functions found in the metaproteome were linked
to diverse metabolic pathways, such as starch degradation,
glycolysis, fucose, and arabinose degradation, as well as the
biosynthesis of butyrate and amino acid (Figure 1B). The
taxonomic distribution (at the genus level) of the main
50 microbial functions detected in the colonic luminal
metaproteome is illustrated in Supplementary Figure 2.
Of note, reverse rubrerythrin, known to be involved in
the response to oxidative stress in anaerobes, was heavily
produced by several clostridia (especially, Faecalibacterium and
Ruminococcus); generally speaking, some functions were shared
by several different members of the microbiota (e.g., glycolytic
enzymes), whereas others were almost exclusive of specific
genera (such as hyaluronoglucosaminidase for Clostridium
and endoglucanase for Ruminococcus). On the host side
(Supplementary Figure 3), the most abundant functions were

FIGURE 1 | Taxonomic and functional profile of the tumor-associated colonic luminal metaproteome. (A) Tukey’s boxplots showing the top 20 microbial genera (left)
and the top 20 species (right), ordered according to the median of the relative abundance (summed peptide intensity) distribution among patients. (B) Tukey’s
boxplots showing the top 20 microbial functions (KOGs; left) and the top 20 pathways (right), ordered according to the median of the relative abundance (summed
peptide intensity) distribution among patients.
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FIGURE 2 | Explained variance analysis. Bar graph reporting the percentage
of metaproteome variance explained by clinical variables based on PCA
results, using the abundance of microbial peptides (top) and host peptides
(bottom) as input data.

involved predominantly in metabolism (proteases/peptidases
and amylases) and immunity (antimicrobial peptides and
immunoglobulins).

Clinicopathological Variables Explain
Part of the Colonic Luminal
Metaproteome Diversity
Table 1 lists the main characteristics of the 24 patients
with CC (14 males and 10 females) selected for the study
and of the related tumors. The median age of the patients
at the time of the diagnosis was 75 years (range: 33–88).
Concerning the tumor site, 15 were right CC cases and 9
were left CC cases. Among the clinicopathological features
of the tumors, we considered specifically stage, grade, and
TILs. The percentages of stage I, II, III, and IV cases
were 25, 25, 42, and 8%, respectively; the percentages of
G1, G2, and G3 cases were 8, 63, and 29%, respectively
(no G4 cases were included in the study); finally, the
percentage of TILs in the cancer tissues was null in 12
cases and ranged between 5 and 60% in the remaining 12
cases (median: 10%).

To investigate the proportion of variability explained by each
clinicopathological variable in the whole dataset, we performed
a diversity analysis via the PCPR2 approach (refer to the section
“Statistical analyses” within “Materials and Methods” for details).
As illustrated in Figure 2, 17.6% (microbial peptides) and 29.8%
(host peptides) of the overall variance of the metaproteomic
data could be explained by the clinicopathological variables
considered in this study, with the strongest contribution provided
by tumor stage (14% on average), followed by tumor grade (4%)
and percentage of TILs (3%). Two sample groups were then
identified for each clinicopathological variable (i.e., high- vs. low-
stage samples, high- vs. low-grade samples, and TIL-positive vs.
negative samples), as shown in Table 2.

We did not find significant differences (p < 0.05) when
comparing richness (number of different peptides found) and
alpha diversity (i.e., peptide diversity, according to Shannon’s
index) between sample groups by applying the Wilcoxon test.
Boxplots showing the distribution of richness and alpha diversity
values among the sample groups are provided in Supplementary
Figure 4 (microbial peptides) and Supplementary Figure 5
(host peptides).

A Small Set of Microbial and Host
Peptides Correctly Discriminate Sample
Groups Based on Tumor
Clinicopathological Features
We aimed at evaluating the effectiveness of colonic lumen
metaproteomic data in discriminating cases with CC based on the
clinicopathological characteristics of the tumor. To this purpose,
we investigated the classification ability of microbial and host
peptides, as well as the combined classification ability, according
to the “accuracy” metric. For each tumor characteristic (stage,
grade, and TILs), we identified the set of most discriminating
peptides through sPLS-DA (refer to the section “Statistical
analyses” within “Materials and Methods” for details).

As shown in Figure 3A, we identified 294, 94, and 568
microbial peptides discriminating between stage-, grade-, and
TILs-based sample groups, respectively. The accuracy was
96% for tumor stage and 100% for tumor grade and TILs
(AUC > 0.99 and AUC = 1, respectively). The proportion
of peptides necessary to reach the described classification
performances varied from 0.27% (grade) to 1.63% (TILs).
Analyzing the host metaproteome (Figure 3B), we identified
282, 301, and 290 human peptides discriminating between
stage-, grade-, and TILs-based sample groups, respectively.
The accuracy was 96% for stage and 100% for grade and TILs
(AUC > 0.99 and AUC = 1, respectively). The proportion
of peptides necessary to reach the described classification
performances varied from 3.02% (stage) to 3.22% (grade).
The combination of microbial and host peptides did not
improve the classification performances (data not shown).
Detailed data regarding the sPLS-DA are provided in
Supplementary Dataset 3.

Specific Taxa and Protein Functions Are
Significantly Enriched in Peptide Sets
Discriminating Colon Cancer Cases
Based on Clinicopathological Features
For each set of microbial and host peptides identified in
the previous analyses, we investigated for over-representation
(enrichment) of specific taxonomic and/or functional features.
To this aim, as detailed in the section “Statistical analyses”
within “Materials and Methods”, we performed two parallel
enrichment analyses for each of the sample groups listed in
Table 2: a “main analysis” and a “sensitivity analysis,” with
the latter also taking into account the impact of covariates
(age, gender, tumor site, and clinicopathological features except
the one determining a given comparison). Taxonomic and
functional features significantly enriched according to both
analyses (empirical p < 0.05) are listed in Table 3 (microbiota)
and Table 4 (host). Full outputs of enrichment analyses are
reported in Supplementary Dataset 4.

In the microbial peptide set discriminating CC cases based
on tumor stage, we found an over-representation in high-stage
CC samples of a series of hierarchically related taxa, namely
the lineage from Actinobacteria (class) down to Bifidobacterium
(genus). In the same peptide set, the enzymatic function of
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TABLE 1 | Characteristics of patients and related tumor samples selected for the study.

Sample code Gender Age at diagnosis Site Stage Grade TILs (%)

S061 F 75 Right colon II G2 0

S085 M 75 Right colon III G2 20

S097 F 64 Right colon II G3 0

S099 F 77 Right colon III G2 0

S103 F 62 Left colon III G2 0

S107 F 88 Right colon II G2 0

S109 F 65 Left colon III G2 0

S111 M 77 Right colon I G2 0

S119 M 76 Right colon I G2 5

S121 M 79 Right colon II G2 20

S125 M 75 Right colon I G3 10

S131 M 72 Right colon I G1 0

S135 F 87 Right colon II G3 50

S141 M 51 Left colon I G1 0

S143 M 70 Left colon IV G2 5

S145 F 80 Left colon III G3 0

S147 F 79 Right colon III G3 60

S151 M 75 Left colon III G2 5

S157 M 77 Right colon II G3 0

S161 M 66 Left colon III G2 10

S165 F 33 Left colon IV G3 5

S175 M 66 Left colon III G2 10

S181 M 74 Right colon III G2 0

S183 M 83 Right colon I G2 50

TABLE 2 | Comparisons between sample groups based on tumor-associated
clinical variables.

Clinical variable Group A N group A Group B N group B

Stage Stage I–II 12 Stage III–IV 12

Grade G1–2 17 G3 7

TILs TILs + (≥5%) 12 TILs − (0%) 12

formate–tetrahydrofolate ligase (attributable to Clostridia) was
enriched as well in high-stage CC samples. When considering
the host discriminant peptide set for the same comparison,
cadherin-related family member 2 was enriched in low-
stage CC samples.

Bacteroides fragilis and Bacteroides intestinalis were the
bacterial species enriched in high-grade samples, based on the
microbial peptide set discriminating the CC samples based on
tumor grade. In addition, UDP-glucose 4-epimerase was the only
function significantly enriched in high-grade samples. On the
other hand, human trypsin and neutral ceramidase were observed
as over-represented in low-grade CC samples.

Finally, we investigated the peptide sets discriminating CC
cases with and without TILs. Considering microbial peptides,
the lineage from Bacteroidetes (phylum) down to Bacteroides
(genus) resulted as significantly enriched in the colonic luminal
contents associated with CC tissues with no TILs. Considering
the host counterpart, prolactin-inducible protein, antithrombin
III, and S100-A8 were found over-represented in the lumen of
TIL-positive CC samples.

We also carried out a further analysis to search for
possible correlations between the main microbial peptide clusters
associated with significant enrichments and host peptides.
As shown in Supplementary Dataset 5, the peptide cluster
assigned to the lineage Actinobacteria/Bifidobacterium and
associated to high-stage CC cases correlated positively with a
cluster of 38 host peptides, enriched in 5 protein functions
(including a carbohydrate transporter and an enzyme involved
in protein glycosylation), and negatively with a cluster of
44 host peptides, enriched in 2 protein functions (including
alpha amylase). Furthermore, the peptide cluster assigned to
the lineage Bacteroidetes/Bacteroides and associated with TIL-
negative tumor samples correlated positively with 286 host
peptides, enriched in 6 protein functions (including eosinophil
peroxidase and intelectin), and negatively with 271 host peptides,
enriched in other 10 protein functions (including type II keratin,
catalase, and ceruloplasmin).

Assessment of the Optimal Sample Size
for Differential Metaproteomics Using
Colonic Luminal Contents
Since an analytical formula to estimate the power of the
study in metaproteomic differential analyses does not
exist, we have estimated it empirically on a set of 1,000
metaproteomic datasets generated in silico. We computed
the probability to correctly identify differentially abundant
features as a function of the sample size N (varying from
30 to 200 individuals per group) and the base 2 logarithm
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FIGURE 3 | Discrimination between sample groups based on clinicopathological features according to sparse partial least squares regression discriminant analyses
(sPLS-DA). (A) Heatmaps illustrating hierarchical clustering of sample groups based on stage (top), grade (middle), and TILs (bottom) according to microbial
discriminating peptides. (B) Heatmaps illustrating hierarchical clustering of samples groups based on stage (top), grade (middle), and TILs (bottom) according to host
discriminating peptides.

of the fold-change ratio (log2FC) between the two groups
(small effect: log2FC = 1.25; medium effect: log2FC = 1.50;
high effect: log2FC = 2.00), keeping the threshold of
significance fixed at 0.05 after FDR correction for multiple
testing. As summarized in Figure 4, a minimum of 30,
50, and 70 patients per group is needed to reach an 80%
probability to identify features with true log2FC = 2, 1.5, and
1.25, respectively.

DISCUSSION

In this pilot study, we chose to analyze the luminal contents lining
over CC tissues. With respect to feces, widely used as proxy for
the colonic microbiota, sampling luminal contents immediately
after the surgical procedure (colectomy) is expected to better
preserve microbial and host metaproteomic features from
changes depending on the environmental stimuli encountered
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at distal sites toward the rectal ampulla and, furthermore, after
stool excretion. Compared to the rapid peristaltic waves in
the small intestine, microbial communities and host-derived
moieties composing the fecal matter are slowly propelled from
cecum to rectum. Colonic microbial communities are therefore
expected to be exposed for several hours to host features derived
from the tumor microenvironment. Previous studies described
specific differences between cecal and fecal metaproteome in
animal models (Tanca et al., 2017b), reinforcing the need for a
deeper investigation of microbial community functions directly
sampling the colon microenvironment.

As described here, metaproteomic profiles of colonic lumen
contents can provide deep information regarding both the
microbial and host proteomes. In particular, the human
component does not only comprise proteins from epithelial
exfoliation, but also those produced and/or secreted by local
immune cells. This is of special interest when dealing with
inflammatory conditions, as those locally induced by CC. With
respect to the microbial components, sampling and analysis of
the tumor-associated microbiota during CC surgery is expected
to allow for the retrieval of key microbiological information,
potentially relevant to tumor management and therapy, to be
associated in turn with those gathered by tumor tissue analysis
routinely performed by pathology laboratories.

As most of the luminal contents collected in this study
were similar to feces based on their texture, we decided to

FIGURE 4 | Result of power analysis. Graph plotting the study power
(probability to identify differential features) as a function of the number of
patients analyzed per group. Three different log2FC threshold values
(corresponding to a small, medium, and high effect) were evaluated.

apply a protein extraction protocol previously set up for stool
samples (Tanca et al., 2014). In addition, we generated a matched
metagenomic database by sequencing DNA extracted from a
pool of the same samples analyzed by metaproteomics, in line

TABLE 3 | Taxonomic and functional features significantly enriched in the microbial peptide sets discriminating between stage-, grade-, and TILs-based sample groups.

Taxonomic/functional level Taxonomic/functional feature Main analysis
empirical p-value

Sensitivity analysis
empirical p-value

Higher in # peptides*

Class Actinobacteria < 0.001 0.01 Stage III–IV 15

Order Bifidobacteriales < 0.001 0.037 Stage III–IV 15

Family Bifidobacteriaceae < 0.001 0.037 Stage III–IV 15

Genus Bifidobacterium < 0.001 0.049 Stage III–IV 14

KOG K01938: formate–tetrahydrofolate ligase < 0.001 0.001 Stage III–IV 5

Species Bacteroides fragilis 0.01 0.007 G3 3

Species Bacteroides intestinalis 0.011 < 0.001 G3 3

KOG K01784: UDP-glucose 4-epimerase 0.011 0.01 G3 2

Phylum Bacteroidetes 0.001 < 0.001 TILs − 209

Class Bacteroidia 0.003 0.004 TILs − 200

Order Bacteroidales 0.001 0.002 TILs − 200

Family Bacteroidaceae < 0.001 < 0.001 TILs − 149

Genus Bacteroides < 0.001 < 0.001 TILs − 149

*Number of discriminating peptide sequences annotated with that taxonomic/functional feature.

TABLE 4 | Human proteins significantly enriched in the microbial peptide sets discriminating between stage-, grade-, and TILs-based sample groups.

Function Main analysis empirical p-value Sensitivity analysis empirical p-value Higher in # peptides*

K16502: cadherin-related family member 2 < 0.001 0.015 Stage I–II 4

K01312: trypsin 0.001 0.001 G1–2 3

K12349: neutral ceramidase 0.003 0.004 G1–2 5

CKO-h22: prolactin-inducible protein 0.047 0.047 TILs + 3

K03911: antithrombin III 0.044 0.037 TILs + 4

K21127: protein S100-A8 0.014 < 0.001 TILs + 5

*Number of discriminating peptide sequences annotated with that taxonomic/functional function.
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with the results of an earlier comparative investigation showing
that the use of matched metagenomic databases (in that case
obtained from human and mouse fecal samples) enables higher
identification and annotation yields in gut metaproteomic studies
(Tanca et al., 2016).

To the best of our knowledge, no metaproteomic
characterization of human colonic luminal contents has been
described to date in the scientific literature. However, among
gut content samples different from stool, the mucosal-luminal
interface (MLI) was sampled through endoscopic lavages and
analyzed by metaproteomics in two pioneering investigations
(Li et al., 2011; Presley et al., 2012); unfortunately, a limited
information yield about the microbiota could be reached
depending on the analytical pipelines and sequence databases
available at that time. More recently, Zhang et al. (2018)
used aspirate samples from colonoscopy to study the gut
metaproteomic profile of children diagnosed with inflammatory
bowel disease. The abundance distribution of the microbial taxa
detected in the MLI samples of pediatric patients was globally
comparable to that of the colonic luminal samples analyzed
in this study, except for a higher rank for Methanobrevibacter
and Fusobacterium, in line with previous reports, including
metaproteomic data obtained from the stool of patients
with CRC (Long et al., 2020). Another sample type recently
subjected to metaproteomic profiling is mucus (and the related
microbiota) collected from colon biopsies of patients with
irritable bowel syndrome, although few details regarding
microbial identifications were made available (Jabbar et al.,
2021). New metaproteomic studies are thus needed to elucidate
in more detail the functional differences between luminal,
mucosal, and fecal microbial communities in the human gut.

The main goal of a pilot study is to demonstrate the potential
of an experimental design and identifying promising trends, to be
then validated in more focused and stringent investigations on a
wider number of samples. Here, we aimed at evaluating the use
of colonic luminal content samples to identify microbial and host
proteins associated with the main clinicopathological features of
CC, namely stage, grade, and TILs. The main limitation (typical
for a pilot study) was the low number of samples analyzed, which
could in turn lead to a low statistical power. Accordingly, we
intentionally chose to apply rigorous statistical methods that are
able to reduce the type I error rate (false positives), at the cost of
a possibly higher type II error rate (false negatives).

First, we applied a descriptive statistical methodology based on
PCA (PCPR2), commonly used for datasets with more variables
than observations, to quantify the proportion of variability
explained by the clinicopathological characteristics of the tumors.
The results of this preliminary investigation indicate that a
significant part of variability can be explained by the differences
in tumor grade, stage, and TILs, supporting the likelihood to
identify statistically significant peptides in differential analyses.
As expected, the percentage of explained variance was slightly
higher for host peptides (being derived from tumor and immune
cells) compared to the microbial peptides.

Due to the low sample size of this pilot study, identification
of differentially abundant peptides has been performed via
discriminant analyses, rather than using a more stringent

approach based on a differential test for each peptide followed
by the correction of the p-values for multiple testing. To extract
the most relevant features from each comparison and avoid
overfitting, we employed a permutation-based procedure in
which the whole dataset was randomly split into training and
test set 1,000 times, keeping the features appearing in at least
50% of the permutations. The described procedure led to a
minimization of the type I and type II error rates simultaneously.
This approach allowed us to perfectly discriminate CC cases
based on tumor grade and TILs, whereas the classification
performance was slightly lower for the tumor stage. Interestingly,
the only outlier in the stage-based classification (according to
both microbial and human data, as illustrated in Figures 3A
and B, respectively) correspond to the same patient (S165),
who is a young-onset CC case (with an age significantly lower
compared to all the other patients). Young-onset CC is known to
have peculiar clinicopathological characteristics (Akimoto et al.,
2021), including a possibly different associated microbiota (Yang
et al., 2021). This might reasonably explain the behavior of that
patient as an outlier.

After identifying the most relevant peptides for each
comparison, we investigated over-representation of specific
taxonomic and functional features through enrichment analysis.
Again, in these analyses, we applied a permutation-based
procedure to reduce type I and type II errors as much
as possible. Specifically, we assigned each peptide to a
random taxonomic/functional category 10,000 times to estimate
the null distribution expected under the hypothesis of no
associations (null hypothesis). The comparison of observed vs.
expected distribution provided the list of empirical p-values
for the enrichment analysis. We further reduced the type
I error rate performing a sensitivity analysis, in which the
described procedure was repeated after removing the effect of
important sample characteristics (residuals from a multivariate
linear regression analysis). Enrichment analysis enabled us
to identify several microbial taxa and functions, as well as
human proteins, as significantly enriched in the discriminating
peptide sets based on the clinicopathological features of CC.
Considering tumor stage, the lineage from Actinobacteria
(class) down to Bifidobacterium (genus) was enriched in the
colonic metaproteome associated to high-stage tumor samples.
Bifidobacterium is known for its potential role in preventing
CRC, possibly due to the enhancement of the inflammation-
suppressive function of Tregs (O’Callaghan and van Sinderen,
2016; Asadollahi et al., 2020; Sun et al., 2020); however, a
different interplay between bifidobacteria and carcinoma cells
might occur after the establishment of CRC. Lactic acid and
acetate produced by bifidobacteria, as well by other members of
the gut microbiota, can serve as an energy source for carcinoma
cells, supporting tumor progression. Noteworthy, a recent study
based on over 1,000 CRC cases found a strong association
between bifidobacteria in CRC tissues and malignant signet
cells, a known indicator of poor prognosis (Kosumi et al.,
2018). Of note, peptides discriminating CC cases based on
stage were also significantly enriched for the taxonomic lineage
from Euryarchaeota (phylum) to Methanobacteriaceae (family),
even though only according to the “sensitivity analysis” (refer
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to Supplementary Dataset 4). Methanobacteriaceae have been
already described as more abundant in the metaproteome of
patients with CRC compared to healthy controls (Long et al.,
2020); specifically, an active involvement of Methanobrevibacter
in CRC carcinogenesis has been hypothesized (Alomair et al.,
2018). In addition, we found formate–tetrahydrofolate ligase
produced by the colonic microbiota (specifically by Clostridia) as
significantly enriched in high-stage tumors. Formate is generated
by members of the GM during anaerobic fermentation and
can be also produced by the host; it can, in turn, become
a substrate for the growth of both aerobic and anerobic
bacteria or enter the circulation, being used by almost all
the tissues for the synthesis of nucleotides, that is essential
during tumor growth (Pietzke et al., 2020). Since some studies
reported an important formate demand in CRC, as inferred
from the high expression of the enzyme MTHFD1L involved
in its production (Agarwal et al., 2019; He et al., 2020), we
may hypothesize a competition for formate between CRC and
GM. To the best of our knowledge, no specific metabolomic
investigations aiming at measuring formate in gut contents
or in feces of patients with CC and/or healthy controls have
been described so far. Therefore, further studies are needed to
verify this hypothesis and elucidate possible relationships among
formate/tetrahydrofolate metabolism, colonic microbiota, and
CC. Moving to host proteins, cadherin-related family member
2, also named protocadherin LKC, found in this study as
significantly enriched in low-stage tumors, had been proposed
in the past as a potential CC suppressor by its ability to
induce contact inhibition of cell proliferation (Okazaki et al.,
2002). Furthermore, lactotransferrin and peroxiredoxin-2 were
found as human functions significantly enriched in high-stage
CC cases, even if according to the “sensitivity analysis” only.
The direct correlation between lactotransferrin protein content
and the stage of the disease has been previously demonstrated
in metastatic CRC tissues (Burlaka et al., 2019). Furthermore,
lactotransferrin was found as gradually increased in non-
adenomatous colon polyp, non-metastatic CC, and metastatic
CC tissues when compared to the normal colon (Saleem et al.,
2019). Peroxiredoxin-2 upregulation was reported to correlate
with CRC progression (Peng et al., 2017).

As far as tumor grade classification is concerned, we found
that Bacteroides fragilis was significantly enriched in the colonic
metaproteome of high-grade cases. This bacterial species has
been found as more abundant in the CRC microbiota compared
to that of the healthy controls in numerous studies, and its toxin
has been hypothesized to promote colon carcinogenesis (Boleij
et al., 2015; Dai et al., 2018; Haghi et al., 2019; Thomas et al.,
2019; Chen et al., 2021). Furthermore, among host functions,
trypsin and neutral ceramidase were observed as significantly
enriched in low-grade tumors. Trypsin expression in CRC has
been associated with unfavorable clinicopathological features
and reduced survival (Yamamoto et al., 2003; Ziapour et al.,
2011). Neutral ceramidase was reported to having a role in
the development of CC through antiapoptotic and proliferative
processes (García-Barros et al., 2016).

The prognostic effect of TILs related to CRC has been
increasingly recognized, as a stronger lymphocytic reaction has

been associated with longer patient survival, particularly in
patients with stage III and right-sided tumors (Ropponen et al.,
1997; Huh et al., 2012). The application of a “TILs + vs. TILs−”
classification adopted in this study was based on both statistical
and biological reasons. In statistical terms, this classification
allowed us to obtain groups of identical size; under a biological
perspective, we can expect that even a very low degree (e.g.,
5%) of lymphocyte infiltration might exert a significant effect
on the functional dynamics of the tumor-associated microbiota
and should not be included in the same group of cases without
detectable TILs. We also evaluated an alternative classification,
more similar to those that have recently begun to be used in the
clinical practice for prognostic aims (Pagès et al., 2018; Taube
et al., 2018), based on which the percentage of cases with low
(<10%) and intermediate-high (≥10%) TIL level were 67 and
33%, respectively. As the number of differential features identified
based on the “TILs + vs. TILs −” classification was much higher
compared to the alternative one (data not shown), we decided to
focus on the former. Among the features differentially enriched
in the peptide sets discriminating based on TILs and higher in
TILs cases, we found the lineage the lineage from Bacteroidetes
(phylum) down to Bacteroides (genus). Bacteroidaceae and
Bacteroides were found as significantly more abundant in the
fecal microbiota of patients with CRC when compared to healthy
controls (Yang et al., 2019). In addition, Bacteroides spp. are able
to degrade glycans and, depending on specific dietary patterns,
some strains of Bacteroides can act as mucus degraders, causing
a reduction in the thickness of the mucus layer (Desai et al.,
2016); this reduction can in turn lead to CC development (as
demonstrated in mice; Velcich et al., 2002) or to intestinal
inflammation (Larsson et al., 2011). Among host functions
significantly enriched in the TILs + group, antithrombin III has
been found in lower amount in the blood serum of patients
with CRC compared to the healthy controls (Peltier et al.,
2016). Another host function that correlates with TIL (even if
according to sensitivity analysis only) is cadherin 17, a calcium-
dependent transmembrane glycoprotein playing a role in cell-cell
adhesion and expressed by the intestinal epithelium (Su et al.,
2008). Findings regarding the involvement of this protein in
colon carcinogenesis are ambiguous, since it has been found
underexpressed in human CRC with a role in maintaining the
intestinal homeostasis (Chang et al., 2018), overexpressed in
metastatic human CC cells (Bartolomé et al., 2014), as well as
associated with cell proliferation, metastasis, and poor survival
in CRC (Tian et al., 2018). Further, protein S100-A8 has been
reported to facilitate CRC migration and differentiation (Duan
et al., 2013; Zha et al., 2016).

Furthermore, we decided to carry out a power analysis,
based on the results from this pilot study, to determine the
minimum sample size needed to identify a satisfactory number
of differential features. Being aware of the limitations induced
by the low sample size, we estimated the number of samples
needed in future studies to detect significant results in differential
analyses based on the observed distribution of peptides, varying
the effect size of the association, and considering type I error
rate equal to 0.05 (after adjustment for multiple comparisons).
Again, we estimated it empirically, since it is not possible to
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derive an analytical formula for a dataset with more variables
than observations.

Other limitations of the experimental design of this pilot
study might be the absence of control (healthy) and colon
adenoma (precancerous lesion) samples, as well as of information
regarding the survival rate and response of patients to
therapy. Nevertheless, it is worth noting that this investigation
was not specifically aimed at identifying diagnostic and/or
prognostic biomarkers. In addition, we cannot rule out that
part of the metaproteomic data variance could be explained
by diet; however, no information about patients’ dietary
habits were available.

In conclusion, this study describes an extensive
characterization of the tumor-associated colonic luminal
content metaproteome, together with the pilot investigation
of how the metaproteomic profile changes with respect to
tumor clinicopathological features (stage, grade, and TILs).
Of note, we were able to discriminate tumor characteristics
using a relatively low number of peptides, suggesting the
potential of metaproteomic studies in the identification of
prognostic biomarkers for CC progression and survival.
Several microbial taxa (including Bifidobacterium, B. fragilis,
and B. intestinalis) were significant enriched in the peptide
sets discriminating between high- and low-stage (or -
grade) tumors. Moreover, peptides functionally assigned to
formate–tetrahydrofolate ligase exhibited higher abundance
in high-stage cancer tissues. Finally, we performed a power
analysis enabling the assessment of the optimal sample
size for a differential metaproteomic study using colonic
luminal contents.

In perspective, future studies with higher numbers of
patients and complete follow-up information are needed to
verify the clinical potential of these data in the definition
of new prognostic indicators, to investigate the combined
effects of tumor stage/grade/TILs, and to validate their value
in the understanding of CC progression. In addition, further
developments and standardization of metaproteomic protocols
are expected to improve the quality, reproducibility, and
robustness of metaproteomic data in the near future.
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