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PRIORITY REVIEW

Chronic or repeated acute exposure of an organism to a hot 
and/or hypoxic environment results in a series of systemic physi-
ological responses collectively referred to as acclimation. These 
include cardiovascular, thermoregulatory, ventilatory, and hema-
tological adjustments in an attempt to maintain homeostasis in 
the face of environmental stress. On a cellular level, molecular 
responses during acclimation both contribute to the systemic 
response and protect individual cells from heat or hypoxic stress. 
While myriad cellular pathways are involved in the acclimation 
response, two of the key contributors in both heat and hypoxia 
are heat shock proteins (HSP) and Hypoxia-Inducible Factor-1 
(HIF-1). These shared pathways have brought forth the potential 
for cellular cross-tolerance between hyperthermic and hypoxic 
stress1,2 (Fig. 1). This topic has been examined in plant models 
with promising results as well.3

Hot and hypoxic cross-tolerance has been a subject of recent 
interest for military personnel and/or athletes who work or com-
pete in both hot and high-altitude environments.4,5 However, 
the link between the observed cellular cross-tolerance and sys-
temic acclimatory responses to hot or hypoxic environments has 
not been fully elucidated. Currently, cross-tolerance is primarily 
attributed to changes at the cellular level.2 There is some evidence 
lending support to the idea that heat acclimation may confer sys-
temic benefits in both environments.6,7

The purpose of this review is to highlight cytoprotective 
pathways and systemic acclimatory responses in hot and hypoxic 
environments, and to examine the evidence for cellular and sys-
temic cross-tolerance between environments. Links between cel-
lular pathways and systemic responses supported by empirical 
evidence will be referenced, whereas areas of speculation will be 
identified as such. Throughout this review, the term “acclima-
tion” will be used to describe the process of short-term (days to 
weeks) physiological adjustment to an environment, whether that 
is a simulated lab environment or a natural setting (commonly 
referred to acclimatization). Hypoxic (or hypoxia) will be used 
similarly to describe any environment with reduced partial pres-
sure of oxygen, whether it is lab-simulated (normobaric hypoxia) 
or environmental (hypobaric hypoxia). Human systemic and cel-
lular acclimation responses are the focus of this review and will 
be used whenever possible; however, animal data will be used 
when human data are unavailable.

Acclimation to Heat and Hypoxia

The process of heat acclimation in humans is generally 
thought to occur within one to two weeks of repeated exercise-
heat stress. Based on the vast majority of published studies in the 
area, the classic systemic thermal, cardiovascular, sudomotor, and 

*Correspondence to: Christopher T Minson; Email: minson@uoregon.edu
Submitted: 06/20/2014; Revised: 07/01/2014; Accepted: 07/01/2014; Published Online: 07/08/2014
http://dx.doi.org/10.4161/temp.29800

Heat acclimation and cross tolerance to hypoxia
Bridging the gap between cellular and systemic responses

Brett R Ely1, Andrew T Lovering1, Michal Horowitz2, and Christopher T Minson1,*

1University of Oregon; Department of Human Physiology; Eugene, OR USA; 2The Hebrew University of Jerusalem; Laboratory of Environmental Physiology;  
Faculty of Dental Medicine; Jerusalem, Israel

Keywords: heat acclimation, high altitude acclimatization, heat shock protein, hypoxia-inducible factor

Abbreviations: AMS, Acute Mountain Sickness eNOS, Endothelial Nitric Oxide Synthase EPO, Erythropoeitin HACE, High-
Altitude Cerebral Edema HAPE, High-Altitude Pulmonary Edema HIF-1, Hypoxia Inducible Factor 1 HSP, Heat Shock Protein 
HVR, Hypoxic Ventilatory Response iNOS, Inducible Nitric Oxide Synthase PBMC, Peripheral Blood Mononucleocytes VEGF, 

Vascular Endothelial Growth Factor

Recent research has suggested a potential for some of the physiological and cellular responses to heat acclimation 
to carry over to improved tolerance of the novel stresses of another environment. This cross-tolerance is evident in heat-
acclimated animals that exhibit enhanced tolerance to either hypoxic or ischemic stress, and is primarily attributed to 
shared cellular stress response pathways. These pathways include Hypoxia-Inducible Factor-1 (HIF-1) and Heat Shock Pro-
teins (HSP). Whether these shared cellular stress response pathways translate to systemic cross-tolerance (improved exer-
cise tolerance, reduced risk of environment-associated illness) has not been clearly shown, particularly in humans. This 
review highlights the HIF-1 and HSP pathways and their relationship with systemic acclimation responses, and further 
examines the potential cellular and systemic adaptations that may result in cross-tolerance between hot and hypoxic 
environments.
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hematological acclimation responses are observed within 7–14 d 
of intermittent exercise/heat stress in humans.8,9 With human 
exercise-heat acclimation, cardiac output and regional blood flow 
are increased through plasma volume expansion to maintain 
perfusion of metabolically active tissues while simultaneously 
providing adequate blood flow to the skin for thermoregulation. 
Further heat acclimation responses include enhanced sensitiv-
ity of sweating, increased sweating rate of a more dilute sweat, 
and reduced thermoregulatory strain (lower core temperature at 
rest and during exercise) and cardiovascular strain (lower heart 
rate for a given workload) during exercise (For a review see refs. 
10–11). These thermoregulatory and cardiovascular adjustments 
combine to reduce the risk of heat injury such as heat stroke in 
heat-acclimated individuals. Similar cardiovascular and ther-
moregulatory changes are observed using passive heat acclima-
tion models in humans, but the addition of exercise appears to 
enhance the response.12 Interestingly, the longest known exercise-
heat acclimation study in humans was six months in duration, 
however, measurements were limited by the technology avail-
able in this classic study13 and the majority of heat acclimation 
work in humans utilizes an exercise-heat stress protocol lasting 
21 d or less. In contrast, rodent models often employ 30-d pas-
sive heat acclimation. Following this heat acclimation protocol, 
a reduction in resting heart rate,14 expansion of plasma volume,15 
and enhancement of evaporative cooling mechanisms (salivary 
gland hypertrophy and enhanced salivation)16 are noted, com-
parable to the decreased heart rate response, increased plasma 

volume, and increased sweating response following human heat 
acclimation. While exercise-heat acclimation in animal models is 
less common, similar responses have been observed.17-20 The sys-
temic adaptations and protection from heat illness are universally 
noted following heat acclimation in both humans and animals, 
but their relationships to consensus cytoprotective pathways such 
as HSP and HIF-1 are relatively unexplored.

With acclimation to hypoxia, the key systemic changes occur 
within 1–3 wk of high-altitude living (1500–3500 meters) or 
intermittent exposure to hypoxia. Changes associated with accli-
mation to hypoxia include carotid body-mediated increased 
minute ventilation to improve oxygen saturation,21 diuresis to 
effectively increase hemoglobin and hematocrit concentrations22 
and stimulation of erythropoiesis to increase red blood cells and 
oxygen carrying capacity.23 There are also several metabolic 
adaptations aimed at augmenting both oxidative and glyco-
lytic metabolism,24 and potentially enhanced capillarization to 
improve oxygen delivery to tissues.25 Due to these adaptations, 
organisms that are acclimated to hypoxia are provided protection 
from illnesses associated with rapid ascent to high altitude such 
as acute mountain sickness (AMS), high-altitude pulmonary 
edema (HAPE) and high-altitude cerebral edema (HACE).26 
In contrast to heat acclimation, these systemic responses have 
been experimentally linked to several downstream effects of the 
HIF-1 and HSP pathway through induction of genes to produce 
the hormones, enzymes, and receptors associated with hypoxic 
acclimation.

Figure 1. The transition between exposure to heat or hypoxic stress, cellular stress response, systemic response, and acclimation/enhanced tolerance. 
Dark blue arrows indicate clear experimental evidence to support this relationship. Pale blue arrows indicate emerging evidence to support, while 
unfilled arrows indicate a possible relationship that has not yet been experimentally examined.
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Heat Shock Proteins

Heat shock proteins, first described by Ritossa,27 have been 
widely studied for their protective role in response to heat and 
other stressors such as oxidative damage and hypoxia. The most 
widely studied HSPs in response to heat or hypoxia are the HSP 70 
and 90 families, so named for their molecular weight. Changes in 
HSP expression and the cytoprotective effects exhibited are col-
lectively referred to as “acquired thermal tolerance.”28 HSPs play 
key regulatory roles in protein transport across cell membranes, 
re-folding of denatured proteins and preventing initiation of the 
apoptotic cascade observed in response to acute cellular stressors.

Heat shock proteins in heat acclimation
Previous studies in both humans and animals have noted 

increases in HSP-70 and HSP-90 following heat acclimation.29-32 
These increases in HSP activation are associated with enhanced 
cytoprotection, such that cells survive longer when exposed to 
severe heat shock.30 Similar work in animals33 has suggested the 
timeline of HSP 70 and 90 expression correlates with the time-
line of observed systemic heat acclimation responses and acquired 
thermal tolerance, indicating a possible role of HSPs in inducing 
systemic heat acclimatization.

The HSP 70 family (including HSP-70 and HSP-72) is highly 
inducible with heat stress, and these proteins serve as molecular 
chaperones, assist in refolding stress-denatured proteins, and are 
anti-apoptotic. Basal expression of HSP-70 in peripheral blood 
mononucleocytes (PBMCs) tracks small circadian variations in 
core temperature,34 and has been shown to increase following 
exercise-heat acclimation in humans.30,35 Similar increases were 

observed in basal expression of HSP-90 in PBMCs with ten days 
of exercise-heat acclimation.30 The increased basal expression of 
HSP-72 and-90 following heat acclimation resulted in a blunted 
HSP response to ex vivo heat shock (41–43 °C), suggesting that 
these cells were more tolerant to heat stress.30

Heat shock proteins in acclimation to hypoxia
Increased expression of HSPs have been observed during 

hypoxic acclimation. Taylor et al.36 subjected 8 healthy males to 
10 d of intermittent hypoxic exposure (75 min per day at a sim-
ulated altitude of ~3000 meters), and observed increased basal 
levels of HSP-72 in PBMCs. HSP responses were also examined 
in animal models37 by exposing high elevation (yak) and low-ele-
vation (rabbit) mammals to altitudes from 2300 meters to 6000 
meters for a period of 3 wk, then analyzing brain and cardiac 
tissue for HSP-70 induction. While both high and low-altitude 
mammals increased gene transcription post-exposure, HSP-70 
protein expression increased more in high elevation mammals, 
indicating that an enhanced HSP response to hypoxic stress may 
occur in altitude-acclimatized mammals.37

Heat shock proteins and systemic acclimatory responses
While changes in HSP expression and induction have been 

observed with heat and hypoxic acclimation, their relationship 
with systemic acclimation responses remains to be firmly estab-
lished. Unexplored potential exists for HSP-90 to be involved in 
heat acclimation responses related to fluid balance (Fig. 2) and 
there is some experimental evidence for HSP-70 to aid in protec-
tion from illnesses related to heat (endotoxemia, heat stroke).38 
HSP-70 may play a similar role in protection from illnesses asso-
ciated with exposure to hypoxia (AMS, HAPE, and HACE; 

Figure 2. HSP induction with various stressors and potential relationships between HSP expression and systemic acclimation responses to heat and 
hypoxia. Italics indicate a potential link between HSP and an acclimation response that has not yet been experimentally examined.
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Figure 2), although this has not been experimentally elucidated. 
These relationships are briefly discussed in the following section.

Plasma volume expansion39 and reduced sodium content of 
sweat40 have been noted following heat acclimation, and have 
been attributed in part to the sodium-reabsorbing actions of 
aldosterone in the kidney and sweat gland. HSP-90 regulates ste-
roid hormone receptors,41 and could therefore act on mineralcor-
ticoid receptors in the kidney and sweat glands to limit sodium 
losses through urine and sweat, thereby enhancing plasma vol-
ume expansion and creating more dilute sweat.

Heat acclimated humans display an enhanced ability to tol-
erate exertional heat stress without sequelae.42 Heat injury is 
thought to be related to cytokine production and endotoxemia, 
or release of toxins from the gastrointestinal tract through dis-
ruption of the epithelial border. HSP-70 plays a key role in main-
taining epithelial barrier integrity, and may be related to the 
decreased risk of heat injury observed following acclimation.38 
In addition, HSP-27 and 70 appear to be involved in suppressing 
inflammatory cytokine production, which may further protect a 
heat-acclimated organism on a systemic level.43

Another less-discussed aspect of interest is the effect of HSPs 
on systemic functions via interaction with other proteins involved 
with synaptic transmission in the brain.44 Li et al.45 demon-
strated in rats that HSP-70 acts on the nucleus tractus solitarius 
and affects the baroreflex during heat stress while Kelty et al.46 
showed HSP-70 effects on synaptic transmission in neuronal 
network linked to respiratory rhythms during thermal stress. To 
date, these effects have not yet been studied in acclimated pheno-
types; however, similar roles can be hypothesized. Longer term 
heat acclimation protocols may be needed to fully realize changes 
in blood pressure regulation in humans.

Individuals who are acclimatized to hypoxia have a reduced 
risk of hypoxia-related illnesses26 including AMS, HACE, and 
HAPE, which are due in part to compromised endothelial bar-
rier integrity in the cerebral (AMS and HACE) and pulmonary 
(HAPE) microcirculation. HSP-70 may play a similar role in 
maintaining barrier integrity and reducing the risk of cerebral 
and pulmonary edema in individuals acclimatized to hypoxia, 
however this has not been explored in human or animal models. 
The other factor involved in HAPE is dysregulation of pulmo-
nary blood pressure due to exaggerated hypoxic pulmonary vaso-
constriction. HSP-90 is a co-factor in production in endothelial 
nitric oxide synthase,47 and could therefore enhance vasodilation 
in acclimated individuals and further reduce the risk of develop-
ing HAPE or pulmonary hypertension.

In addition to the potential direct systemic effects of HSPs, 
HSP-70 and HSP-90 also interact with the HIF-1 pathway by 
increasing the molecular stability of HIF-1α, resulting in reduced 
degradation and enhanced HIF-1α formation as described in the 
following section. This influence of HSPs results in downstream 
acclimation effects attributed to the HIF-1 pathway, such as 
stimulation of erythropoiesis.36 This interaction between path-
ways is one of the foundations of heat/hypoxia cross-tolerance.

Hypoxia-Inducible Factor-1

Hypoxia inducible factors HIF-1α and HIF-1β are constitu-
tively expressed in cells; however, HIF-1α is rapidly degraded 
by prolyl hydroyxylase under normal conditions while HIF-1β 
remains stable. With the addition of stressors including heat, 
hypoxia, cytokines, growth factors, reactive oxygen species, and 
nitric oxide, HIF-1α degradation is reduced and transcription 
is increased, allowing HIF-1α to accumulate and combine with 
HIF-1β to form the activated HIF-1 heterodimer.48 This HIF-1 
dimer then signals multiple downstream pathways involved in 
stress responses and acclimation.49

HIF-1 in heat acclimation
HIF-1 response to chronic heat stress has primarily been exam-

ined in animal models. Its role in heat acclimation was first dis-
covered using the Ceonorhabditis elegans genetic model. Treinin 
et al.50 demonstrated that C. elegans with loss of HIF-1 function 
cannot acclimate to heat. Consequently, HIF-1α transcription has 
been studied in rats and mice undergoing a 30-d passive heat accli-
mation protocol. Following heat acclimation, HIF-1α increased in 
basal conditions and augmented induction of HIF-1α transcrip-
tion was observed in myocardial cells with acute heat stress in heat 
acclimated animals.51 This increase in the HIF-1 pathway was 
associated with many of the same downstream effects observed in 
response to high altitude acclimation, including increased expres-
sion of vascular endothelial growth factor (VEGF) in myocardial 
cells, as well as increased erythropoietin (EPO) and EPO receptors 
in renal tissue. Horowitz and Assadi2 added to this list of targets 
several mitochondria enzymes and Umshweif et al.52 emphasized 
the role of HIF-1 in aquaporin 4 and GLUT-1 transporters, which 
relate to enhanced metabolic (glucose uptake and utilization) and 
fluid regulatory (reduced cerebral edema due to water transport in 
aquaporin channels) mechanisms. The increased HIF-1α expres-
sion in heart tissue observed following heat acclimation lead to 
enhanced tissue tolerance to ischemia/anoxia, suggesting that heat 
acclimation may confer cross-adaptive advantages in response to 
ischemic or hypoxic stressors.51 Recently, Sugimoto et al.53 have 
substantiated that post-heat acclimation, a network of aquaporin 
channels controlled by HIF-1α are involved regulation of saliva-
tion, the major evaporative cooling system in rodents. The same 
group54 demonstrated that in long-term heat acclimation in mouse 
fibroblast cells both HSP and HIF-1α expression are upregulated, 
and that heat shock-induced and hypoxia-induced apoptoses are 
attenuated, suggesting that the hypoxia response pathway is an 
intrinsic part of the cytoprotective heat acclimation repertoire.

Increases in HIF-1α may be activated by increases in HSP 
associated with heat acclimation. Baird et al.55 demonstrated that 
Heat shock transcription factor 1 (HSF1) is upregulated during 
hypoxia due to direct binding of HIF-1α to the hypoxia response 
elements in a heat shock factor intron in Drosophila embryonic 
cells. Thus HIF-1 controls HSF1 transcriptional levels is a cross- 
regulatory mechanism for sensitizing heat shock pathway activity 
in order to maximize production of protective HSPs.
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HIF-1 in acclimation to hypoxia
While cellular HIF-1α has not been measured over time 

during acclimation to hypoxia, HIF-1α transcription and accu-
mulation are reliant on small decreases in oxygen tension56 and 
therefore reliably occurs in various cell types57 in any hypoxic 
environment sufficient to decrease arterial or cellular oxygen 
tension. HIF-1α accumulation begins within minutes of expo-
sure to hypoxia and initiates a cascade of effects that, over time, 
constitute many of the systemic benefits associated with altitude 
acclimation.58,59

The HIF-1 pathway was first described as mediating the 
increase in serum EPO60 observed within 90 min of exposure to 
hypoxia.61 The downstream effects of HIF-1 in human acclima-
tion to hypoxia have been observed in a variety of studies,62-64 but 
to date no human work has measured cellular HIF-1α over the 
course of acclimation to hypoxia.

HIF-1 and systemic acclimatory responses
The acclimation responses to high altitude or hypoxic envi-

ronments appear to be initiated by cellular events in various tis-
sues through the HIF-1 pathway.65 These include an enhanced 
ventilatory response through changes in carotid body sensitiv-
ity,66 induction of erythropoietin (EPO) genes in renal tissue to 
increase erythrocyte production,60 induction of vascular endo-
thelial growth factor (VEGF) to enhance angiogenesis in cardiac 
myocytes or other under-perfused tissues,67 increased glycolytic 

enzyme expression and activity to maintain anaerobic metabo-
lism in the presence of reduced oxygen delivery to skeletal and 
cardiac myocytes,68 and enhanced vasodilatory mechanisms such 
as increased inducible nitric oxide synthase (iNOS) in endothelial 
cells to further aid in tissue perfusion and limit hypoxia-induced 
vasoconstriction69 (Fig. 3). While these responses were studied 
in animal models, similar systemic responses are observed in 
humans and are likely mediated by the same cellular pathways.

HIF-1 is involved with changes in carotid body chemorecep-
tor sensitivity that results in sustained hyperventilation.66 The 
hypoxic ventilatory response (HVR) is reliant on the HIF-1 path-
way, as HIF-1α knockout mice displayed a blunted HVR with 
3-d hypoxic exposure.70 In addition, erythropoietic and angio-
genic responses are dependent on a robust HIF-1α response, 
as HIF-1α deficient animals display delayed polycythemia and 
impaired vascular remodeling with hypoxic exposure.71

In heat acclimation, the relationship between the HIF-1 path-
way and systemic responses has not been established in humans, 
but potential exists for HIF-1 mediated changes to play a role 
in systemic heat acclimation responses (Fig. 3). The increased 
maximal skin blood flow72 and sweating response post-heat accli-
mation could be influenced by HIF-1-regulated angiogenesis and 
enhanced vasodilation. Similarly, the improved exercise perfor-
mance and lactate threshold noted following heat acclimation73 
could potentially be related to increased capillarization, increased 

Figure 3. HIF-1α induction with various stressors and potential relationships between HIF-1and systemic acclimation responses to heat and hypoxia. 
Italics indicate a potential relationship between HIF-1 and acclimation that has not yet been experimentally examined.



112 Temperature Volume 1 Issue 2

glycolytic activity and altered metabolic rate in skeletal muscle,74 
and vasodilatory mechanisms regulated by HIF-1. In an animal 
model, splanchnic blood flow during heat stress is regulated by 
nitric oxide,75 also pointing to the HIF-1 pathway as protective 
from endotoxemia secondary to gastrointestinal ischemia.

Systemic Acclimatory Responses and Cross-
Tolerance Between Hot and Hypoxic Environments

Among the best supported explanations for cross tolerance 
between heat and hypoxic acclimation are the observed cyto-
protective interactions between HSPs and HIF-1. The increased 
HSP response to heat acclimation can independently stimulate 
the HIF-1 pathway and vice versa55 and results in many of the 
same responses observed with acclimation to hypoxia or high alti-
tude. The cytoprotective interactions per se have been discussed 
in detail elsewhere.2

In a study designed to examine heat acclimation cross-toler-
ance, cardiac survival was modeled with an ischemia-reperfu-
sion insult following heat acclimation in animals. Hearts were 
analyzed for total infarct area as a marker of cellular protection 
from ischemic/anoxic stress.51 The results indicate a reduced 
infarct area in heat-acclimated rats and mice and suggest that 
the increase in HIF-1α following heat acclimation contributes to 
cytoprotection with ischemic-reperfusion stress. Research from 
the same lab76 indicated that these protective effects are con-
ferred with long-term (30 d) but not short-term heat acclima-
tion (2 d). As most heat acclimation protocols in humans are 
10–14 d, the potential for a long-term cross-tolerance response 
has not yet been studied. However, the potential of heat/hypoxia 
cross-tolerance in humans has spurred recent research efforts 
during a shorter heat acclimation protocol. Heled et al.6 exam-
ined systemic cross-tolerance to hypoxia (15.6% O

2
) following a 

12-d heat acclimation protocol using both physical and cognitive 
performance parameters. Following heat acclimation, research-
ers observed a delayed onset of lactate threshold during graded 
exercise in both normoxia and hypoxia, and improved cognitive 
parameters in hypoxia. Additionally, a trend toward improved 
oxygen saturation during exercise in hypoxia was also noted, pro-
viding some of the first evidence of mutually beneficial systemic 
adaptations in humans.

Most human heat acclimation protocols involve moderate 
intensity endurance exercise, which can independently increase 
HSP expression in muscle.77,78 This HSP response is thought 
to be related to increased redox signaling rather than increased 
temperature in active muscle.79 Chronic exercise training confers 
similar changes in HSPs as heat acclimation, with enhanced basal 
expression80 and an attenuated stress response to acute exercise.81 
HIF-1α transcription has also been observed to increase follow-
ing acute exercise,82,83 although this response is more consistently 

observed with the addition of hypoxia.84 Interestingly, Lindholm 
et al.85 provided evidence that long-term exercise training nega-
tively regulates HIF-1α levels and thus leads to attenuation of 
PDK-1 and contributes to skeletal muscle adaptation to exercise. 
In view of the HSP-HIF-1 cross-talk, heat acclimation-hypoxia-
exercise interaction is an intriguing question. Given systemic 
responses we hypothesize, however, that an exercise-heat acclima-
tion protocol may, further increase the potential for heat/hypoxia 
cross tolerance through both exercise- and heat-related stimula-
tion of cellular pathways.

While evidence supporting enhanced cell survivability to 
severe hypoxic stress through heat acclimation is promising, the 
transition from cellular to systemic cross-tolerance in humans 
using long-term heat acclimation models has not been fully 
explored. Some systemic responses show promise in being benefi-
cial in both heat and hypoxic stress. For example, the enhanced 
heat loss effector responses observed with heat acclimation results 
in reduced body core temperature at rest and a slowed rise during 
physical activity. The reduced temperature would cause a left-
ward shift in the oxyhemoglobin dissociation curve, indicating 
a potential for enhanced oxygen saturation of hemoglobin for a 
given partial pressure of oxygen as is observed following accli-
mation to hypoxia. The HIF-1-mediated increase in glycolytic 
enzymes and mitochondrial proliferation may also contribute to 
increased oxygen saturation during exercise via improved lactate 
threshold. This shift in lactate threshold was observed in humans 
following heat acclimation in both normoxic6,73 and hypoxic6 
test environments, showing further promise for heat-hypoxia 
cross-tolerance and physical performance. Conversely, some sys-
temic responses in heat and/or hypoxia are in opposition, such as 
plasma volume expansion during heat acclimation and diuresis or 
plasma volume contraction in acclimation to hypoxia. However, 
since plasma volume appears to return toward baseline in lon-
ger heat acclimation models86 and most animal work displaying 
cross-tolerance employed long-term heat acclimation (30 d), it is 
possible that greater cross-tolerance in humans would also be evi-
dent using a longer heat acclimation protocol that allowed plasma 
volume to return toward baseline.

In summary, both HSPs and HIF-1α increase following 
acclimation to heat or hypoxia, and both pathways may contrib-
ute to observed systemic acclimation responses. While cellular 
cross-tolerance has been observed with heat and hypoxic stress 
in animal models, little is known about systemic hypoxia and 
heat cross-tolerance in humans. Translational studies focused on 
exploring the links between cellular pathways and associated sys-
temic responses in humans are warranted to further develop our 
understanding and application of environmental cross-tolerance.
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