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Hyperammonemia is known to cause various neurological
dysfunctions such as seizures and cognitive impairment.
Several studies have suggested that hyperammonemia may also
be linked to the development of Alzheimer’s disease (AD).
However, the direct evidence for a role of ammonia in the
pathophysiology of AD remains to be discovered. Herein, we
report that hyperammonemia increases the amount of mature
amyloid precursor protein (mAPP) in astrocytes, the largest
and most prevalent type of glial cells in the central nervous
system that are capable of metabolizing glutamate and
ammonia, and promotes amyloid beta (AB) production. We
demonstrate the accumulation of mAPP in astrocytes was
primarily due to enhanced endocytosis of mAPP from the
plasma membrane. A large proportion of internalized mAPP
was targeted not to the lysosome, but to the endoplasmic re-
ticulum, where processing enzymes B-secretase BACE1 (beta-
site APP cleaving enzyme 1) and y-secretase presenilin-1 are
expressed, and mAPP is cleaved to produce AP. Finally, we
show the ammonia-induced production of A in astrocytic
endoplasmic reticulum was specific to AP42, a principal
component of senile plaques in AD patients. Our studies un-
cover a novel mechanism of AB42 production in astrocytes and
also provide the first evidence that ammonia induces the
pathogenesis of AD by regulating astrocyte function.

Ammonia is a potent neurotoxin that causes severe damage
to the central nervous system. It is formed in nearly all tissues
of the vertebrate organism and is a byproduct of cellular
metabolism: hydrolysis of amide groups of proteins, degrada-
tion of amino acids, deamination of amino-purines and -py-
rimidines, oxidative deamination of primary amines, and
glycine catabolism (1). Deficient hepatic urea formation, urea
cycle failure, and bacterial infection in the gut are the major
causes of pathological accumulation of ammonia, which results
in hyperammonemia (2, 3). Hyperammonemia has been shown
to be a key pathogenic feature of the neuropsychiatric disorder
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hepatic encephalopathy (HE), which leads to an alteration in
mental status and coma, as well as various neurological dys-
functions, such as tremor, ataxia, and seizure (4—6). Since
ammonia is a neurotoxic agent, removal of excessive ammonia
from the blood is critical for maintaining brain health. In the
brain, where the urea cycle does not occur, astrocytes, the most
prevalent glial cells in the brain, detoxify ammonia via gluta-
mine synthetase and convert it to glutamine (7).

Previous research has suggested the existence of a correla-
tion between ammonia and Alzheimer’s disease (AD). Exces-
sive formation of ammonia, as well as elevated blood ammonia
concentrations, have been detected in the brains of AD pa-
tients (8—11). Furthermore, research in AD patients has shown
reduced activity of astrocytic glutamine synthetase and
increased activity of adenosine monophosphate deaminase,
which hydrolyzes AMP to inosine monophosphate and
ammonia, suggesting an abnormal ammonia metabolism in
the AD brain (12, 13). Taken together, all these findings
indicate the contribution of ammonia in the symptoms of AD;
however, direct evidence for a role of ammonia in the patho-
physiology of AD is not concrete.

AD is the leading cause of neurodegenerative dementia,
symptomatically characterized by cognitive decline, irrevers-
ible memory loss, disorientation, and language impairment.
AD pathogenesis is widely believed to be driven by amyloid
plaques composed primarily of aggregated amyloid beta (ApB)
peptides and neurofibrillary tangles of the microtubule-
binding protein tau. In contrast to amyloid plaques, neurofi-
brillary tangles are less specific to AD, as they are seen in a
greater variety of less common neurodegenerative diseases,
such as progressive supranuclear palsy, corticobasal degener-
ation, and subtypes of frontotemporal dementia (14). Patho-
logical, genetic, and biologic evidence have supported an
important role for AP in the development of AD. An ~40
amino acid AP peptide is derived from the amyloid precursor
protein (APP). APP is a type I membrane protein with a large
N-terminal extracellular domain, a single transmembrane
domain, and a short cytoplasmic tail (15). Newly synthesized
APP is subjected to N-glycosylation (immature APP: imAPP)
in the endoplasmic reticulum (ER) and is subsequently
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subjected to O-glycosylation in the Golgi compartment as it
reaches its mature form (16). Therefore, mature APP (mAPP)
at the plasma membrane possesses both N- and O-glycans.
APP is sequentially cleaved by two membrane-bound endo-
proteases, - and y-secretase, to generate AP. Numerous
different A species are known to exist, but Ap40 are the most
abundant peptides (~90%) followed by AP42 (~10%). In
particular, AP42 is more hydrophobic and fibrillogenic than
AB40 and is thought to be the principal species deposited in
the AD brain (17).

There is compelling evidence that production of AP is
closely associated with neuroinflammation, and reactive as-
trocytes are localized tightly around amyloid plaques (18).
Astrocytes are known to engulf dead cells as well as protein
aggregates such as AP and a-synuclein (19-21). In addition,
astrocytes with high Ap load are frequently found in AD brain
tissue (22). Here, we show that ammonia directly triggers the
production and accumulation of AP42 in astrocytes by
inducing the endocytosis of mAPP from the plasma mem-
brane, leading to its translocation to the ER. All of our findings
provide evidence for a novel role of ammonia in the patho-
genesis of AD, describing the direct connection between
hyperammonemia and AD.

Results

Ammonia increases the expression of APP in primary cultured
astrocytes

To examine whether ammonia-treated astrocytes are
amyloidogenic, we prepared cultured cortical astrocytes from
rat E18 to 19 embryos (Fig. S1, A-E). We found that pro-
longed NH,Cl treatment significantly increased the amount of
APP in dose- and time-dependent manner (Fig. 1, A-D).
Interestingly, elevated APP expression was only detected in
the mAPP (N- and O-glycosylated) and not in the imAPP
(N-glycosylated). These substantial changes in mAPP
expression were also observed after a short application of
NH,4CI (Fig. 1, E and F). Of note, the mitotic activity of as-
trocytes was significantly suppressed by NH,Cl (Fig. 1, G and
H); however, wounding of a monolayer of primary astrocytes
leads to a slow but directed migration, and no difference in
cell migration was observed in NH,Cl-treated astrocytes
(Fig. 1I). We also examined if ammonium acetate, another
type of ammonium salt, increases the level of APP in astro-
cytes. We observed similar changes in APP levels as those
found in NH,Cl-treated cells (Fig. 1, J and K). Furthermore,
we found that the removal of NH,CI from culture medium
reduced APP to baseline levels (Fig. 1, L and M).

A high level of NH,Cl inhibits protein degradation by
increasing the pH of lysosomes (23). We found that the pH of
cultured media containing 10 mM NH,Cl was around 7.9 (n =
7), whereas in control cultured media, the pH was around 7.5
(n = 7). The pH of culture media containing 10 mM ammo-
nium acetate was around 7.5 (n = 4). We further examined if
artificially elevated pH in the culture medium affects APP
levels in astrocytes. We found that both short-term and
long-term incubation of cultured astrocytes with alkaline
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medium (pH 8.7) did not alter APP levels (Fig. S2, A-D). In the
brain, ammonia is the precursor of glutamine, a substrate for
the production of both excitatory and inhibitory neurotrans-
mitters (7). Thus, we wondered if elevated glutamine alters
APP levels. We first removed glutamine from the culture
medium for 36 h (glutamine starvation) and stimulated with
4 mM glutamine for up to 24 h (24). We found that glutamine
does not regulate APP levels in astrocytes (Fig. S2, E-F). In
addition, prolonged inhibition of glutamine synthesis with
L-methionine sulfoximine had no effect on APP expression
(Fig. S2, G-H). These results revealed that ammonia modu-
lates astrocytic APP expression levels, an effect that is inde-
pendent of pH. Several ammonia transporters such as the Na™,
K*, 2CI" cotransporter (NKCC1) and aquaporin-4 (AQP4)
have been reported in astrocytes (25, 26). Therefore, we used
the NKCC1 inhibitor bumetanide and the AQP4 inhibitor
TGN-020 and examined the expression of mAPP after NH,Cl
stimulation (6, 27). Neither bumetanide nor TGN-020 pre-
vented the NH,Cl-induced elevation of mAPP (Fig. 1, N-Q).
These results suggested that mAPP levels in astrocytes were
not regulated by these two ammonia transporters. In addition,
we examined the time-dependent effect of NH,Cl in cultured
cortical neurons and no change in APP expression was
detected (Fig. 1, R and S). To determine if NH,Cl-induced
elevated mAPP was caused by enhanced APP synthesis, we
analyzed mRNA expression of APP. Prolonged treatment of
cultured astrocytes with NHyCl did not alter APP mRNA
(Fig. 1, T and U).

Astrocytic APP undergoes clathrin-mediated endocytosis and
ammonia facilitates the rate of APP endocytosis

APP is known as an integral membrane protein expressed in
many cell types. Therefore, we examined whether NH,Cl alters
the cell surface expression of astrocytic APP. Cell surface
biotinylation revealed that a 24 h, but not 4 h, NH,Cl treat-
ment significantly increased the expression of surface APP
(Fig. 2, A and B). However, when surface APP was normalized
to total APP, we found significantly reduced surface APP after
4 h of NH4CI treatment (Fig. 2C). The internalization of sur-
face APP at the 4 h timepoint was confirmed by an antibody
feeding assay (Fig. 2D). A reduced amount of surface APP, as
well as an increased amount of internalized APP, was detected
after NH4Cl treatment (Fig. 2, D—G). The amount of total APP
(surface + internalized) was not significantly altered after
NH,CI treatment (Fig. 2H). We performed further internali-
zation assays and found increased APP internalization in 24 h
treatment groups (Fig. 2,/ and J). These results indicated that
ammonia induces APP endocytosis, but surface APP is
recovered upon prolonged NH,Cl treatment. To confirm our
hypothesis, we analyzed surface APP after 72 h of NH,CI
treatment, a time point when ammonia significantly increased
the expression of APP in astrocytes (Fig. 1C). We found that 72
h of ammonia treatment increased the amount of surface APP,
but this was not significant when normalized to total mAPP
(Fig. 2, K-M). In addition, we examined whether astrocytic
APP was internalized via clathrin-dependent mechanisms. We
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Figure 1. Ammonia elevates the expression of amyloid precursor protein in astrocytes. A, representative western blots of APP and a-tubulin at various
dose of NH,Cl treatments in cultured astrocytes. B, quantification of mature APP (green) and immature APP (gray). n = 4. Two-way ANOVA followed by
Sidak’s multiple comparisons test, ***p < 0.001, ****p < 0.0001. N.S. = not significant. C, representative western blots of APP and a-tubulin after 10 mM
NH,4Cl treatments in cultured astrocytes. D, quantification of mature APP (green) and immature APP (gray). 0 h, 72 h, n = 6; 24 h, 48 h, n = 3. Two-way ANOVA
followed by Sidak’s multiple comparisons test, **p < 0.01, ****p < 0.0001. N.S. = not significant. E, representative western blots of APP and a-tubulin after
10 mM NH,CI treatments in cultured astrocytes. F, quantification of mature APP (green) and immature APP (gray). n = 4. Two-way ANOVA followed by
Sidak’s multiple comparisons test, *p < 0.05, **p < 0.01, ****p < 0.0001. G, time-dependent proliferation of control (blue) and NH,Cl-treated (red) astrocytes.
n = 3, two-way ANOVA followed by Sidak’s multiple comparison tests, *p < 0.05, ** p < 0.01. H, time course analysis of cell death induced by NH,Cl. Dead
cells were counted and expressed as a percentage of dead cells from the total population. n = 3, two-way ANOVA followed by Sidak’s multiple comparison
tests, **p < 0.01, **p < 0.001. N.S. = not significant. /, images of wound made in control and NH,Cl-treated astrocytes. n = 3. The scale bar represents
200 pm. J, representative western blots of APP and a-tubulin after 10 mM ammonium acetate (NH,OAc) treatments. K, quantification of mature APP (green)
and immature APP (gray). n = 4. Two-way ANOVA followed by Sidak’s multiple comparisons test, ***p < 0.001. N.S. = not significant. L, representative
western blots of APP and a-tubulin before (NH,Cl 72 h) and after the removal of NH,Cl for 72 h (washout) in cultured astrocytes. M, quantification of mature
APP (green) and immature APP (gray). n = 5. One-way ANOVA followed by Tukey's multiple comparisons test, ****p < 0.0001. N.S. = not significant.
N, representative western blots of APP and a-tubulin in the NH,Cl- (10 mM, 4 h) and bumetanide- (Bum; 75 uM) treated astrocytes. O, quantification of
mature APP. n = 8. One-way ANOVA followed by Tukey’s multiple comparisons test, *p < 0.05, **p < 0.01. N.S. = not significant. P, representative western
blots of APP and a-tubulin in the NH,Cl- (10 mM, 4 h) and TGN-020- (TGN; 10 pM) treated astrocytes. Q, quantification of mature APP. n = 10. One-way
ANOVA followed by Tukey’s multiple comparisons test, *p < 0.05, **p < 0.01, ***p < 0.001. N.S. = not significant. R, representative western blots of
APP and a-tubulin after 10 mM NH,CI treatments in cultured cortical neurons. S, quantification of neuronal APP. n = 4. One-way ANOVA followed by
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treated astrocytes with dynasore, an inhibitor of dynamin
GTPase activity, stimulated with NH,Cl for 4 h, and performed
a steady state cell surface biotinylation assay. We found that
dynasore inhibited the endocytosis of APP (Fig. 2, N and O).
Additionally, we used chlorpromazine, a blocker of clathrin-
mediated endocytosis and observed similar results (Fig. S3, A
and B). Taken together, these data indicate that ammonia in-
duces astrocytic APP endocytosis via clathrin-mediated
mechanisms but that prolonged ammonia treatment recovers
the expression of surface APP.

Ammonia delays APP degradation but does not block
proteolysis

Since ammonia promoted APP endocytosis, we planned to
determine the site of APP accumulation in astrocytes. We first
performed immunocytochemistry to observe cellular localiza-
tion of APP after NH,Cl exposure. In control cultures, APP
expression was broad, but cells exposed to NH,Cl showed
distinct localization of APP around the nucleus (Fig. 3, A-C).
We also performed subcellular fractionations and found that
APP was not localized in the cytoplasmic fractions but accu-
mulated in the membrane fractions after NH,Cl exposure
(Fig. 3, D and E). Since a high concentration of NH,Cl is a
lysosomotropic inhibitor, we examined whether 10 mM
NH,CI treatment blocked lysosomal protein degradation in
the astrocytic cultures. We observed that after NH,Cl treat-
ment, the lysosomal protease inhibitor leupeptin increased the
expression of mAPP but not imAPP (Fig. 3, F and G). The
potent proteasome inhibitor MG132 did not alter APP levels,
suggesting that APP is degraded through autophagy-lysosome
pathways (Fig. S4, A and B). We then performed a chase
analysis of APP degradation by cycloheximide (CHX), a potent
inhibitor of protein biosynthesis, and found that the half-life of
APP is approximately 50 min for mAPP and 25 min for imAPP
(Fig. 3,H and I). Upon NH,4CI exposure, the half-life of mAPP
was extended to around 1.5 h, but degradation still occurred.
These results suggested that NH,Cl exposure increased mAPP
stability and delayed its proteolysis. By using the fluorescent
dye LysoTracker, we found that 72 h NH,Cl-treated cultures
increased LysoTracker-positive lysosomal area (Fig. S5, A and
B). To determine whether APP is accumulated within these
lysosomes, we performed coimmunostaining of APP with
LAMP2, a lysosomal membrane protein. Increased APP
accumulation in LAMP2-positive area was observed after
NH,CI exposure (Figs. 3, J-N and S5, C and D). Taken
together, these data indicate that although NH,Cl delays the
degradation of mAPP, APP can still be degraded in hyper-
ammonemic conditions.

Ammonia induces the translocation of internalized APP to
the ER

Recent studies in neurons have revealed that AP can be
produced not only at the plasma membrane of neurons but

also in intracellular compartments such as the ER, Golgi
apparatus, and the trans-Golgi network (TGN). The genera-
tion of AP42 in the ER is thought to contribute to the
development of AD (28-30). Since APP was strongly
expressed around the nucleus after NH4Cl treatment
(Fig. 3A), we thought that the elevation of APP in this area
might be caused by APP’s translocation to and accumulation
in intracellular compartments. We found that the localization
of APP to the ER was significantly increased after 72 h NH,Cl
stimulation (Figs. 4, A-D, S6, A and B). An enlarged ER-
positive area was also observed (Fig. 4E). In contrast, coloc-
alization of APP with GM130, a marker for cis-Golgi, was less
than the increase in colocalization with the ER (Figs. 4,F-1, S6,
C and D). We did not observe an enlarged Golgi area after
NH,4CI treatment (Fig. 4/). To determine whether the NH,Cl-
induced enlargement of the ER-positive area was due to
elevated ER stress, we examined the expression of ER stress
markers, old astrocyte specifically induced substance (OASIS),
and inositol-requiring enzyme 1 (IRE1). Both OASIS and IRE1
expression were not affected by NH,Cl treatment and the
phosphorylation of IRE1, which represents its enzymatic ac-
tivity, was also unaltered (Fig. S6, E and H). To further
confirm the accumulation of APP in the ER following NH,Cl
treatment, we performed subcellular fractionation and puri-
fied ER-enriched (PDI positive) and Golgi-enriched (GM130
positive) fractions. We observed that mAPP was highly
expressed in the ER-enriched fraction and meager in the
Golgi-enriched fraction, and NH4CI stimulation significantly
increased the expression of mAPP only in the ER-enriched
fraction (Fig. 4, K—-M).

To examine the translocation of APP from the plasma
membrane to the ER, we performed an antibody-feeding assay
and coimmunostained internalized APP with ER, Golgi, and
lysosomal markers. Four hours of NH,Cl exposure induced a
remarkable translocation of internalized APP to the ER (Fig. 5,
A and B). Enlarged KDEL-positive areas were also identified
(Fig. 5C). We also found APP localization in the Golgi and
lysosomes, but the expression of internalized APP after
NH,CI treatment was less remarkable in these areas than that
of the ER (Fig. 5, D—H). In addition, enlarged lysosome pos-
itive areas were not identified after 4 h of NH,CI treatment
(Fig. 5I). Interestingly, the localization ratio of internalized
APP in the ER versus Golgi versus lysosome was equally
distributed in the control condition; however, this ratio was
shifted after 4 h of NH,4CI treatment and more than 60% of
APP was localized in the ER (Fig. 5]). Together, these results
show that ammonia induces internalized APP accumulation
in the ER.

Ammonia-induced astrocytic amyloidogenesis occurs in
the ER

We then examined the production of AP in astrocytes after
72 h of NHyCl treatment. A selective increase in the

Dunnett’'s multiple comparison test. N.S. = not significant. T, effect of NH4Cl on APP mRNA levels in cultured astrocytes. Representative image of RT-PCR of
APP and GAPDH. U, bar graph represents the quantification of APP mRNA levels. Expression of target gene was normalized to that of GAPDH. n = 3, One-
way ANOVA followed by Dunnett's multiple comparisons test. N.S. = not significant. APP, amyloid precursor protein; TGN, N-1,3,4-Thiadiazol-2-yl-3-

pyridinecarboxamide.
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Figure 2. Ammonia induces APP endocytosis via clathrin-dependent mechanism. A, representative blots of APP from cell surface biotinylation ex-
periments after 4 h and 24 h NH,Cl treatments. Ponceau S was used as a loading control. B, quantification of surface APP. APP was normalized against
ponceau S. n = 4, one-way ANOVA followed by Tukey’s multiple comparisons test. **p < 0.01. N.S. = not significant. C, surface versus total mAPP ratio. n = 4,
One-way ANOVA followed by Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01. N.S. = not significant. D, experimental designs are depicted in the top
panels. Representative images of surface APP (green) and internalized APP (red) in control and NH,Cl-treated astrocytes. n = 9. The scale bars represent
20 pm. E, quantification of surface APP expression in control and NH,Cl-treated astrocytes. Control n = 20 cells, NH,Cl n = 21 cells. Unpaired t test, *p < 0.05.
F, quantification of internalized APP in control and NH,Cl-treated astrocytes. Unpaired t test, ****p < 0.0001. G, aligned dot plots showing internalized versus
total APP ratio. Unpaired t test, ****p < 0.0001. H, quantification of total APP in control and NH,Cl-treated astrocytes. Unpaired t test. N.S. = not significant.
I, representative blot of internalized APP and surface APP (total) after 4 h and 24 h NH,Cl treatments. J, quantification of internalized APP. n = 8, One-way
ANOVA followed by Tukey’s multiple comparisons test. **p < 0.01, N.S. = not significant. K, representative blots of mature APP in control and 72 h NH,Cl-
treated astrocytes determined by cell surface biotinylation assay. Alpha tubulin was used as a cytosolic marker. L, quantification of surface APP. APP was
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Figure 3. Lysosomal APP degradation is delayed by ammonia. A, cellular localization of APP in control and 72 h NH,Cl-treated astrocytes. Images show
APP (green), a-tubulin (red), and DAPI (blue). n = 6. The scale bar represents 50 um. B, fluorescence profiles of APP over single astrocyte measured along the
yellow line. Nucleus was identified by DAPI staining. The scale bar represents 20 pm. C, quantification of APP immunostaining in astrocytes with and without
NH,4Cl treatment. Control n = 67 cells, NH,Cl n = 68 cells. Unpaired t test, ****p < 0.0001. D, subcellular fractionation of control and 72 h NH,Cl-treated
astrocytes. Expression of APP and a-tubulin in cytosolic and membrane fractions are shown. E, quantification of mature and immature APP in membrane
fraction. Expression of APP were normalized against ponceau S. n = 8, paired t test, *p < 0.05. F, representative Western blot images after lysosome inhibitor
leupeptin (10 uM) treatments in cultured astrocytes. G, expression of APP were normalized against a-tubulin. Mature APP (green), immature APP (gray). n =
6, Two-way ANOVA followed by Sidak’s multiple comparisons test, *p < 0.05, **<0.01. N.S. = not significant. H, turnover of APP with (right) or without (left)
NH,4Cl treatments. Protein synthesis was blocked by 5 pM cycloheximide (CHX). /, graphs quantify APP expression normalized against a-tubulin. n = 5, Two-
way ANOVA followed by Sidak’s multiple comparisons test, *p < 0.05, **p < 0.01, *** p < 0.001. J, cellular localization of APP (red) and LAMP2 (green) in
astrocytes with and without 72 h NH,Cl treatment. Nuclei were counterstained with DAPI (blue). n = 6 (control), n = 5 (NH,Cl). The scale bars represent
20 pym. K, quantification of APP localized to the lysosome (yellow: localized with LAMP2) and not localized to the lysosome (red: unlocalized with LAMP2) in
astrocytes. Control n = 91 cells, NH,Cl n = 77 cells. L, quantification of lysosome positive area localized to APP (yellow: localized with APP) and not localized
to APP (green: unlocalized with APP). Control n = 91 cells, NH,Cl n = 77 cells. M, summary quantification of the percent of APP colocalizes with lysosome in
the presence or absence of NH,Cl. Unpaired t test, ****p < 0.0001. N, quantification of LAMP2-positive area in astrocytes with and without NH,Cl treatment.
Unpaired t test. N.S. = not significant. APP, amyloid precursor protein.

production of AP42, the principal component of senile plaques also detected in these cells (control: 0.013 + 0.0027, NH,ClL:
in the brain of AD patients, was found in NH,Cl-treated as- 0.1173 + 0.0065, n = 5, ****p < 0.0001). We further examined
trocytes (Fig. 6, A and B). An increased AP42/AB40 ratio was whether AP42 accumulated in the astrocytic ER. We

normalized against ponceau S. n = 9, paired t test, *p < 0.05. M, surface versus total mAPP ratio. n = 9, paired t test. N.S. = not significant. N, representative
blots from cell surface biotinylation experiments determining the expression of mature APP in the 4 h NH,Cl- and Dynasore- (30 pM) treated astrocytes.
O, surface versus total mAPP ratio. n = 8, One-way ANOVA followed by Tukey’s multiple comparisons test, *p < 0.05. N.S. = not significant. APP, amyloid
precursor protein; mAPP, mature APP.
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Figure 4. Accumulation of APP in the astrocytic ER after NH,Cl treatment. A, cellular localization of APP (red) and ER-selective dye ER-ID Green (green) in
the presence or absence of NH4Cl (72 h). Nuclei were counterstained with DAPI (blue). n = 4 (control), n = 5 (NH4CI). The scale bars represent 20 um.
B, quantification of APP localized to the ER (yellow: localized with ER) and not localized to the ER (red: unlocalized with ER) in astrocytes with and without
NH,4CI treatment. Control n = 90 cells, NH,Cl n = 67 cells. C, quantification of ER-ID positive area localized to APP (yellow: localized with APP) and not
localized to APP (green: unlocalized with APP). Control n = 90 cells, NH,Cl n = 67 cells. D, summary quantification of the percent of ER colocalizes with APP in
the presence or absence of NH,Cl. Unpaired t test, ****p < 0.0001. E, quantification of ER-ID positive area in astrocytes with and without NH,Cl treatment.
Unpaired t test, **p < 0.01. F, cellular localization of APP (green) and Golgi marker GM130 (red) in the presence or absence of NH,ClI (72 h). Nuclei were
counterstained with DAPI (blue). n = 4 (control), n = 5 (NH4CI). The scale bars represent 20 um. G, fluorescence intensity quantification of APP localized to the
Golgi (yellow: localized with GM130) and not localized to the Golgi (green: unlocalized with GM130) in astrocytes with and without NH,Cl treatment. Control
n = 90 cells, NH,Cl n = 67 cells. H, quantification of GM130 localized to APP (yellow: localized with APP) and not localized to the APP (red: unlocalized with
APP). I, summary quantification of the percent of APP colocalizes with the Golgi in the presence or absence of NH,Cl. Unpaired t test, ****p < 0.0001.
J, quantification of GM130 in astrocytes with and without NH,Cl treatment. N.S. = not significant. K, subcellular fractionation of control (C) and NH,Cl-treated
(N) astrocytes. Expression of APP, ER (PDI), and cis-Golgi (GM130) in ER-enriched and Golgi-enriched fractions are shown. L, quantification of mature and
immature APP in ER-enriched fraction. Expression of APP were normalized against ponceau S. n = 4, paired t test, *p < 0.05. N.S. = not significant.
M, quantification of mature APP in Golgi-enriched fraction. Expression of APP were normalized against ponceau S. n = 4, paired t test. N.S. = not significant.
APP, amyloid precursor protein; ER, endoplasmic reticulum.
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Figure 5. Ammonia induces the translocation of APP from the plasma membrane to the ER. A, cellular localization of internalized APP (red) and ER
marker KDEL (green) in the presence or absence of NH,Cl (4 h). Nuclei were counterstained with DAPI (blue). n = 15 (control), n = 10 (NH,CI). The scale bars
represent 20 um. B, quantification of the percent of APP colocalizes with ER in the presence or absence of NH,Cl. Control n = 18 cells, NH4Cl n = 20 cells.
Unpaired t test, ****p < 0.0001. C, quantification of KDEL-positive area in astrocytes with and without NH,Cl treatment. Unpaired t test, ****p < 0.0001.
D, cellular localization of internalized APP (red) and Golgi marker GM130 (green) in the presence or absence of NH,Cl (4 h). Nuclei were counterstained with
DAPI (blue). n = 9 (control), n = 13 (NH,CI). The scale bars represent 20 um. E, quantification of the percent of APP colocalizes with Golgi in the presence or
absence of NH,Cl. Control n = 18 cells, NH,Cl n = 19 cells. Unpaired t test, ****p < 0.0001. F, quantification of GM130-positive area in astrocytes with and
without NH,Cl treatment. Unpaired t test. N.S. = not significant. G, cellular localization of internalized APP (red) and LysoTracker (green) in the presence or
absence of NH,Cl (4 h). Nuclei were counterstained with DAPI (blue). n = 18 (control), n = 10 (NH,Cl). The scale bars represent 20 um. H, quantification of the
percent of APP colocalizes with lysosome in the presence or absence of NH,Cl. Control n = 33 cells, NH4Cl n = 26 cells. Unpaired t test, ****p < 0.0001.
I, quantification of LysoTracker—positive area in astrocytes with and without NH,Cl treatment. Unpaired t test. N.S. = not significant. J, expression ratio of
internalized APP in ER versus Golgi versus lysosome in control and NH,Cl-treated astrocytes. APP, amyloid precursor protein; ER, endoplasmic reticulum.

performed coimmunostaining of AP42 with ER markers and  Golgi complex (Fig. S7B), inhibited the production of AB42 in

determined their colocalization after either 4 h or 72 h of
NH,CI stimulation (Figs. 6, C—H and S7A). We found that
ammonia induces the production of AB42 in the ER and these
amyloidogenic processes were inhibited by dynasore (Figs. 6,
C-E and S7A). Furthermore, we examined if blockade of ER—
Golgi trafficking by Brefeldin A modifies Af42 production in
the ER. We found that Brefeldin A, which disassembles the

8 J Biol. Chem. (2022) 298(5) 101933

the ER (Fig. S7A). These data suggested that the retrograde
transport of internalized APP from TGN to the ER may be the
route of APP transportation. To confirm the presence of the
two secretases that cleave APP to produce AP in the astrocytic
ER, we purified ER-enriched fractions from cultured astrocytes
and examined the expression of two secretases BACE1 (beta-
site APP cleaving enzyme 1) and presenilin-1. We found that
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Figure 6. Ammonia promotes the production of AB42 in the ER. A, quantitative ELISA analysis of intracellular AB42 expressed in control and 72 h NH,CI-
treated astrocytes. n = 5, unpaired t test, ****p < 0.0001. B, quantitative ELISA analysis of intracellular AB40 expressed in control and NH,Cl-treated as-
trocytes. n = 5, unpaired t test. N.S. = not significant. C, representative images of cultured astrocytes expressing AB42 in the ER after 4 h NH,CI treatment
with and without 30 pM dynasore. Nuclei were counterstained with DAPI (blue). n = 3. The scale bars represent 20 um. D, quantification of AB42-positive
area. Control n = 27 cells, NH,Cl n = 22 cells, NH,4Cl + Dynasore (Dyn) n = 17 cells. One-way ANOVA followed by Tukey's multiple comparisons test,
***%p < 0.0001. N.S. = not significant. £, summary quantification of the percent of AB42 colocalizes with ER in the presence or absence of NH,Cl. One-way
ANOVA followed by Tukey’s multiple comparisons test, ****p < 0.0001. N.S. = not significant. F, representative images of cultured astrocytes expressing
AB42 in the ER after 72 h NH4Cl treatment. Nuclei were counterstained with DAPI (blue). n = 4. The scale bars represent 20 um. G, quantification of Ap42-
positive area. Control n = 20 cells, NH4Cl n = 21 cells. Unpaired t test, ***p < 0.001. H, summary quantification of the percent of AB42 colocalizes with ER in
the presence or absence of NH,Cl. Unpaired t test, ****p < 0.0001. /, expression of BACE1 and presenilin-1 in ER-enriched fraction in control and NH,CI-
treated astrocytes. J, quantification of BACET (n = 4) and presenilin-1 (n = 3) in ER-enriched fractions. Expression of proteins were normalized against
ponceau S. Paired t test. N.S. = not significant. K, representative dot blots of AR product in cultured medium. n = 3. L, quantitative ELISA analysis of
extracellular AB42. n = 6, unpaired t test, *p < 0.05. M, quantitative ELISA analysis of extracellular AB40. n = 5, unpaired t test. N.S. = not significant. AB,
amyloid beta; BACE1, beta-site APP cleaving enzyme 1; ER, endoplasmic reticulum.
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both proteins were located in the astrocytic ER and no change
in their expression was detected after NH,Cl treatment
(Fig. 6, and J). These results indicate that ammonia induces
the production and accumulation of AB42 in the astrocytic ER.
Finally, we examined the amount of AP in the culture media.
Interestingly, dot blot analysis revealed that NH,Cl reduced
the release of A from astrocytes (Fig. 6K). We also examined
which of the two forms of AP are involved in this reduction
and found that only the amount of AB42 was slightly reduced
(Fig. 6, L and M). These data suggested that AP42 accumulates
in astrocytes and it is not secreted.
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Hyperammonemia induces neurodegeneration and increases
the expression of APP and A in astrocytes

To examine whether increased ammonia production is
involved in the pathogenesis of AD in vivo, we intraperitone-
ally injected NH,Cl (5 mmol kg™") in C57BL6/J mice, an acute
model of hyperammonemia, and investigated its effect on APP.
Shortly after the injection, a substantial increase in the level of
blood ammonia was observed; these levels gradually returned
to the baseline value in 2 h (Fig. 7A). Mice were video recorded
after the injection, and their locomotion was scored, revealing
a decrease in spontaneous movement immediately after NH,Cl
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Figure 7. Acute hyperammonemia induces neuroinflammation and astrocytic amyloidogenesis. A, time-dependent changes in the blood ammonia
levels after systemic NH,Cl injection (5 mmol kg‘1). Saline: n = 8, NH,CI 15 min, 30 min, 60 min: n = 12, NH4Cl 120 min: n = 4, unpaired t test, **p < 0.01,
***%p < 0.0001. B, automated movement analysis in mice after systemic NH,Cl injection. Representative trace images from five time points are shown. n = 3.
C, representative western blots and quantification of APP in the cortex 1 h and 2 h post NH,Cl injection. APP was normalized against 3-actin. Saline n = 4,
NH4Cl 1 h: n =4, 2 h: n = 8, unpaired test, ***p < 0.001; N.S., not significant. D, visualization of reactive astrocytes in the piriform cortex of 1 h- and 2 h-post
saline or NH,Cl-injected mice by GFAP immunostaining. n = 3. The scale bars represent 50 um. E, quantification of GFAP-positive cells per counting frame.
n =12, unpaired t test, **p < 0.01; N.S., not significant. F, quantification of GFAP-positive area per counting frame. n = 12, Mann-Whitney U test, *p < 0.05;
N.S., not significant. G, visualization of microglia in the piriform cortex of 1 h- and 2 h-post saline or NH,Cl-injected mice by Iba1 immunostaining (green). All
cells were counterstained for nuclei using DAPI (blue). n = 3. The scale bars represent 50 um. H, quantification of Iba1-positive cells per counting frame.
n = 6, Mann-Whitney U test, *p < 0.05; N.S. = not significant. APP, amyloid precursor protein; GFAP, glial fibrillary acidic protein.
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injection, an effect which lasted for few minutes (Fig. 7B).
Brains were harvested at 1 h- and 2 h-post NH,CI challenge
and showed significantly increased levels of APP in the cortex
at the 2 h-post injection time point (Fig. 7C). The number and
area of glial fibrillary acidic protein (GFAP)-positive reactive
astrocytes was increased following 1 h NH,Cl injection (Fig. 7,
D-F), while the number of Ibal-positive microglia was not
modified (Fig. 7, G and H), suggesting that acute hyper-
ammonemia induced by this agent leads to astrocytic
neuroinflammation.

In order to further verify whether hyperammonemia induces
the pathology of AD, we used the thioacetamide (TAA)-
induced hepatic encephalopathy model in C57BL6/] mice (31).
Compared to saline-injected controls, TAA administration
caused severe liver damage, including acute focal necrosis,
vacuolization in some hepatocytes with mild inflammatory cell
infiltration (Fig. 84), and a marked increase in the concen-
tration of blood ammonia (Fig. 8B). To investigate whether
hyperammonemia leads to neuroinflammation and neuro-
degeneration, we labeled reactive astrocytes with GFAP and
degenerating neurons using Fluoro-Jade C staining. We iden-
tified an increased number of reactive astrocytes, characterized
by thickening of the cell body and cellular processes, as well as
a progression of neurodegeneration in TAA groups (Figs. 8,
C and D and S8A). The extent of neuroinflammation was
further determined by the reduced expression of NeuN, a
neuron-specific nuclear protein, in TAA-treated mouse brains
(Figs. 8E and S8B).

We then examined if the expression of proteins related to
AD pathology were increased in TAA-treated mice. The
expression of both APP and AP were elevated compared to
saline injection group (Fig. 8, F and G). To determine the
colocalization of these proteins with astrocytes, the only non-
neuronal brain cells capable of detoxifying ammonia, we
employed immunostaining. We found a strong signal for both
APP and AP in TAA-injected mouse astrocytes (Figs. 8,H and
I, S8, C and D). Together, these data suggest that hyper-
ammonemia triggers neuroinflaimmation and neuro-
degeneration, as well as elevation of APP and AP levels in
astrocytes.

Discussion

Many studies have indicated that ammonia could be a
pathogenic factor in the etiology of AD (1, 2, 32). However, the
mechanisms by which ammonia induces the production of
AD-related molecules is ill defined. In this study, we demon-
strated for the first time that ammonia triggers the endocytosis
of astrocytic APP and promotes the translocation of internal-
ized APP to the ER. AP42 also accumulated in the astrocytic
ER upon exposure to ammonia, suggesting that mistargeted
APP is the source of AP42 in this compartment. All the
changes observed in astrocytes in this study may be potential
mechanisms by which ammonia leads to components of AD
pathogenesis.

We found that ammonia enhances the expression of astro-
cytic APP in vivo and biochemical analysis determined that

SASBMB
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this elevation was specific to mAPP, but not imAPP. The level
of APP mRNA was unaltered by ammonia. From these results,
we hypothesized that the process of APP maturation and the
trafficking of imAPP from ER to Golgi apparatus is unaffected
by ammonia. The neuronal mAPP secreted from the Golgi
apparatus can be targeted to the plasma membrane, the en-
dosome, or the lysosomes (28). It has been previously reported
that only 10% of APP goes to the plasma membrane, with the
majority remaining in the Golgi apparatus and/or TGN (33).
Studies performed in nonpolarized cells suggest that APP is
internalized and reaches the endosome due to the presence of
a YENPTY internalization motif near the C-terminus (34, 35).
After endocytosis, APP can return to the cell surface, be
degraded in the lysosome, or be transported to the TGN.
Ammonia has been shown to affect phagocytotic and pino-
cytotic activities in astroglioma cell lines (36). By using surface
biotinylation and antibody-feeding assays, we found that
ammonia induces the internalization of astrocytic APP. The
endocytosis of astrocytic APP was through the clathrin-
mediated pathway, as the dynamin inhibitor dynasore and
the clathrin-mediated endocytosis inhibitor chlorpromazine
recovered surface mAPP levels that were reduced by ammonia.
Interestingly, even though the amount of internalized APP was
increased after prolonged ammonia exposure, the expression
of APP on the plasma membrane was also increased by
ammonia. These incompatible phenomena could result from
increased recycling of APP or from increased insertion of
newly synthesized mAPP occurring during ammonia stimu-
lation. Since the ratio of surface versus total APP was not
altered after prolonged ammonia treatment, the proportion of
APP that is transported to the plasma membrane may be well
defined based on the amount of total APP expressed in as-
trocytes. In addition, recent studies have revealed the role of
astrocytic APP in calcium signaling (37). APP has also been
proposed to act as a cell adhesion molecule; cell adhesion
molecules are involved in neuronal development, including
migration, neurite growth, growth cone pathfinding, and syn-
aptogenesis (38). Although the physiological role of astrocytic
APP is not well understood, the maintenance of surface APP
expression levels after prolonged NH,CI treatment suggests
that APP plays an important role in astrocyte function.
Several ammonia transporters including NKCC1 and AQP4
have been reported in astrocytes. NKCC1 is known to be
involved in cell swelling in several neurological disorders and
ammonia is thought to be an NKCCI1 activator (39). Further-
more, NKCC1 has been shown to transport NH," in astrocytes
but not in neurons (26). AQP4 is a water channel that is widely
distributed in cells at the blood—brain and brain—cerebrospinal
fluid interfaces where water movement occurs (40). There are
13 mammalian aquaporins (AQP0-AQP12) and AQP1, AQP3,
AQP6, AQP7, AQPS, and AQP9 have been reported to be
permeable to NHj3, although the NHj permeability of AQP1
has been questioned (41, 42). Among these aquaporins, AQP1,
AQP4, and AQP9 have been found in astrocytes. In the human
CNS, AQP4 is expressed in both physiological and patholog-
ical conditions, while astrocytic expression of AQP1 and AQP9
is mainly associated with a pathological state (43). By using the
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Figure 8. Hyperammonemia induces neurodegeneration and astrocytic amyloidogenesis. A, representative H&E-stained sections of liver tissue in
thioacetamide (TAA)-induced liver injury. Mice were sacrificed 24 h after the TAA (300 mg/kg, i.p.) or saline injection. CV: central vein. n = 3. The scale bars
represent 50 pm. B, blood ammonia levels in saline and TAA mice. Saline n = 7, TAA n = 7, unpaired t test, *p < 0.05. C, visualization of reactive astrocytes in
the piriform cortex of saline and TAA mice by GFAP immunostaining (red). All cells were counterstained for nuclei using DAPI (blue). n = 5. The scale bars
represent 50 um. D, Fluoro-Jade C staining in the piriform cortex of saline and TAA mice. All cells were counterstained for nuclei using DAPI (blue). n = 3. The
scale bars represent 100 um. E, NeuN immunostaining in the piriform cortex of saline and TAA mice. The scale bars represent 100 um. n = 4. F and G,
representative immunohistochemical images of APP (F) and A (G) in the hippocampal CA1 sections of saline and TAA mice. n = 3. The scale bars represent
50 um. H, expression of APP in the piriform cortex of saline and TAA mice. Images showed GFAP (red), APP (green), and DAPI (blue). n = 5. The scale bars
represent 50 um (high magnification images: 20 um). /, expression of Af in the piriform cortex of saline and TAA mice. Images showed GFAP (red), AB
(green), and DAPI (blue). n = 5. The scale bars represent 50 um (high magnification images: 20 pm). A, amyloid beta; APP, amyloid precursor protein; GFAP,

glial fibrillary acidic protein.

NKCC1 inhibitor bumetanide and the AQP4 inhibitor mAPP after NH,Cl exposure, we believe that extracellular

TGN-020, we found that these two ammonia transporters are
not involved in the upregulation of mAPP. In the present
study, we did not test AQP1 and AQP9 inhibitors, due to the
expression profiles of these two aquaporins. However, since
bumetanide and TGN-020 did not inhibit the upregulation of

12 J Biol. Chem. (2022) 298(5) 101933

ammonia-mediated signaling may contribute to mAPP accu-
mulation in astrocytes. Supporting this hypothesis, ammonia
has been found to act through dopamine D3 receptors (44).
Ammonia has also been shown to transactivate the EGF re-
ceptor via Na, K-ATPase/Ouabain signaling (45). Clearly,
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further mechanistic studies are required to determine how
ammonia specifically modify astrocytic APP trafficking and
accumulation in the ER.

Most of APP is known to undergo nonamyloidogenic pro-
cessing via consecutive cleavages by o- and y-secretases,
resulting in nonpathogenic fragments. However, APP also un-
dergoes sequential proteolytic cleavage by B- or y-secretases, a
process which generates neurotoxic AP peptides (46). Cell
culture experiments have shown that APP retrieved from the
cell surface via clathrin-mediated endocytosis is cleaved by [3-
and y-secretase within late and early endosomes to produce Ap
(47, 48). AP generated in the endocytic pathway is then brought
to the cell surface, where it is released into the extracellular
fluid (49). We found that the amount of AP in culture medium
was reduced upon NH4Cl exposure, indicating that the site of
AP production in astrocytes is not within endosomes but oc-
curs within other intracellular compartments such as ER and
Golgi apparatus. Since the plasma membrane has been
demonstrated to be the predominant site for nonamyloidogenic
processing of APP by a-secretase (50), it is possible that the
production of nonamyloidogenic peptides occur within APP
located at the plasma membrane during NH,CI treatments.

Several studies have demonstrated that AP42 is generated in
the ER, whereas AP40 is produced in the TGN (29). These
amyloidogenic mechanisms have been proposed to be unique
to neurons (29). In addition, neuroblastoma cells doubly
transfected with human APP and WT presenilin-1 have been
found to generate APx-42, a truncated insoluble AP42, in the
ER (51). Interestingly, these insoluble AB42 were not secreted
(51). In our work, we found that after NH,CI treatment,
astrocytic APP is preferentially accumulated in the ER and
enhanced AP production in astrocytes is specific to AP42.
Brefeldin A treatment in the NH,Cl-treated astrocytes blocked
AB42 generation in the ER, suggesting that mAPP are trans-
ported from TGN to the ER via Rab2- or Rab6-linked retro-
grade vesicles (52). Indeed, we found small increase in
internalized APP localization with GM130. Although it is
unclear why the ER is the predominant location for Ap gen-
eration after ammonia treatment, this process would limit its
accumulation if lysosomes thereby preventing its degradation.
Furthermore, ammonia exposure did not change the produc-
tion of AP40. Though we found a slight increase in the amount
of APP targeted to the Golgi apparatus, we did not observe
changes in the size of the Golgi. Therefore, it appears that
ammonia does not accelerate the production of AP in the
TGN. Nevertheless, our results provide novel evidence that
non-neuronal cells such as astrocytes are capable of producing
ApB in their intracellular compartments, depending on changes
in the cellular environment such as hyperammonemia.

Additionally, we found that ammonia treatments suppress
the mitotic activity of astrocytes. The number of dead cells was
also increased by ammonia. These toxic effects only appeared
after prolonged exposure. Therefore, the earlier accumulation
of AB42 in the astrocytic ER may induce apoptosis, resulting in
increased dead cells after 48 h of NH,Cl treatment.

In addition to the accumulation of internalized APP and
Ap42 within the ER, we observed an enlarged ER after
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ammonia treatment. The ER is the primary subcellular
organelle responsible for protein folding, biosynthesis of lipids
and sterols, and calcium storage (53). Altered ER function
leads to the accumulation of unfolded or misfolded proteins in
the ER lumen, a phenomenon referred to as ER stress. Upon
ER stress, the lumen of the ER is remarkably enlarged. We
found that, after ammonia exposure, the activity and expres-
sion of ER stress transducer IRE1 is not increased and the
expression of OASIS, an astrocyte and osteoblast specific ER
stress transducer, is not altered either. Therefore, the enlarged
ER induced by ammonia is not the result of ER stress. Since the
accumulated APP in the ER is mAPP and neither an unfolded
nor misfolded forms, other signal transduction cascades may
be activated in these cells after exposure to ammonia.

The secretase-independent degradation of APP has been
thought to prevent the formation of cytotoxic peptide frag-
ments. For instance, ubiquitin-1, a ubiquitin-like protein, has
been shown to delay APP maturation and proteasomal
degradation by stimulating APP lysine 63-linked poly-
ubiquitination (54, 55). Previous studies in chinese hamster
ovary cells show that APP is rapidly degraded by the ubiquitin-
proteasome system in response to ER stress (56). In addition,
abnormalities of the endolysosomal and autophagy system are
reported in AD (57), and APP processing and Ap production
are found to be regulated by the endolysosomal system (58). In
the present study, we found that astrocytic APP is degraded
through the lysosomal-autophagy pathway and this degrada-
tion is delayed by ammonia. Accumulated APP was observed
in LAMP2-positive lysosomes. However, when we chased APP
using an antibody-feeding assay, the ammonia-induced inter-
nalized APP were mainly localized in the ER. These data
suggest that prolonged ammonia treatment alters lysosomal
function and induces APP accumulation in lysosomes; how-
ever, most of this APP is likely to be newly synthesized APP
and not internalized APP.

Collectively, this study provides evidence for an astrocyte-
specific process that leads to the production of AP42 and
direct evidence that ammonia induces the pathogenesis of AD
by regulating astrocyte function.

Experimental procedures
Animals

All experiments were carried out in accordance with the
Guidelines for the Care and Use of Laboratory Animals of
Niigata University. Animal care and experimental protocols
were approved by the Animal Experiment Committee of the
Niigata University (approval No. SA00688, SA00820). Animals
used in this study were 10-week-old male C57BL6/] mice. In
TAA-induced liver injury, TAA (Sigma-Aldrich) was injected
intraperitoneally at 300 mg/kg body weight. To induce acute
hyperammonemia in mice, 5 mmol/kg of ammonium chloride
(Sigma-Aldrich) was injected intraperitoneally. Blood samples
were collected from the tail vein and blood ammonia content
was measured by DRI-CHEM NX10N (FUJIFILM) according
to the manufacturer’s instructions. At the end of the experi-
ments, mice were anesthetized with isoflurane and tissues were
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harvested for analyses. Liver damage was measured by H&E
staining (FUJIFILM Wako Pure Chemical Corporation).

Astrocyte-enriched cortical glial cultures

Cerebral cortical astrocytes were prepared from E18 to 19
Sprague-Dawley (SD/Jcl, CLEA Japan) rats. Dissected cortex
was treated with 0.25% trypsin (Gibco), triturated in mini-
mum essential medium (MEM, Sigma-Aldrich) containing
10% fetal bovine serum (Cytiva HyClone), and transferred into
flasks (Thermo Fisher). Cell cultures were grown to conflu-
ence at 37 °C in a humidified 5% CO, atmosphere. After 7 to
10 days, flasks were washed with cold Hank’s balanced salt
solution (Gibco) and fed with cold MEM before shaking at
115 rpm for 2 days. Remaining adherent cells were dissociated
using 0.025% trypsin-EDTA (Gibco) and plated onto cover-
slips or culture dishes. Cells were used after 4 to 10 days in
culture unless specifically stated. For the cellular treatments,
following chemicals were used: NH4Cl (Sigma-Aldrich),
ammonium acetate (Sigma-Aldrich), bumetanide (Sigma-
Aldrich), TGN-020 (Sigma-Aldrich), L-methionine sulfox-
imine (Sigma-Aldrich), glutamine (FUJIFILM Wako Pure
Chemical Corporation), and sodium hydroxide (FUJIFILM
Wako Pure Chemical Corporation).

Animal behavior

The open field test was performed to determine basal ac-
tivity in hyperammonemic mice. Mice were placed at the
corner of open-field chamber, which consisted of a square
platform with 50 cm (width) x 40 cm (height) walls illumi-
nated at a light intensity of 5 lux (O’hara & Co), and left free to
explore for 30 min before 5 mmol/kg NH,Cl intraperitoneal
injection and then 75 min after the injection. Total distance
traveled was recorded and calculated automatically using Im-
age OFCR software (O’'Hara & Co). Each movement distance
(cm)/min was averaged in 2 to 3 min bins, except for the
period of 10 min after NH4Cl injection. The chamber was
cleaned using sodium hypochlorite solution between each
session.

Immunohistochemistry

Under deep inhalation of sevoflurane, mice were trans-
cardially perfused with 4% paraformaldehyde (PFA) in 0.1 M
phosphate buffer (pH 7.2). Cryosections were prepared at
35 pum using a cryostat (Microm HM500; Thermo Fisher
Scientific). For immunostaining, sections were permeabilized
with 0.3% Triton X-100 (Sigma-Aldrich) in PBS (Sigma-
Aldrich) for 15 min and then blocked with 0.5% skim milk
(Megmilk Snow Brand) for another 15 min at room temper-
ature. The sections were incubated with the following primary
antibodies in 0.1% Triton X-100 containing PBS for overnight
at 4 °C: monoclonal mouse anti-GFAP (Millipore, MAB360),
polyclonal rabbit anti-GFAP (Millipore, AB5804), anti 3-Am-
yloid (Santa Cruz Biotechnology, SC28365), anti-APP
(Thermo Fisher Scientificc Rb-9023-P0), anti-APP (abcam,
Y188), anti-Ibal (FUJIFILM Wako, 019-19741), and anti-
NeuN (Millipore, MAB377). Sections were then incubated
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with a mixture of Alexa Fluor 488- and Alexa Fluor 594-
labeled species-specific secondary antibodies (Thermo Fisher
Scientific) for 2 h. Images were taken with a confocal laser-
scanning microscope (Zeiss LSM710; Carl Zeiss).

Fluoro-Jade C staining

Fluoro-Jade C staining was performed according to the
manufacturer’s protocol (Fluoro-Jade C staining Kit, Bio-
sensis). Briefly, sections attached to MAS-coated glass slides
(Matsunami glass) were immersed in 1% NaOH/80% ethanol
for 5 min, and sequentially rinsed for 2 min with 70% ethanol
and 2 min with distilled water, and then incubated in 0.06%
potassium permanganate/distilled water for 10 min. After
rinsing with water for 2 min, sections were incubated in
0.0001% FJC/0.1% acetic acid for 10 min. Finally, the sections
were rinsed for 1 min with distilled water three times, dried at
55 °C for 5 min, cleared in Xylene (FUJIFILM Wako) for
1 min, and mounted with DPX, a nonaqueous mounting me-
dium (Merck, 100579). All reactions and incubations were
performed at room temperature in the dark.

Western blotting

Standard Western blot protocol was used as described pre-
viously (59). Protein samples were subjected to SDS-PAGE and
transferred to supported nitrocellulose membranes (GE
Healthcare Life Sciences). Membranes were stained with
ponceau S (Sigma-Aldrich) for protein detection, then blocked
with blocking buffer (5% bovine serum albumin in Tris Buff-
ered Saline with Tween 20) and probed with primary anti-
bodies against APP (abcam, Y188), B-actin (Sigma-Aldrich,
Clone AC-15), a-tubulin (Sigma-Aldrich, T5168), GM130 (BD
Biosciences, Clone 35), PDI (Cell Signaling, C81H6), IRE1
(Novus biological, NB100-2324), phosphor-IRE1 (Novus bio-
logical, NB1002323), OASIS (Santa Cruz Biotechnology, sc-
514635), presenilin-1 (Santa Cruz Biotechnology, sc-365450),
BACE1 (Santa Cruz Biotechnology, sc-33711). Membranes
were then probed with horseradish peroxidase—conjugated
secondary antibodies (GE Healthcare) and visualized by ECL
(SuperSignal West Dura Extended Duration Substrate, Thermo
Fisher Scientific). Blots were quantified using the CCD-based
Amersham Imager 680 system (GE Healthcare Life Sciences)
and the intensity of bands was measured using Image J.

Preparation of ER-enriched and Golgi-enriched fraction

ER-enriched and Golgi-enriched fractions were prepared by
modifying the use of the Endoplasmic Reticulum Isolation Kit
(Sigma Aldrich, ER0100). First, the post-mitochondrial frac-
tion was collected according to the manufacture’s protocol.
The post-mitochondrial fraction was then centrifuged for
60 min at 100,000¢ in an ultracentrifuge at 4 °C. The pellet was
then resuspended in lysis buffer (10 mM Tris—HCIl, pH 8.0,
150 mM NaCl, 1% Triton X-100, 5 mM EDTA, 10 mM NaF,
2 mM NazgVO,, 10 mM Na,P,0-), including four kinds of
protease inhibitors (antipain, leupeptin, pepstatin A, PMSF),
and kept as an ER-enriched fraction. The remaining super-
natant was stored as a Golgi-enriched fraction.
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Steady-state cell surface biotinylation assay and
internalization assay

Labeling of surface proteins for steady-state cell surface
biotinylation were performed as reported previously in
cultured cortical neurons (60). Briefly, biotinylated proteins
were precipitated with Pierce NeutrAvidin UltraLink Resin
(Thermo Fisher Scientific), and the samples were separated by
SDS-PAGE. Surface and total proteins were visualized by
Western blotting. To block clathrin-mediated endocytosis,
dynasore (Adipogen Life Sciences) and chlorpromazine hy-
drochloride (Tokyo chemical industry) were used. For the
internalization assay, surface proteins were labeled with EZ-
Link Sulfo-NHS-SS-Biotin (Thermo Fisher Scientific) for
20 min at 4 °C. Excess biotin was quenched with 25 mM
Glycine, then incubated with NH,CI at 37 °C for appropriate
times. For the 0 min time point, cells were kept at 4 °C as a
control. After incubation, cells were quickly washed with ice-
cold PBS to stop internalization, and remaining cell surface
biotin was cleaved with 50 mM glutathione (Sigma Aldrich) for
30 min at 4 °C. Cells were then extracted in lysis buffer, as
described previously (59, 61). Biotinylated proteins were
precipitated with Pierce NeutrAvidin UltraLink Resin, and
samples were separated by SDS-PAGE. To detect total surface
proteins, we prepared cells labeled with EZ-Link Sulfo-NHS-
SS-Biotin without cleavage.

Protein stability assay

For CHX chase analysis, cultured astrocytes treated with or
without NH4Cl (10 mM) were incubated with 5 uM CHX at
the indicated time points. Cell lysates were prepared, and the
expression of APP was analyzed by Western blotting. For
loading control, a-tubulin (Sigma-Aldrich) was used. To
evaluate the effect of the ubiquitin proteasome pathway and
the autophagy-lysosome pathway on APP degradation, 0.5 uM
MG132 (Sigma-Aldrich) and 10 uM leupeptin (Sigma-Aldrich)
were applied in the cell culture medium. The expression of
APP was analyzed by Western blotting.

Preparation of astrocytic membrane and cytosolic fractions

Astrocytes were washed with ice-cold PBS (Gibco), resus-
pended with homogenization buffer (0.32 M sucrose, 10 mM
Hepes, 2 mM EDTA), and homogenized with a Teflon ho-
mogenizer (5 strokes). Homogenates were then spun at
900 rpm for 10 min to remove nuclei, and the collected su-
pernatants were centrifuged at 50,000 rpm for 30 min using an
Optima MAX-E Ultracentrifuge (Beckman Coulter). Mem-
brane pellets were resuspended in lysis buffer as described
previously (61, 62) and subjected to Western blotting.

Brightfield microscopy
Cell counting

Astrocytes grown in 6 cm dishes were harvested by
trypsin-EDTA application and centrifuged at 1000 rpm for
5 min. Cell pellets were resuspended in 1 ml of Hank’s
balanced salt solution and a portion of cell suspension (20 pl)
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was counted using a TC20 automated cell counter (Bio-Rad
Laboratories).

Scratch assay

Astrocytes were plated in 6 cm dishes and grown in the
incubator at 37 °C in a humidified 5% CO, atmosphere until
they reached ~90% confluence. A straight-line scratch was
made on a confluent monolayer of cells using a 200 pl sterile
disposable pipette. Cells were then washed with 1 ml MEM to
remove debris. Photos were taken using an ECLIPSE Ts2
(Nikon) with Moticam 1080 (Shimadzu-rika) at 0, 24, and 48 h
after NH,Cl treatments.

RT-PCR

Total RNA from cultured astrocytes was extracted using an
RNeasy mini kit (Qiagen). RNA was quantified using a
NanoDrop One (Thermo Fisher Scientific) and retro-
transcribed using oligo (dT),g Primer (Thermo Fisher Scien-
tific), M-MLYV Reverse Transcriptase (Promega), Recombinant
ribonuclease inhibitor (Invitrogen), and dNTPs (TOYOBO).
The cDNA was then subjected to PCR with Taq (Takara),
dNTPs (TOYOBO), and primers: for APP, 5-GGATGCGG
AGTTCGGACATG-3 and 5-GAAACTCGTCTCAGTC
TTG-3' and for GAPDH, 5-GGCAAGTTCAATGGCAC
AGT-3 and 5CTCAGATGACCGCAGAAGTGGT-3. PCR
products were separated by electrophoresis on an agarose gel
and stained with GelRed Nucleic Acid Stain (Biotium) for
visualization. The intensity of bands was measured using Im-
age J. The expression level of APP mRNA was normalized to
the level of GAPDH.

Immunocytochemistry

Astrocytes on coverslips were fixed in 4% PFA for 15 min at
room temperature. Fixed cells were permeabilized in 0.2%
Triton X-100 or 0.01% Saponin (Sigma-Aldrich) for 30 min at
room temperature. Following blocking in PBS supplemented
with 0.2% Triton X-100 and 1% bovine serum albumin, cells
were incubated with primary antibodies overnight at 4 °C.
Cells were then incubated with fluorescently tagged secondary
antibodies (VECTOR Laboratories) for 1 h at room tempera-
ture. All cells were counterstained with DAPI. Confocal images
were taken using a laser-scanning confocal microscope (Zeiss
LSM700) and images were analyzed using Zen-Black imaging
software or Image J. Colocalization was also measured using
the Image J Fiji's “Coloc2” plugin to quantify Mander’s overlap
coefficient. For the antibody-feeding assay, APP on the plasma
membrane was labeled with anti-APP (Thermo Fisher Scien-
tific, RB-9023-P0), which detects the N-terminal region of
APP.

Labeling of ER

Astrocytes on coverslips were fixed with 4% PFA for 15 min
at room temperature and subjected to membrane per-
meabilization with 0.2% Triton X-100 for 30 min. Cells were
then stained with the ER-ID Green Assay Kit (Enzo Life Sci-
ences) for 1 h, washed with PBS, and counterstained with
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DAPI. Confocal images were taken using a laser-scanning
confocal microscope (Zeiss LSM700) and images were
analyzed using Zen-Black imaging software or Image J. In
addition to ER-ID staining, immunostaining for calnexin was
performed (see immunocytochemistry section).

Labeling of lysosome with Lysotracker

Astrocytes on coverslips were stained with LysoTracker Red
DND-99 (Invitrogen). Culture medium was supplemented
with 200 nM of probes for 1 h at 37 °C in a humidified
incubator with 5% CO,. Stained cells were washed with PBS
and fixed with 4% PFA for 15 min at room temperature. Cells
were washed with PBS and counterstained with DAPL
Confocal images were taken using a laser-scanning confocal
microscope (Zeiss LSM700) and images were analyzed using
Zen-Black imaging software or Image J.

Quantification of AB by ELISA

Cultured medium was collected and centrifuged at
1400 rpm for 1 min to remove dead cells. Astrocytes on cul-
ture dishes were washed twice with ice-cold PBS and ho-
mogenized with Buffer A (20 mM Tris—HCI pH 8.0, 150 mM
NaCl, 5 mM EDTA, 0.1% SDS), including four kinds of pro-
tease inhibitors (antipain, leupeptin, pepstatin A, PMSF). Cells
were then centrifuged at 13,000 rpm for 10 min and super-
natant was used for AP measurement. The amount of AB40
and AP42 in culture medium and cell lysates was measured by
sandwich ELISA (FUJIFILM Wako), according to the manu-
facturer’s instructions. Each sample including standards were
tested in duplicate and the average values were used.

Statistics

Data were subjected to unpaired ¢ test, Mann-Whitney U
test, one-way or two-way ANOVA followed by Dunnett’s
multiple comparisons test (one-way), Tukey’s multiple com-
parisons test (one-way) or Sidak’s multiple comparison tests
(two-way), as appropriate with p < 0.05 as statistically signif-
icant. All statistical analyses were performed using GraphPad
Prism 7.0 software. Values on the graph represent the mean +
SD. All experiments were conducted a minimum of three
times using different batches of cultures and animals. Data
normality was assessed using the D’Agostino- Pearson and the
Shapiro-Wilk normality tests.

Data availability

All data generated or analyzed during this study are
included in this article and its supplementary information files.
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