
RESEARCH ARTICLE

Prenatal perfluorooctanoic acid exposure and

glutathione s-transferase T1/M1 genotypes

and their association with atopic dermatitis at

2 years of age

Hui-Ju WenID
1, Shu-Li Wang1,2, Pau-Chung Chen3,4,5, Yue Leon Guo1,3,4*

1 National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan,

2 Department of Public Health, National Defense Medical Center, Taipei, Taiwan, 3 Institute of Occupational

Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan,

4 Department of Environmental and Occupational Medicine, National Taiwan University (NTU) College of

Medicine and NTU Hospital, Taipei, Taiwan, 5 Department of Public Health, National Taiwan University

College of Public Health, Taipei, Taiwan

* leonguo@ntu.edu.tw

Abstract

Background

Perfluoroalkyl substance (PFAS) exposure was found associated with atopic diseases.

Atopic dermatitis (AD) is a childhood skin disorder. However, the effect of interaction

between PFASs and glutathione S-transferase (GST) T1/M1 genotype on AD remains

unclear.

Objective

To investigate the association between gene-environmental interaction and childhood AD

using a birth cohort study.

Methods

From 2001 to 2005, 1,264 mother–newborn pairs were recruited from eight Taiwanese

maternity hospitals. PFAS levels and Genotypes were analysed from cord blood. Informa-

tion on children’s health status including AD occurrence was obtained via phone interviews

at 6 months and 2 years. Cord plasma concentrations of nine PFASs were measured via

ultra-high performance liquid chromatography/tandem mass spectrometry. GSTT1/M1 was

genotyped (null/present) via polymerase chain reaction. Environment-gene interaction

effects on AD were assessed using multiple logistic regression analysis.

Results

Overall, 839 mother–newborn pairs completed all measurements. The prevalence of ever

having physician-diagnosed AD by 2 years of age was 5.4%. Among PFASs, perfluoroocta-

noic acid (PFOA) was positively associated with AD adjusted for potential confounders.

After grouping PFOA levels into three groups: undetected, below and above the median in
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those with detected, children in above the median group who had the GSTT1-null, or

GSTM1-null genotype exhibited a higher odds ratio for AD (OR [95%CI] = 3.45 [1.26–9.99]

and 2.92 [1.12–7.91], respectively) as compared to the undetected group.

Conclusions

Our data demonstrated that in-utero PFOA exposure with GSTT1/M1 null genotype were

associated with AD. Minimizing early-life PFAS exposure may help against AD develop-

ment, especially in genetically susceptible individuals.

Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widespread and persistent synthetic

chemicals in the environment and humans. PFASs are composed of highly stable carbon-fluo-

rine bonds and provide high chemical and thermal stability, durability, and strength [1]. They

are widely applied in many products used in daily life including clothing, food packaging, car-

pets, furniture, and fire-fighting foams [2]. The health concerns for PFAS exposure are owing

to their bioaccumulation and persistence [3].

Atopic dermatitis (AD) is a common childhood chronic skin inflammation disorder that

has profound effects on the quality of life of the affected children and their families, especially

in those with severe symptoms [4]. In Taiwan, the prevalence of physician-diagnosed AD

among school-age children increased from 1.57% in 1995–96 to 2.79% in 2001[5] and among

preschool-age children was 8.7% in 2008 [6]. AD is usually the first manifestation in the atopic

march, which means that AD could be a significant predictor for other allergic disease such as

asthma and allergic rhinitis [7]. Most AD symptoms occur in early life. Approximately half of

children with AD have symptoms within the first 6 months of life and nearly 85% of affected

children develop symptoms before the age of 5 years [8]. The identification of early risk factors

of AD may allow for potential prevention against atopic disease development. Previously, we

found environmental factors to be important components for development of AD [9]. Thus,

we attended to define specific environmental factors considering genetics.

PFASs have been suggested to exhibit immunotoxicity from animal studies via altered cytokine

production, inflammatory responses, and innate and adaptive immune responses [10]. PFASs

have also been reported to associate with the development of atopic diseases in animals and

humans. The immune responses in atopic diseases are found to be skewed toward a T-helper

(Th) 2 phenotype with elevated levels of serum interleukin (IL)-4 and immunoglobulin E (IgE)

[11]. Notably, Dong et al. found that perfluorooctane sulfonate (PFOS), one of the most common

PFASs, was associated with increased secretion of IgE and Th2-type cytokines (IL-4 and IL-10)

and decreased secretion of Th1-type cytokines (interferon [INF]-γ and IL-2) in mice [12]. Per-

fluorooctanoic acid (PFOA) was shown to be associated with increased IgE levels in a murine

study [13]. In a case–control study, PFASs were shown to be associated with childhood asthma.

Higher IgE concentrations were also found in children with higher PFAS levels [14]. However,

the association between PFASs and childhood AD is still unclear and controversial. Okada et al.

found that the risk of developing eczema decreased in children with lower prenatal perfluorotride-

canoic acid exposure [15], whereas no association was found between PFAS exposure and AD in

a study by Wang et al [16]. Thus, observation of a large number of children is necessary.

Genetic variation may play an important role in individual susceptibility to environmental

pollutants. In the human body, glutathione S-transferase (GST) plays an essential role in
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chemical detoxification. GST genotypes are known to associate with the health effects of expo-

sure to environmental pollutants including ambient air pollutants, smoke, metal, and pesti-

cides. Chen et al. found that children carrying the GSTM1-null genotype had significant

PM2.5-related increment in neutrophils and leukocytes in nasal lavage as determined by a lon-

gitudinal study of schoolchildren [17]. Wang et al. found that GSTM1-null and GSTP1 Ile/Ile

genotypes were associated with a significant increase in the risk of AD in children with prena-

tal smoke exposure [18]. Additionally, incense burning was reported to have a joint effect with

GSTT1 genotype and to associate with current asthma and wheezing in children [19].

Although genetic and environmental factors both likely contribute to the development of

AD and PFAS exposure is known to be associated with atopic diseases, the effect of PFAS

exposure and GST genotype on AD remains unclear. The current study aimed to investigate

the effect of PFAS exposure and GSTT1/M1 genotype on childhood AD from a 2-year follow-

up birth cohort study.

Materials and methods

Study population and data acquisition

A longitudinal birth cohort study was conducted among pregnant women who had undergone

prenatal examinations at eight selected private maternity hospitals located in seven areas, includ-

ing one in Taipei, one in eastern Taiwan, and five in the south part of Taiwan. The newborns

born after July 2001 were consecutively recruited [20]. After providing written informed con-

sent, the pregnant women in their third trimester of gestation were asked to complete a struc-

tured questionnaire. Venous blood of the women and umbilical cord blood of newborns were

obtained by a nurse. Blood specimens were centrifuged to obtain plasma and stored at −80˚C

until analysis. In total, 1,264 mother–newborn pairs were recruited between July 2001 and July

2005. Our protocols were approved by the National Cheng Kung University Hospital Institu-

tional Review Board and the National Taiwan University Hospital Institutional Review Board.

Data collection

Pregnant women were asked about their demographic characteristics, environmental factors

at home (such as environmental tobacco smoke, cockroaches, incense burning, carpets, pets,

or fungi on walls), family history of allergic diseases (atopic dermatitis, asthma, and allergic

rhinitis), and neonate birth order. Maternal self-reported mental status during pregnancy was

also included in the prenatal questionnaire. Newborn birth outcomes (gestational weeks,

height, weight, and head circumference) were collected from hospital records by nurses.

Children were followed up via phone interview by well-trained interviewers at the ages of 6

and 24 months. After permission was obtained, mother or main caregiver was asked about the

child’s growth situation, diet habit, health status, and environmental exposure. Children were

considered as with- or without-AD according to the response to the question “Did your child

ever have physician-diagnosed atopic dermatitis?” and “Did your child ever have symptoms of

itching and scratching of the skin and have a rash characteristic in arm folds and behind the

knees?” The answer of “Yes” to both questions in either of the two follow-up interviews was

considered positive that the child had AD before 2 years of age.

Analysis of PFASs

Cord plasma samples were sent to National Taiwan University for measurement of PFASs.

Altogether, nine PFASs were analysed: perfluorohexanoic acid (PFHxA), perfluoroheptanoic

acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), PFOA, PFOS, perfluorononanoic acid
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(PFNA), perfluorodecanoic acid (PFDeA), perfluoroundecanoic acid (PFUnDA), and per-

fluorododecanoic acid (PFDoDA). The analytical method was as described in a previous study

[21, 22]. The detection of PFASs in plasma were performed on an Agilent-1200 high perfor-

mance liquid chromatography system (Agilent, Palo Alto, CA, USA) coupled with a triple-

quadrupole mass spectrometer (Sciex API 4000, Applied Biosystems, Foster City, CA, USA).

The limit of quantitation values (LOQ) for serum PFASs were 0.25, 0.28, 0.08, 0.45, 0.10, 0.11,

0.19, 0.13, and 0.07 ng/mL for PFHxA, PFHpA, PFHxS, PFOA, PFNA, PFOS, PFDeA, PFUA,

and PFDoA, respectively. Participants’ concentrations of PFASs below the detection limit were

replaced by half-of-detection-limit values.

Genotype determination

Genomic DNA was extracted from umbilical cord blood cells using standard genomic DNA

extraction methods. The genotypes of GSTT1/M1 were determined using polymerase chain

reaction (PCR) assays as previously described [23]. GSTT1 and GSTM1 genotypes were classi-

fied as present type (heterozygous or homozygous genotype for the gene presence) and null

type (homozygous deletion).

Statistical analysis

JMP version 5.0.1 (SAS Institute Inc., Cary, NC, USA) was used to perform all statistical analy-

ses. Geometric means of PFASs were calculated. Kruskal-Wallis tests was used to test for the

differences in PFAS concentrations between children with and without AD after excluding

outliers (S1 Table). Multiple logistic regression was also applied to test the association between

PFAS exposure parameters and AD in children. Odds ratio (OR) and 95% confidence interval

(95% CI) were used to assess the effects of PFAS exposure on AD. The stratified analysis by

GST genotypes was performed to evaluate the effect of PFAS exposure and GSTT1/M1 geno-

type on AD. P� 0.05 was considered statistically significant.

Results

In total, 1,264 mother–newborn pairs who completed the questionnaire interview and speci-

men collection participated in the present study. After exclusion of 105 pairs because of sus-

pected cord blood contamination by maternal blood (N = 91 pairs), multiple birth (N = 13

pairs), and infant death (N = 1 pair), 1,159 pairs were recruited in follow-up phone interviews.

Among them, 264 pairs were lost to follow-up up to 2 years of age. We then excluded pairs

without PFAS concentration (N = 32 pairs) or GST genotype (N = 24 pairs) data, resulting in

839 pairs recruited in the final analysis (Fig 1).

The prevalence of ever having physician-diagnosed AD in 2-year-old children was 5.4%

(N = 45). For GSTT1/M1 genotypes, the frequency of the null genotype was 49.8% (N = 418)

for GSTT1 and 56.3% (N = 471) for GSTM1. Table 1 demonstrates the characteristics of chil-

dren and parents in children with and without AD. The children with and without AD did not

differ significantly regarding birth weight, gestational weeks, sex, birth order, maternal age

during pregnancy, paternal education, and family income. However, higher prevalence of

breastfeeding and parental atopy was found in children with AD. The characteristics of chil-

dren and parents between included pairs and excluded pairs are shown in S2 Table. No signifi-

cant difference was found between included and excluded pairs in birth weight, gestational

weeks, sex, birth order, maternal age during pregnancy, paternal education, family income, or

parental atopy. However, included pairs had higher education levels of the mothers than

excluded pairs.
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Table 2 demonstrates the concentrations of nine PFASs in the cord plasma. All detection

rates of PFASs were above 50% except PFHxA (3.33%), PFHpA (3.33%), and PFDeA (33.25%).

These three PFASs were therefore excluded from further evaluation. A high correlation was

found among PFNA, PFUnDA, and PFDoA as shown in S3 Table. Cord plasma PFAS concen-

trations among children with and without AD are reported in Table 3. Among the six PFASs,

children with AD had higher PFOA concentration and lower PFUnDA concentration than

those without AD.

We then grouped the PFOA concentrations into undetected and below and above the

median in those with detected exposure. The other five PFASs including PFHxS, PFNA,

PFOS, PFUA, and PFDoA were grouped by tertile. The associations between cord plasma

PFAS concentrations and AD are shown in Table 4 after adjustment for sex, family income,

maternal atopy, breast feeding, and maternal age during pregnancy. The results showed that

children in the highest PFOA group had a significantly higher risk of developing AD (OR

[95%CI] = 2.58 [1.27–5.32]) (Table 4). No significant association was found between the other

five PFASs and AD in children at the age of 2 years (Table 4).

Fig 1. Flow chart of recruitment of mother-newborn pairs and data collection.

https://doi.org/10.1371/journal.pone.0210708.g001
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Table 1. Characteristics of children and parents in children with and without AD.

Characteristic Mean (SD) or n (%) p-value§

With AD

(n = 45)

Without AD

(n = 794)

Children

Birth weight (g)¶ 3159.5 (427.0) 3101.7 (381.3) 0.677

Gestational age (weeks)¶ 38.88 (1.23) 38.92 (1.20) 0.975

Sex

Boy 25 (55.6) 399 (50.3) 0.489

Girl 20 (44.4) 395 (49.7)

Birth order

1st 24 (53.3) 334 (42.1) 0.316

2nd 17 (37.8) 273 (34.4)

� 3rd 4 (8.9) 126 (15.9)

Breastfeeding

Yes 35 (77.8) 457 (57.6) 0.017

No 10 (22.2) 306 (38.5)

Parents

Maternal age at childbirth (year)¶ 26.98 (4.29) 27.88 (4.71) 0.215

Maternal education

� 9 years 3 (6.7) 81 (10.2) 0.719

10–12 years 26 (57.8) 448 (56.4)

> 12 years 16 (35.6) 258 (32.5)

Paternal education

� 9 years 5 (11.1) 111 (14.0) 0.429

10–12 years 21 (46.7) 414 (52.1)

> 12 years 19 (42.2) 258 (32.5)

Family income (103USD)

<20 7 (15.6) 208 (26.2) 0.304

20–33.3 16 (35.6) 271 (34.1)

�33.3 18 (40.0) 270 (34.0)

Maternal atopy

Yes 15 (33.3) 151 (19.0) 0.020

No 30 (66.7) 641 (80.7)

Paternal atopy

Yes 16 (35.6) 154 (19.4) 0.009

No 29 (64.4) 638 (80.4)

Smoking during pregnancy

Yes 1 (2.2) 23 (2.9) 0.760

No 44 (97.8) 739 (93.1)

ETS exposure during pregnancy

Yes 25 (55.6) 412 (51.9) 0.666

No 17 (37.8) 322 (40.6)

¶mean (SD).
§P value was calculated by Kruskal-Wallis tests for continues variables and χ2 test for categorical variables as

compared between children with and without AD.

Some numbers do not add up to total n because of missing values.

Abbreviations: AD, atopic dermatitis; SD, standard deviation; USD, US dollars; ETS, environmental tobacco smoke.

https://doi.org/10.1371/journal.pone.0210708.t001
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We then stratified children by GSTT1 and M1 genotype and evaluated the joint effect of

PFOA concentration and GSTT1/M1 genotype on AD. After adjustment for sex, family

income, maternal atopy, breast feeding, and maternal age during pregnancy, children with the

GSTT1-null genotype that were in the highest PFOA group had a higher risk of developing AD

(OR [95%CI] = 3.45 [1.26–9.99]). The result was similar for children with the GSTM1-null

genotype (OR [95%CI] = 2.92 [1.12–7.91]) (Table 5).

Discussion

To our knowledge, this is the first study to investigate the effect of PFAS exposure and GST
genotype on childhood AD. We found that in-utero PFOA exposure was associated with AD

development in 2-year-old children and this effect was more prominent among children carry-

ing GSTT1-null or GSTM1-null genotypes.

Our result is consistent with the association between PFAS exposure and allergic diseases

reported previously. In a prospective birth cohort study in China, prenatal exposure to PFOA,

Table 2. Concentration of the nine PFASs in cord plasma (ng/mL) (N = 839).

PFASs GM (95%CI) Mean (SD) Median IQR Detection rate (%)

PFHxA 0.14 (0.13, 0.14) 0.15 (0.12) 0.13 0.13–0.13 3.33

PFHpA 0.15 (0.14, 0.15) 0.16 (0.10) 0.14 0.14–0.14 3.33

PFHxS 21.85 (20.81, 22.95) 25.21 (11.55) 23.00 16.95–32.05 99.29

PFOA 0.68 (0.63, 0.73) 1.19 (1.18) 0.65 0.23–1.96 50.66

PFNA 0.9 (0.8, 1.00) 3.27 (7.01) 0.93 0.36–2.58 87.00

PFOS 2.47 (2.25, 2.72) 4.24 (5.54) 3.48 2.18–5.05 89.27

PFDeA 0.2 (0.18, 0.21) 0.50 (1.11) 0.10 0.10–0.35 33.25

PFUnDA 0.65 (0.57, 0.74) 3.43 (7.24) 0.67 0.07–2.89 66.63

PFDoDA 0.18 (0.19, 0.16) 0.34 (0.37) 0.25 0.04–0.52 65.32

Abbreviations: AD, atopic dermatitis; GM, geometric mean; SD, standard deviation; IQR, interquartile range; PFAS, perfluoroalkyl and polyfluoroalkyl substance;

PFHxA, perfluorohexanoic acid; PFHpA, perfluoroheptanoic acid; PFHxS, perfluorohexane sulfonic acid; PFOA, perfluorooctanoic acid; PFNA, perfluorononanoic

acid; PFOS, perfluorooctane sulfonate; PFDeA: perfluorodecanoic acid; PFUnA, perfluoroundecanoic acid; PFDoDA, perfluorododecanoic acid

https://doi.org/10.1371/journal.pone.0210708.t002

Table 3. Arithmetic mean [AM (SE)] of the six PFASs in cord plasma among children with and without atopic

dermatitis (AD) (N = 839).

PFASs (ng/mL) With AD (n = 45) Without AD (n = 794) p-value¶

n AM (SE) n AM (SE)

PFHxS 45 26.99 (1.72) 794 25.11 (0.41) 0.273

PFOA 45 1.60 (0.18) 794 1.17 (0.04) 0.024

PFNA 45 3.07 (0.96) 792 3.14 (0.23) 0.071

PFOS 45 4.71 (0.48) 792 3.99 (0.12) 0.117

PFUnDA 44 1.32 (0.93) 792 3.31 (0.22) 0.003

PFDoA 45 0.27 (0.05) 794 0.35 (0.01) 0.092

¶Comparison of cord plasma PFAS levels for children with and without AD as analyzed by Kruskal-Wallis tests with

outliers excluded.

Abbreviations: AD, atopic dermatitis; AM, arithmetic mean; SE, standard error; PFAS, perfluoroalkyl and

polyfluoroalkyl substance; PFHxS, perfluorohexane sulfonic acid; PFOA, perfluorooctanoic acid; PFNA,

perfluorononanoic acid; PFOS, perfluorooctane sulfonate; PFUnA, perfluoroundecanoic acid; PFDoDA,

perfluorododecanoic acid.

https://doi.org/10.1371/journal.pone.0210708.t003
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PFHxS, PFDoA, and PFOA significantly increased the risk of AD in girls at the age before 2

years old [24]. In a case–control study of Taiwanese children, asthmatic children exhibited sig-

nificantly higher serum PFAS concentration than children without asthma [25]. PFOA is a

common PFAS. Specifically, Anderson-Mahoney et al. indicated that residents with prolonged

exposure to PFOA in drinking water had a higher prevalence of asthma than the general popu-

lation in West Virginia, United States [26]. In the National Health and Nutrition Examination

Survey (NHANES) study, PFOA was associated with ever having asthma among children at

12–19 years of age [27]. Notably, PFASs can cross the placental barrier, consequently accumu-

lating in the foetus and affecting newborn health. In the present study, we found that cord

serum PFOA was associated with childhood AD. This result was inconsistent with those of

previous birth cohort studies in Japan and Taiwan. Okada et al. reported no association

between maternal PFOA levels and eczema during the first 12 and 24 months [15]. Wang et al.

found a positive correlation between cord blood IgE levels and cord serum PFOA in boys,

Table 4. Odds ratio (OR) for ever having AD in 2-year-old children according to in-utero exposure to PFASs (ng/

mL) by simple and multiple regression analysis (N = 839).

PFASs N No. of AD (%) OR (95% CI) AOR (95% CI)¶

PFHxS

< 19.05 280 11 (3.9) Reference Reference

19.05–28.55 280 17 (6.1) 1.58 (0.73, 3.54) 1.53 (0.68, 3.54)

�28.55 279 17 (6.1) 1.59 (0.74, 3.55) 1.37 (0.60, 3.18)

PFOA

< 0.46 414 18 (4.4) Reference Reference

0.46–1.96 213 7 (3.3) 0.75 (0.29, 1.75) 0.75 (0.26, 1.89)

�1.96 212 20 (9.4) 2.29 (1.18, 4.47)� 2.58 (1.27, 5.32)��

PFNA

< 0.51 282 20 (7.1) Reference Reference

0.51–1.84 279 16 (5.7) 0.80 (0.40, 1.57) 0.76 (0.36, 1.57)

�1.84 278 9 (3.2) 0.44 (0.19, 0.95)� 0.44 (0.18, 1.01)

PFOS

< 2.68 280 11 (3.9) Reference Reference

2.68–4.47 280 15 (5.4) 1.38 (0.63, 3.14) 1.33 (0.57, 3.20)

�4.47 279 19 (6.8) 1.79 (0.85, 3.95) 1.86 (0.84, 4.36)

PFUnDA

< 0.13 280 23 (8.2) Reference Reference

0.13–2.03 280 12 (4.3) 0.50 (0.24, 1.01) 0.60 (0.27, 1.28)

�2.03 279 10 (3.6) 0.42 (0.19, 0.87)� 0.54 (0.23, 1.17)

PFDoDA

< 0.05 291 19 (6.5) Reference Reference

0.05–0.41 271 15 (5.5) 0.84 (0.41, 1.68) 0.81 (0.38, 1.72)

�0.41 277 11 (4.0) 0.59 (0.27, 1.25) 0.60 (0.26, 1.33)

¶Adjusted OR (AOR) was adjusted by sex, family income, maternal atopy, breast feeding, and maternal age at

childbirth.

�P< 0.05

�� P < 0.01.

Abbreviations: AD, atopic dermatitis; OR, odds ratio; CI, confident interval; AOR, adjusted OR; PFAS, perfluoroalkyl

and polyfluoroalkyl substance; PFHxS, perfluorohexane sulfonic acid; PFOA, perfluorooctanoic acid; PFNA,

perfluorononanoic acid; PFOS, perfluorooctane sulfonate; PFUnA, perfluoroundecanoic acid; PFDoDA,

perfluorododecanoic acid.

https://doi.org/10.1371/journal.pone.0210708.t004
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although no association was found between PFOA exposure and AD in children [16]. This

may have been due to insufficient samples for investigation (n = 244).

The biological mechanisms underlying the effects of PFAS exposure on AD development

remain unclear. Allergen-specific responses in AD are skewed toward a Th2 phenotype with

elevated serum IgE and IL-4 levels, whereas Fairley et al. reported that PFOA enhances the

hypersensitivity response to ovalbumin with increasing IgE levels in a murine model [13].

Singh et al. found that PFOA triggers mast cell-derived allergic inflammatory reactions by his-

tamine secretion and elevation of pro-inflammatory cytokines, including tumour necrosis fac-

tor alpha, IL-1, IL-6, and IL-8 [28]. Additionally, prenatal PFOA exposure was positively

associated with cord blood IgE levels in a birth cohort study,[16] and a case–control study of

children reported a dose–response effect of PFOA concentration on increasing IgE levels [14].

Stein et al. indicated that total IgE levels might increase by 10% in children with doubled

PFOA exposure [29].

Another potential mechanism is through peroxisome proliferator-activated receptor

(PPAR) signalling pathways. Both PPAR-α and PPAR-γ are potentially related to immune

function owing to their expression on monocytes or macrophages [30]. PPARα agonists

inhibit interferon-γ and enhance IL-4 levels [31]. PFOA is known as a peroxisome proliferator,

and binding to PPAR-α increased the activation of mouse and human PPAR-α in an in vitro
study [32]. Specifically, a dose–response effect was found for mouse PPAR-α activated by

Table 5. Relationship between PFOA Concentration (ng/mL) and ever having AD in 2-year-old children by

regression analysis after stratification by GSTT1/M1 genotype (N = 839).

Variable N No. of AD (%) OR (95%CI) AOR (95%CI)¶

GSTT1-null type

PFOA

< 0.46 208 7 (3.4) Reference Reference

0.46–1.96 101 2 (2.0) 0.58 (0.09, 2.45) 0.61 (0.09, 2.65)

�1.96 109 11 (10.1) 3.22 (1.23, 9.00)� 3.45 (1.26, 9.99)�

GSTT1 present type

PFOA

< 0.46 206 11 (5.3) Reference Reference

0.46–1.96 112 5 (4.5) 0.83 (0.26, 2.34) 0.85 (0.22, 2.81)

�1.96 103 9 (8.8) 1.70 (0.66, 4.24) 1.83 (0.64, 5.21)

GSTM1-null type

PFOA

< 0.46 234 11 (4.7) Reference Reference

0.46–1.96 120 4 (3.3) 0.70 (0.19, 2.09) 0.90 (0.23, 2.98)

�1.96 118 11 (9.3) 2.08 (0.87, 5.02)# 2.92 (1.12, 7.91)�

GSTM1 present type

PFOA

< 0.46 180 7 (3.9) Reference Reference

0.46–1.96 93 3 (3.2) 0.82 (0.17, 3.04) 0.59 (0.09, 2.57)

�1.96 94 9 (9.6) 2.62 (0.94, 7.55) 2.50 (0.84, 7.65)

¶AOR was adjusted by sex, family income, maternal atopy, breast feeding, and maternal age at childbirth.
#P < 0.1

�P< 0.05.

Abbreviations: AD, atopic dermatitis; OR, odds ratio; CI, confident interval; AOR, adjusted OR; PFOA,

perfluorooctanoic acid; GST, glutathione s transferase.

https://doi.org/10.1371/journal.pone.0210708.t005
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PFOA and a positive association was also found for human PPAR-α treated with PFOA. More-

over, this effect was inhibited by a PPAR-α antagonist [32]. PFOA may therefore potentially be

related to the immune function of children and associated with AD development through a

PPARα-activated pathway.

In our study, we also examined whether GST genetic variants comprised factors that modi-

fied the relationship of PFAS exposure to AD and found that PFOA exposure was associated

with AD development, especially in children with GSTT1- or GSTM1-null genotypes. GST
genotypes have also been previously reported to modify the effect of environmental exposure

on allergic diseases. In a case–control study of Korean children, the GSTM1-null genotype was

significantly associated with childhood AD onset [33]. However, Chung et al. found that a

healthy dietary intake and the GSTM1-present genotype had a protective effect against AD

[34]. Furthermore, Carlsten et al. indicated that the GSTT1 genotype enhanced the ambient

diesel exhaust exposure-mediated increase in allergen-sensitized inflammation in airways

among atopic participants [35].

GSTs contribute to chemical detoxification by conjugation with glutathione, thereby pro-

tecting cells from reactive oxygen species (ROS). Oxidative stress is associated with the activa-

tion of inflammatory cells and production of pro-inflammatory cytokines and mediators [36].

ROS are known to associate with AD pathogenesis [37]. For example, a lower glutathione to

glutathione disulphide ratio, representative of higher oxidative stress induction, was found in

children with AD [38]. Additionally, PFOS and PFOA could induce ROS production and were

associated with reductions in the antioxidative responses of hepatocytes, leading to oxidative

damage [39]. Children with the GSTT1- or GSTM1-null genotype lose enzymatic activity and

may therefore be vulnerable to the impacts of oxidative stress. Thus, the combination of PFOA

exposure and GSTT1/M1-null genotypes is suspected to result in higher oxidative stress in

children. Accordingly, we found that the effect of PFOA exposure on AD was more obvious in

children with GSTT1- or GSTM1-null genotypes.

There are limitations in this study. The determination of childhood AD was based on

maternal or main caregiver’s report of physician-diagnosed AD, which might result in misclas-

sification. However, the validation of physician-diagnosed AD reported by mothers was con-

firmed by clinical examination in a previous study [40]. Moreover, characteristic symptoms of

AD were described based on an international standard questionnaire, the ISAAC question-

naire. Children were identified as having AD based on both physician-diagnosed AD and a

rash in a specific position, which might have reduced the level of misclassification. Second,

approximately 33.6% of mother–newborn pairs were excluded from the final analysis owing to

suspected cord blood contamination by maternal blood, loss of children to follow-up, and chil-

dren without data for both PFAS and GST genotypes. Selection bias might thus be a concern.

However, the characteristics of the children and mothers did not significantly differ between

included and excluded children, aside from maternal education (S2 Table). Moreover, as the

mothers and the interviewers were unaware of the research objective, selection bias caused by

differential participation was less likely. Third, our studied newborns were recruited from

eight private maternity hospitals located in seven areas. They may not be representative of all

newborns in Taiwan. Caution about the generalizability of our findings is warranted. An exter-

nal validation study in a more representative population is therefore warranted.

Despite these limitations, the study has several strengths. We enrolled a general population

of pregnant women in their third trimester throughout Taiwan. Second, using a birth cohort

design with longitudinal follow-up, we were able to clearly investigate the temporal sequence

between early life environmental exposure and disease occurrence. Additionally, the prospec-

tive cohort design reduces recall bias. Finally, both PFAS concentrations and GSTT1/M1
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genotypes were measured using standard methods that therefore minimized the misclassifica-

tion of these measurements.

In conclusion, this study showed that in-utero PFOA exposure and neonatal GSTT1 or

GSTM1 genotype might have joint effects and be associated with childhood AD. Avoiding and

minimizing PFAS exposure in early life may be potentially helpful toward protecting against

AD development.
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