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Abstract: Medical data are often missing during epidemiological surveys and clinical trials. In this
paper, we propose the MCMCINLA estimation method to account for missing data. We introduce a
new latent class into the spatial lag model (SLM) and use a conditional autoregressive specification
(CAR) spatial model-based approach to impute missing values, making the model fit into the
integrated nested Laplace approximation (INLA) framework. Combining the advantages of both
the Markov chain Monte Carlo (MCMC) and INLA frameworks, the MCMCINLA algorithm is
used to implement imputation of the missing data and fit the model to derive estimates of the
parameters from the posterior margins. Finally, the economic data and the hemorrhagic fever with
renal syndrome (HFRS) disease data of mainland China from 2016–2018 are used as examples to
explore the development of public health in China in the post-epidemic era. The results show that
compared with expectation maximization (EM) and full information maximum likelihood estimation
(FIML), the predicted values of the missing data obtained using our method are closer to the true
values, and the spatial distribution of HFRS in China can be inferred from the imputation results with
a southern-heavy and northern-light distribution. It can provide some references for the development
of public health in China in the post-epidemic era.

Keywords: missing data; spatial lag model; MCMC; INLA; public health

1. Introduction

Missing data are common and unavoidable in daily life. For example, in engineering
design, equipment failure may cause some data to fail to be collected normally, and during
market research, there may also be situations where respondents refuse to answer relevant
questions. Besides, missing data often occurs in the medical context. For instance, in
epidemiological surveys, equipment limitations prevent access to complete information,
and in medical databases, not all patients’ clinical test results are available at a given time,
leaving a portion of the attribute values vacant. In addition, data can be lost due to the
failure of storage media and transmission media.

Information theory is an important discipline based on the methods of probability
theory and mathematical statistics for the study of information entropy, data processing,
and data transmission [1]. It has a wide range of applications in the effective processing and
reliable transmission of information. In the era of big data, the data processing of complex
information becomes an important part of research and analysis. Dealing with missing data
has always been the first problem that researchers need to solve before conducting statistical
analysis, as improper handling can lead to deviations in statistical inferences and even affect
the final decision. Little and Rubin (2002) [2] gave a detailed and systematic introduction to
the different missing mechanisms and imputation models of missing data. Buuren (2011) [3]
supplemented and improved it on this basis and provided a demonstration of R code to
make the imputation process more intuitive. At present, scholars have proposed a variety of
imputation methods for the missing data problem, which can basically be divided into two
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categories: statistical methods and machine learning methods. Statistical methods mostly
make assumptions based on the dataset itself, and then use the original dataset to impute
the missing data accordingly. Common methods include expectation maximization (EM)
imputation [4], regression imputation [5], and multiple imputation [6]. Machine learning
methods generally impute the missing dataset by clustering with K-nearest neighbor
imputation [7] and K-means imputation [8], and Bayesian networks [9] are represented. In
recent years, with the rise of the machine learning boom, Bayesian networks have become
a frequently used method to deal with missing data. Mason (2009) [10] proposed the use
of a Bayesian method to model nonrandom missing data through the Bayesian missing
imputation framework to adjust the missing covariates in longitudinal studies. Erler et al.
(2016) [11] suggested that missing values can be imputed in a joint estimation framework
using Bayesian methods. Zhang et al. (2017) [12] proposed a missing data processing
method based on plain Bayesian and EM algorithms for the software workload problem.
Ding (2020) [13] conducted a comparative study of the missing data imputation problem in
normal models using Bayesian and jackknife multiple imputation methods, respectively,
and concluded that Bayesian imputation results are more accurate.

The Markov chain Monte Carlo (MCMC) algorithm has now become a standard
method for parameter estimation in many models. Doğan and Taspinar (2018) [14] (here-
inafter DT) performed parameter estimation for the spatial error sample selection model
with nonrandom missing data using MCMC; Hajime Seya et al. (2020) [15] improved on
the work done by DT, and in parallel, they proposed that MCMC can handle the parameter
estimation problem of the spatial lag sample selection model with nonrandom missing data.
Although the MCMC can solve Bayesian inference excellently, MCMC may be limited by the
speed of convergence and numerical stability when faced with larger models or more data.
To address this problem, Rue et al. (2009) [16] proposed an algorithm that combines Laplace
approximation with modernized numerical integration under a Bayesian framework—the
integrated nested Laplace approximation (INLA)—which can significantly reduce com-
putation time while guaranteeing the accuracy of an MCMC estimation. G’omez-Rubio
et al. (2017) [17] described the realization of a new class of latent model in INLA which
can be used directly for fitting spatial econometric models, and G´omez-Rubio and Rue
(2018) [18] created a new approach combining INLA and MCMC, namely, MCMCINLA,
and used it to fit spatial econometric models, linear regression models with missing data
in covariates, Bayesian Lasso models, and mixed models. Gomez-Rubio et al. (2019) [19]
also redefined the problem of missing values in regression models covariates by latent
Gaussian Markov random field (GMRF) for analysis and imputation of missing data, and
they applied it to the spatial model and the multiple linear regression model to overcome
the problem wherein INLA cannot handle a model with missing values in covariates.

This paper proposes a new MCMCINLA imputation method for missing data and
uses the hemorrhagic fever with renal syndrome (HFRS) disease data with random missing
in covariates to establish a spatial lag (SLM) latent model to explore the developmental
inputs to public health in China before the COVID-19 outbreak, and to provide reference
suggestions for the national financial inputs to public health in the post-epidemic era. In
addition, the use of the imputation effects of EM, Full Information Maximum Likelihood
estimation (FIML), and MCMCINLA method on the missing data are compared to illustrate
the effectiveness of the imputation method proposed in this paper.

The paper is structured as follows: Section 2 reviews the different missing mechanisms
for the missing data and introduces the SLM latent model with random missing data in
covariates; Section 3 gives the proof procedure of the model GMRF structure and describes
the process of implementing the MCMCINLA algorithm for the SLM latent model with
random missing data in covariates; Section 4 conducts numerical simulations for the
model and algorithm proposed in this paper to verify the correctness of the method;
Section 5 presents an empirical analysis of the reform adjustment problem of public health
development in China in the post-epidemic era as an example; and finally, the conclusions
and discussions are given in Section 6.
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2. Model Building
2.1. Missing Mechanism

The relationship between missing data and complete data is known as the missing
mechanism, which is broadly classified into three types: missing completely at random
(MCAR), missing at random (MAR), and not missing at random (NMAR). MCAR occurs
when the missing data is random and unrelated to both observed and unobserved data,
MAR occurs when the missing data is only related to observed data, and NMAR occurs
when the missing data is related to both observed and unobserved data [20].

Furthermore, missing data can be classified into four categories:(Yobs, Xobs), (Ymis, Xobs),
(Yobs, Xmis), and (Ymis, Xmis), depending on where the missing values are located. For the
first case, when neither X nor Y contains missing data, the fit can be performed directly
using INLA or MCMCINLA (see, for example, Gómez-Rubio, V. et al. (2017, 2018) [17,18]);
for the second case, when the missing data are in the response variables, INLA can use its
own properties to predict the missing values by directly calculating the predicted distribu-
tion of all the missing data in the response variable (see, for example, Gómez-Rubio, V. et al.
(2017) [17]); for the third and fourth case, when the missing data are in the covariates, it is
necessary to first define the imputation submodel as latent effects with a GMRF structure
to make it suitable for the INLA framework and include the imputation in the main model,
and then further perform the model fitting with the help of the INLA, which is also the
focus of this paper.

2.2. The SLM Latent Model

In spatial statistics, the SLM has received increasingly wide attention from many
scholars. It is mainly used to study the impact of the behavior of adjacent regions on the
behavior of other regions of the whole system, expressed formally as:

Y = ρLagWY + Xβ + e, e ∼ MVN(0, σ2 In),

where Y represents the observation vectors of n different regions, ρLag is the spatial autocor-
relation parameter, W is the adjacency matrix, β is the coefficient vector of covariates, and
the error term e obeys a multivariate normal distribution with the mean 0 and diagonal
variance-covariance matrix σ2 In. We can also shift the term for Y and rewrite the model as:

Y = (In − ρLagW)−1(Xβ + e), e ∼ MVN(0, σ2 In). (1)

The key to enabling the SLM to be implemented under the MCMCINLA is whether
the model can be implemented within INLA. Normally, the SLM cannot be fitted directly
with INLA, and we need to construct latent classes and redefine the original SLM as a
model with GMRF so as to conform to the INLA framework. We can construct a latent class
for the SLM as follows:

x = (In − ρW)−1(Xβ + e), (2)

where x denotes the vector of n random effects, ρ is the spatial autocorrelation parameter,
W is the weight matrix, X = (Xmis, Xobs) are the covariates with random missing data, β is
the coefficient vector of covariates, and the error term e obeys an independent Gaussian
distribution with the mean 0 and precision matrix τ In.

Using the constructed latent class of Equation (2) to rewrite the SLM model, we can
obtain the SLM latent model:

Y = x + ε = (In − ρW)−1(Xβ + e) + ε, (3)

where ε is a small error term that is used to fit the model.
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3. Algorithm Description

The INLA algorithm mainly targets models with structured additive regression models
with a latent random field of GMRF. The premise of using the MCMCINLA fitting model is
that the model needs to conform to the INLA framework, i.e., it has a GMRF structure in
order to be solved. Therefore, this section first explains the GMRF structure of the main
model and the imputation model, and then describes the implementation process of the
MCMCINLA algorithm.

3.1. Proof of GMRF Structure
3.1.1. GMRF Structure of the Main Model

If we assign a Gaussian prior with a zero mean and the precision matrix Q to β in
Equation (2), the e obeys a Gaussian distribution with a zero mean and the precision matrix
τ In, with τ as a precision parameter. Then, INLA will want to obtain the joint distribution
π(x, β) of x and β. By Bayes’ theorem, we have:

π(x, β) = π( x|β )π(β),

and, by definition,
E(β) = 0,

Prec(β) = Q,

J = E( x|β ) = (In − ρW)−1Xβ,

var( x|β ) = var
[
(In − ρW)−1Xβ + (In − ρW)−1e

∣∣∣β]
= (In − ρW)−1var( e|β )((In − ρW)−1)

′

= (In − ρW)−1 1
τ In((In − ρW)−1)

′

= 1
τ (In − ρW)−1(In − ρW ′)−1, and

K = Prec( x|β ) = 1
var(x|β) = τ(In − ρW ′)(In − ρW).

Thus,
π(x, β) = π( x|β )π(β)

∝ exp
{
− 1

2 (x− J)′K(x− J)
}

exp
{
− 1

2 β′Qβ
}

= exp
{
− 1

2 (x′Kx− x′KJ − J′Kx + J′KJ + β′Qβ)
}

= exp {− 1
2 (x, β)′P(x, β)},

(4)

where P is the precision matrix of (x, β) with the structure:

P =

(
K −K(In − ρW)−1X

−X′(In − ρW ′)−1K Q + τX′X

)

=

(
τ(In − ρW ′)(In − ρW) −τ(In − ρW ′)(In − ρW)(In − ρW)−1X

−X′(In−ρW ′)−1
τ(In − ρW ′)(In − ρW) Q + τX′X

)
=

(
τ(In − ρW ′)(In − ρW) −τ(In − ρW ′)X

−τX′(In−ρW) Q + τX′X

)
.

(5)

This shows that for the given hyperparameters τ and ρ, the mean and precision matrix
of (x, β) are 0 and P; that is, the constructed latent class x has a GMRF structure with the
mean 0 and precision matrix P, which is consistent with the INLA framework, and thus
can be implemented with the help of MCMCINLA.

3.1.2. GMRF Structure of the Imputation Model

For the covariates X = (Xmis, Xobs) containing missing data, Xmis denotes the part with
the missing values and Xobs denotes the part that is observable. We define the imputation
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submodel of the covariates as the latent effect x′ = (x′mis, x′obs), and set different priors for
x′mis and x′obs, respectively, where the observed term x′obs in the latent effect is set to the
mean equal to Xobs and a high precision matrix (e.g., here, we take it as 510 I) so that its
variance is very small, i.e., it makes the observed term x′obs in the latent effect as infinitely
close to the observed covariate data Xobs as possible [19]. A spatial model with the mean µc
and precision matrix Qc is built for the missing term x′mis in the latent effect to impute the
missing covariate data, and the procedure is as shown below.

The imputation model, that is, given the observed data Xobs and the hyperparameter
θ, provides the distribution of the missing values Xmis; hence, we have:

π(Xmis|Xobs ) =
∫

π(Xmis, θ|Xobs)dθ =
∫

π(Xmis|Xobs, θ)π(θ|Xobs)dθ. (6)

Since π( θ|Xobs ) is only related to the observed data Xobs, it can be considered as a
priori of θ, which can further rewrite π( θ|Xobs ) as:

π( θ|Xobs ) ∝ π(Xobs|θ )π(θ). (7)

In the general case, we assume that the covariates X = (Xmis, Xobs) follow a multivari-
ate normal distribution of:

X|θ ∼ Normal
((

µmis
µobs

)
,
(

Qmis,mis Qmis,obs
Qobs,mis Qobs,obs

))
,

and then it defines that its imputation model will obey:

Xmis|Xobs, θ ∼ Normal(µc, Qc),

where µc = µmis −Q−1
mis,misQmis,obs(Xobs − µobs) and Qc = Qmis,mis.

Considering that the covariates in the SLM are spatially correlated, the missing data in
the covariates are imputed using a conditional autoregressive specification (CAR) spatial
model-based approach. Under CAR, the mean of the model is set as µ = αT and the
precision matrix as Q = τ(I − ρW), where α is the intercept of the linear predictor, τ is the
precision parameter, ρ is the spatial autocorrelation parameter, W denotes the adjacency
matrix, and the hyperparameter θ at this time consists of τ, ρ, and α.

Substituting the values of µ and Q, the covariates X follow a multivariate normal
distribution of:

X|θ ∼ Normal
((

µmis
µobs

)
,
(

Qmis,mis Qmis,obs
Qobs,mis Qobs,obs

))
= Normal

((
αT

mis
αT

obs

)
,
(

τ(Imis − ρWmis,mis) −τρWmis,obs
−τρWobs,mis τ(Iobs − ρWobs,obs)

))
,

(8)

and the imputation model based on the spatial model will obey:

Xmis|Xobs, θ ∼ Normal(µc, Qc), (9)

where µc = αT
mis − (Imis − ρWmis,mis)

−1(−ρWmis,obs)(XT
obs − αT

obs)Qc = τ(Imis − ρWmis,mis).
The hyperparameters τ, ρ, and α are obtained from π(τ, ρ, α|Xobs ), which is proportional
to π(Xobs|τ, ρ, α )π(τ, ρ, α).

Thereby, the latent effect x′ = (x′mis, x′obs) will obey the following multivariate nor-
mal distribution:

x′|θ ∼ Normal
((

µc
Xobs

)
,
(

Qc 0
0 510 I

))
, (10)

where µc and Qc are taken as shown in Equation (9). This shows that the latent effect x′

that we defined for the imputation model has a GMRF structure that can be applied to the
INLA framework, and thus it can be implemented with the help of MCMCINLA.
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3.2. Implementation of the MCMCINLA Algorithm

When using MCMCINLA to deal with the SLM latent model with random missing
data in covariates, it is first necessary to define an imputation submodel to impute the
covariates with missing values so as to substitute the complete covariate data back into the
SLM, and then use MCMCINLA to fit the model for estimation. The core of the MCMCINLA
algorithm parameter estimation lies in dividing the estimated parameters into two groups:
the first group is estimated using the Metropolis–Hastings (MH) algorithm in MCMC and
the second group is estimated using the Bayesian model averaging (BMA) algorithm [21]
in INLA. Therefore, the whole algorithmic process is carried out in three main steps:

1. Imputation of the missing covariates X = (Xmis, Xobs) using INLA In this paper,
we chose to impute the missing covariates X = (Xmis, Xobs) using a CAR space
model-based approach, which first requires the definition of the mean, precision,
hyperparameters, and prior of each hyperparameter in the latent effect x′. The key
codes are as follows:

inla.rgeneric.micar.model = function(cmd = c(“graph”, “Q”, “mu”,
“initial”,”log.norm.const”, “log.prior”, “quit”), theta = NULL),

which define the spatial weight matrix (“graph”), precision matrix (“Q”), mean (“mu”), hy-
perparameter prior (“log.prior”), etc. in the latent effect x′ by the inla.rgeneric.micar.model,
respectively, in preparation for defining the imputation model;

model = inla.rgeneric.define(inla.rgeneric.micar.model, debug = TRUE, n, x, idx.mis, W),

which defines the imputation model via the inla.rgeneric.define(), where n denotes the
total number of indices, x denotes the covariates containing the missing data, idx.mis
denotes the index of each missing datum, and W is the spatial weight matrix; and

inla(x~0 + f(idx, model = model),data, . . . ),

where, finally, INLA is used to complete the fit of the imputation model, and where
f(idx, model =model) represents the spatial effect of the imputation model. The covariate
X after imputation via INLA is incorporated into the SLM, at which time there are
three parameters to be estimated in the model, namely, the spatial autocorrelation
parameter ρ, the covariate coefficient β, and the error term precision τ. Here, we use
MH estimation for the parameter ρ and BMA estimation for the remaining parameters.

2. Estimation of the spatial autocorrelation parameter ρ using MH The estimation of ρ
using MH is carried out in three main steps, as follows:

• Step 1: Assume that starting from the initial point ρ(1) = 0, the model is fitted

conditionally with ρ(1) to obtain π(Y
∣∣∣ρ(1)) , π(β

∣∣∣Y, ρ(1)) , and π(τ
∣∣∣Y, ρ(1)) ;

• Step 2: Use the MH algorithm to sample from the posterior of ρ, propose a new

point ρ∗ for ρ by proposing the distribution q(·
∣∣∣ρ(j−1) ), fit the model condition-

ally on ρ∗ to obtain π(Y|ρ∗ ), π( β|Y, ρ∗ ), and π(τ|Y, ρ∗ ), and calculate π(ρ∗),
q(ρ∗

∣∣∣ρ(j) ), and q(ρ(j)
∣∣∣ρ∗) ;

• Step 3: Calculate the acceptance probability α of ρ∗ and determine whether the
proposal is acceptable (or not), where:

α = min

1,
π( β|Y, ρ∗ )π(τ|Y, ρ∗ )π(Y|ρ∗ )π(ρ∗)q(ρ(j)

∣∣∣ρ∗ )
π( β

∣∣Y, ρ(j) )π(τ
∣∣Y, ρ(j) )π(Y

∣∣ρ(j) )π(ρ(j))q(ρ∗
∣∣ρ(j) )

. (11)

If the proposal is accepted, then ρ(j+1) = ρ∗ with π( β
∣∣∣Y, ρ(j+1) ) = π( β|Y, ρ∗ ) and

π(τ
∣∣∣Y, ρ(j+1) ) = π(τ|Y, ρ∗ ); otherwise, ρ(j+1) = ρ(j), and π( β

∣∣∣Y, ρ(j+1) ) = π( β
∣∣∣Y, ρ(j) )
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and π(τ
∣∣∣Y, ρ(j+1) ) = π(τ

∣∣∣Y, ρ(j) ). This iterative process is executed until the end of
the estimation.

The key code for the process is as follows:

fit.inla < −slm.inla (formula, d, W, rho, . . . ).

in which we fit the SLM by defining fit.inla() to prepare for subsequent sampling, where
formula is a formula with the response variable and the fixed effects, d represents the
complete data set after imputation, W is the spatial weight matrix as above, and rho is the
spatial autocorrelation parameter; and

INLAMH (d.mis, fit.inla, d.init, rq, dq, prior, n.sim = 200, n.burnin = 100, n.thin = 1, . . . ),

in which we fit the parameters ρ by INLAMH(), where fit.inla is the model fitted earlier, and
here, namely, the SLM, and d.init, rq, dq, and prior are all basic settings in the MH algorithm
which denote the initial value of sampling, the proposed distribution, the density function
of the proposed distribution, and the prior distribution, respectively.

3. Estimation of the coefficient β and precision τ using BMA For the parameter β and

hyperparameter τ, the conditional margins π( β
∣∣∣Y, ρ(j) ) and π(τ

∣∣∣Y, ρ(j) ) generated
by the MH algorithm in each iteration can be obtained using BMA, and further, the
posterior margins of β and τ are derived by integrating over ρ, namely:

π( β|Y ) =
∫

π( β|ρ, Y )π(ρ|Y )dρ =
1
N

N

∑
j=1

π( β
∣∣∣Y, ρ(j) ) and (12)

π(τ|Y ) =
∫

π(τ|ρ, Y )π(ρ|Y )dρ =
1
N

N

∑
j=1

π(τ
∣∣∣Y, ρ(j) ). (13)

The key code for the process is as follows:

INLABMA:::fitmatrixBMA(l.models, ws, “summary.fixed”)

INLABMA:::fitmatrixBMA(l.models, ws, “summary.hyperpar”)

which calculate the posterior margins for fixed effects and hyperparameters by the fitma-
trixBMA() function in the INLABMA package and where l.models are the INLA models to
be averaged and ws is the weight vector.

4. Simulation Study
4.1. Data Generation

Assuming that (In − ρLagW) is invertible, we consider the numerical simulation pro-
cess of the SLM latent model for covariates with random missing data as follows:

Y = (In − ρLagW)−1(X1β1 + X2β2 + e) + ε, (14)

where Y is the response variable, X1 and X2 are the covariates, and β1 and β2 are the
coefficients corresponding to X1 and X2, respectively, In is an n× n unit matrix, W is an
n× n spatial weight matrix, e is a random error term with e ∼ N(0, σ2), and ε is a fitting
error term.

The specific simulation data are taken as follows:

• In the main model, X1 ∼ U(0, 1) and X2 ∼ U(0, 1), β1 = 0.3 and β2 = 0.5, ρLag = 0.9,
and Y is generated by Equation (14) and we randomly remove 15% data as the missing
values in X1 using the MAR mechanism;

• In the imputation model, α = 0.5 and ρ = 0.2; and
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• The spatial weight matrices W in both the main model and the imputation model
are selected as Queen-type adjoints, created in the regular lattice, and all error terms
in the model obey the normal distribution N(0, 0.52), taking the sample size n = 250,
pre-burn simulation of 20 times, interval rejection after pre-burn to keep one of the
5 iterations, and, finally, a total of 80 iterations of simulation are completed.

4.2. Fitting Effect Evaluation Indicators

The mean square error (MSE) value is used to reflect the difference between estimates
and estimates, the deviance information criterion (DIC) value is used to measure the fit of
the Bayesian model, and the accuracy is used to measure the prediction of the missing data.
The MSE can evaluate the degree of change of the data, and the smaller the value of the
MSE, the higher the accuracy of the data; the DIC criterion can weigh the complexity of the
estimated model and the goodness of the model fit, and the smaller the value, the better
the model fit; the accuracy is the ratio of the predicted value to the true value, which is
used to reflect the similarity between the true value and the predicted value of the missing
data and capture the missing information, and the larger the value, the more accurate the
prediction result.

4.3. Results Analysis

Using MCMCINLA to first impute the missing data in the covariates by the method
based on the CAR spatial model, and then fit the estimates to the SLM latent model, the
results of each simulation are shown in Tables 1 and 2, the fitted curves of ρLag, β1, and β2
and τ and the prediction comparison plots of the missing data are shown in Figures 1–3.

Table 1. Parameter estimation results and model fitting results in the simulation.

β1 β2 ρLag τ

Mean 0.2970 0.5040 0.9153 4.1133
Standard
Deviation 0.0744 0.0840 0.0210 0.3036

95% Credible
interval (0.2463, 0.3466) (0.4468, 0.5599) (0.8711, 0.9432) (3.9036, 4.3127)

MSE 2.25 × 10−8 4 × 10−8 5.929 × 10−7 3.209 × 10−5

DIC 12.7841

According to the results in Table 1, it can be found that the mean of each parameter β1,
β2, ρLag, and τ estimated in the SLM latent model are very close to the true values and the
MSE and the DIC are small, indicating that the parameter estimation and model fitting of
this estimation method are good. In addition, Table 2 shows the imputation results for each
missing datum in the simulation, where “Mean” represents the mean of the predicted value
of the missing data, “95%CI” denotes the 95% credible interval of the predicted value of the
missing data, “True value” represents the true value of the missing data, and “Accuracy” is
the ratio of “Mean” to “True value”. As shown in Table 2, except for the prediction accuracy
of V7 and V34, which is around 85%, the prediction accuracy of each missing datum is
basically above 90%, indicating that the imputation accuracy of our method is high and the
information contained in the missing data can be effectively mined for research with the
help of this method.
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Table 2. Imputation results for each missing datum in the simulation.

Mean 95%CI True Value Accuracy

V1 0.1732 (0.1010, 0.2454) 0.1848 0.9372

V2 0.6821 (0.6502, 0.7140) 0.7023 0.9712

V3 0.5500 (0.4928, 0.6073) 0.5733 0.9593

V4 0.1720 (0.1405, 0.2033) 0.1680 0.9791

V5 0.9578 (0.9284, 0.9872) 0.9438 0.9853

V6 0.9276 (0.9020, 0.9534) 0.9434 0.9832

V7 0.1101 (0.0118, 0.2084) 0.1291 0.8528

V8 0.8169 (0.7875, 0.8461) 0.8334 0.9802

V9 0.4790 (0.4479, 0.5105) 0.4680 0.9770

V10 0.5222 (0.4633, 0.5813) 0.5499 0.9496

V11 0.5312 (0.4862, 0.5763) 0.5526 0.9612

V12 0.2510 (0.1945, 0.3055) 0.2388 0.9513

V13 0.7798 (0.7504, 0.8092) 0.7605 0.9752

V14 0.1673 (0.0911, 0.2435) 0.1808 0.9253

V15 0.4223 (0.3773, 0.4673) 0.4052 0.9595

V16 0.8467 (0.8292, 0.8644) 0.8535 0.9920

V17 0.9601 (0.9390, 0.9810) 0.9763 0.9834

V18 0.2333 (0.2039,0.2627) 0.2258 0.9678

V19 0.4298 (0.4006,0.4594) 0.4448 0.9662

V20 0.0800 (0.0075,0.1558) 0.0749 0.9362

V21 0.6472 (0.6215, 0.6729) 0.6618 0.9779

V22 0.3664 (0.3075, 0.4253) 0.3875 0.9455

V23 0.8468 (0.8269, 0.8667) 0.8368 0.9881

V24 0.1436 (0.0908, 0.1967) 0.1505 0.9541

V25 0.3280 (0.2684, 0.3872) 0.3472 0.9447

V26 0.5998 (0.5814, 0.6186) 0.6114 0.9810

V27 0.3776 (0.3254, 0.4230) 0.3949 0.9561

V28 0.5401 (0.5300, 0.5500) 0.5396 0.9990

V29 0.8579 (0.8455, 0.8703) 0.8616 0.9957

V30 0.7492 (0.7491, 0.7618) 0.7524 0.9957

V31 0.7376 (0.7083, 0.7695) 0.7582 0.9728

V32 0.9165 (0.9066, 0.9264) 0.9238 0.9920

V33 0.3179 (0.2753, 0.3605) 0.3289 0.9665

V34 0.1323 (0.0294, 0.2355) 0.1563 0.8464

V35 0.2290 (0.1604, 0.2976) 0.2151 0.9393

V36 0.1075 (0.0586, 0.1564) 0.1128 0.9530

V37 0.2001 (0.1712, 0.2232) 0.1957 0.9780

V38 0.8436 (0.8235, 0.8640) 0.8576 0.9836

V39 0.2179 (0.1712, 0.2646) 0.2277 0.9569

V40 0.7447 (0.7214, 0.7683) 0.7670 0.9709
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Figures 1 and 2 show the fitted curves of the covariate coefficients β1 and β2, the error
term precision τ, and the density function curve of the spatial autocorrelation parameter
ρLag, respectively, where the black solid line is the fitted value and the black dashed line
perpendicular to the x-axis is the true value. Figure 3 shows the predicted versus true
values of the missing data, where the x-axis represents the predicted values of the missing
data and the y-axis represents the true values of these missing data that are artificially
removed. As can be seen from Figures 1 and 2, except for the peak of ρLag, which deviates
slightly from the true value, the peaks of all the other parameters are very close to the true
value, and all points in Figure 3 basically fall on the line y = x. This indicates that the SLM
latent model with the covariates containing missing data can be estimated and predicted
relatively well using MCMCINLA.

5. Empirical Analysis
5.1. Subject Presents

In the post-epidemic era, outbreaks of various infectious diseases, especially the
outbreak of COVID-19, have raised thoughts about the restructuring of the public health
system and the corresponding financial investment reforms [22]. How to effectively adjust
to the various problems revealed under the epidemic to ensure the continued health of the
country’s public health has become a key and urgent issue for current research. In the case
of medical data, data are often missing during collection and transmission due to clinical
trials or equipment failures [23]. It is important to make full use of the large amount of
data to mine the important information and make correct predictions of the missing data to
make a comprehensive analysis of the research subject.

This paper obtains the economic and disease data of 31 regions in mainland China from
2016 to 2018 through the China Statistical Yearbook (http://www.stats.gov.cn, accessed on
31 December 2020) and the Public Health Science Data Center (http://www.phsciencedata.
cn, accessed on 31 December 2018), and uses the national financial investment in public
health as the response variable Y and the number of infectious disease cases, economic
development, and scientific and technological development as the covariates X to construct
the SLM latent model to explore how public health in China can further be developed in the
post-epidemic era. The national financial investment in public health is expressed by the
indicator “health expenditure in general public budget expenditure by region”. Since China
has become the most seriously affected country in the world by HFRS [24], the infectious
disease studied here is HFRS, and the number of infectious disease cases is expressed by
the indicator “number of HFRS cases by region”. The economic development is expressed
by the indicator “regional gross product”. The scientific and technological development
is expressed by the indicator “number of research and experimental development R&D
projects by region”. Using the MAR mechanism to randomly remove 15% of the data from
the number of infectious disease cases to construct the SLM latent model for covariates
with random missing data, we have:

Y = (In − ρLagW)−1(X1β1 + X2β2 + X3β3 + e) + ε. (15)

If we set the prior distribution for the hyperparameters, the ρLag of the main model
is assigned a uniform distribution that satisfies (−2, 1), and at this time, the minimum
eigenvalue of the adjacency matrix W is −0.5. The prior of the coefficient vector βi and τ
are set as the default values in R-INLA. Then, we assign a Gaussian prior with a zero mean
and 0.00005 precision to the intercept α in the imputation model, set in the imputation
model as above using the default settings in R-INLA, and assign logit(ρ) to a Gaussian
prior with a zero mean and 0.001 precision.

5.2. Exploring the Development of Public Health in China in the Post-Epidemic Era

Using MCMCINLA, the missing data are imputed with the help of inla.rgeneric.define(),
and the model is fitted using fit.inla( ) and the estimated values of the spatial autocorrelation

http://www.stats.gov.cn
http://www.phsciencedata.cn
http://www.phsciencedata.cn
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parameters and the posterior estimates of the regression coefficients of the influencing
factors are obtained as shown in Table 3. The regression coefficients of the influencing
factors are plotted in Figure 4.

Table 3. Posterior estimates of the regression coefficients of each influencing factor of financial
investment in public health.

Variables Mean Standard Deviation 95% Credible Interval

The number of
infectious disease
cases

−0.0421 0.0429 (−0.0711, −0.0135)

Economic
development 1.2719 0.1001 (1.2043, 1.3385)

Scientific and
technological
development

−0.3777 0.0925 (−0.4399, −0.3160)

As estimated by MCMCINLA, the spatial autocorrelation parameter is ρLag = 0.6933,
which indicates that there is a significant spatial correlation between the national finan-
cial investment in public health between regions. To a certain extent, the public health
development of a region also has some influence on the public health development of
the surrounding regions. From the results of Table 3, it can be found that the posterior
mean of economic development is 1.2719, which indicates that the increase of economic
level will increase the national financial investment in public health, which can provide the
power financial source for the development of public health. However, the posterior mean
of the number of infectious disease cases and scientific and technological development
are −0.0421 and −0.3777, respectively, indicating that the incidence of infectious diseases
and the country’s scientific and technological development during 2016–2018 have the
opposite effect on the amount of financial investment in public health, which, to some
extent, also reveals the shortcomings and inadequacies of the public health management
system and the institutional mechanism for epidemic prevention and control. The increase
in the number of incidences of general infectious diseases did not attract sufficient atten-
tion to the refinement of the CDC structural system, and the rising level of science and
technology did not contribute to the problem of updating and replenishing the equipment
of specialized public health institutions, leading to the sudden outbreak of the COVID-19
resulting in 2019 a shortage of medical resources and medical personnel and insufficient
reserves of premises and materials [25]. Therefore, in the post-epidemic era, it is more
important for the government to learn from previous experiences and lessons, establish a
reserve mechanism of materials for public health emergencies, build a modern epidemic
prevention material reserve system [26], increase the construction of professional public
health institutions and the procurement of professional equipment updates, and improve
the ability to face public health emergencies in order to quickly and effectively control
sudden major infectious epidemics.



Entropy 2022, 24, 916 13 of 18

Entropy 2022, 24, 916 12 of 17 
 

 

5.2. Exploring the Development of Public Health in China in the Post-Epidemic Era 

Using MCMCINLA, the missing data are imputed with the help of inla.rgeneric.de-

fine(), and the model is fitted using fit.inla( ) and the estimated values of the spatial auto-

correlation parameters and the posterior estimates of the regression coefficients of the in-

fluencing factors are obtained as shown in Table 3. The regression coefficients of the in-

fluencing factors are plotted in Figure 4. 

Table 3. Posterior estimates of the regression coefficients of each influencing factor of financial in-

vestment in public health. 

Variables Mean Standard Deviation 95% Credible Interval 

The number of infectious dis-

ease cases 
−0.0421 0.0429 (−0.0711, −0.0135) 

Economic development 1.2719 0.1001 (1.2043, 1.3385) 

Scientific and technological de-

velopment 
−0.3777 0.0925 (−0.4399, −0.3160) 

 

 

 

 

Figure 4. Estimated figures of the regression coefficients of each influencing factor of financial in-

vestment in public health. 
Figure 4. Estimated figures of the regression coefficients of each influencing factor of financial
investment in public health.

5.3. Imputation of Missing Predictor Values

Using the CAR spatial model-based approach to impute the SLM latent model with the
missing data in X1, we obtain the prediction information of the missing data and comparing
the imputed predicted value with the true value to determine the imputation accuracy.

Based on the prediction results of the missing data in Table 4, it can be seen that the
predicted means of the missing values are very close to the true values, and the accuracy
rates are basically above 90%, indicating that the imputation of the missing covariates
using the CAR space model-based approach with the help of MCMCINLA works well.
Meanwhile, observing the data information in the table, we can find that the number of
HFRS cases in different regions varies significantly, with a certain spatial heterogeneity and
a spatial distribution trend of south-heavy and north-light. The areas with more incidences
are Guangdong and Fujian, mostly in the mountainous areas in the south, which have
richer vegetation and more precipitation; the areas with fewer incidences are Xinjiang,
Tibet, Ningxia, and Gansu, which are mostly in the drier plains. To some extent, increased
precipitation promotes the growth of vegetation and crops and provides a more suitable
environment for rodents, such as rats, in mountainous areas, creating an increased risk
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of HFRS transmission [27]. Therefore, for HFRS, the relevant CDC departments should
focus on the prevention and control of the epidemic in the southern region in the future to
effectively control the further spread of the epidemic.

Table 4. Missing data prediction results in the number of infectious disease cases (MCMCINLA).

Mean 95%CI True Value Accuracy

Ningxia (2016) 4.3678 (2.8478, 5.8889) 4 0.9157

Tibet (2016) 1.1752 (0.1642, 2.1894) 1 0.8509

Hubei (2016) 248.4683 (226.5048,
270.4318) 236 0.9498

Guangdong (2016) 436.1809 (391.1957,
481.1663) 410 0.9399

Gansu (2016) 20.4501 (11.3075,
29.5927) 19 0.9290

Hebei (2016) 456.7421 (406.4227,
510.0615) 434 0.9502

Guangxi (2017) 14.9736 (9.7006, 20.2477) 14 0.9349

Beijing (2017) 7.7038 (4.8404, 10.5663) 7 0.9086

Xinjiang (2018) 1.1431 (0.0471, 2.2392) 1 0.8748

Shanxi (2018) 22.5906 (14.3455,
30.8357) 21 0.9295

Tibet (2018) 1.1620 (0.1601, 2.1639) 1 0.8605

Shandong (2018) 1268.9431 (1025.2239,
1512.6623) 1218 0.9598

Fujian (2018) 447.8379 (408.5648,
487.1110) 430 0.9601

Tianjin (2018) 21.0547 (12.3284,
29.7810) 20 0.9499

Chongqing (2018) 13.0454 (7.7685, 18.3223) 12 0.9198

5.4. Comparison of Different Imputation Methods

With the development of statistical techniques, a series of model-based missing data
processing methods, such as the maximum likelihood estimation, have received increas-
ing attention from academics [28]. They mainly include EM and FIML, which have the
advantages of convenient operation and more applicable models.

EM is an iterative algorithm that processes the missing data by calculating the maxi-
mum likelihood, and its imputation of the missing values can be achieved by continuous
iteration once the initial values of the estimated parameters are given [29]. The principle
of FIML is to model the available data using a “one-step” operation and estimate the
parameters using a likelihood function; thus, the missing data imputation and parameter
estimation processes are implemented simultaneously [30]. The missing data imputation
process of the EM and FIML methods is done with the help of the TestDataImputation pack-
age and GDINA packages, respectively. The EM and FIML are imputed separately for the
missing infectious disease case data and the results are obtained as shown in Tables 5 and 6.
The comparison shows that all three imputation methods can obtain more accurate esti-
mates, and the results obtained by the different methods do not differ much. Relatively
speaking, the imputation accuracy of MCMCINLA is slightly better than EM, and the
FIML method ranks last; however, in terms of computational speed, both MCMCINLA
and EM need to perform imputation before completing the estimation, and the estimation
of ρ when MCMCINLA needs to be performed with the help of MH sampling, which
takes a long time, takes about 0.5 h, while the FIML method can obtain both the imputed
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and estimated values at the same time, which is more efficient. In addition to using the
accuracy to evaluate the imputation effect of each missing datum from the individual point
of view, we can also select three evaluation indicators: MSE, mean absolute percentage error
(MAPE) and Pearson correlation coefficient (r) to compare the imputation performance
of the three methods from the global point of view [31]. The results are shown in Table 7.
MSE can be used to measure the absolute deviation between the imputed value of the
missing data and the true value, MAPE can be used to measure the relative error between
the imputed value and the true value, both of which are as small as possible, and r can be
used to illustrate the correlation between the imputed value and the true value, and the
larger the r value, the better the fitting effect. From the results in Table 7, it can be found
that the MSE and MAPE values of the three algorithms of MCMCINLA, EM, and FIML are
all small, and the r values are all large, indicating that the three algorithms can obtain ideal
imputation effects for missing data, and in comparison, the imputation performance of the
MCMCINLA proposed in this paper is more prominent.

Table 5. Missing data prediction results in the number of infectious disease cases (EM).

Mean 95%CI True Value Accuracy

Ningxia (2016) 4.3922 (2.8294, 5.9552) 4 0.9107

Tibet (2016) 1.1610 (0.1573, 2.1647) 1 0.8613

Hubei (2016) 255.4665 (212.1427,
298.7903) 236 0.9238

Guangdong (2016) 444.9267 (372.6629,
517.1905) 410 0.9215

Gansu (2016) 20.6387 (10.9749,
30.3025) 19 0.9206

Hebei (2016) 457.8542 (401.1974,
514.5110) 434 0.9479

Guangxi (2017) 15.3475 (9.0223, 21.6727) 14 0.9122

Beijing (2017) 7.9113 (4.1923, 11.6303) 7 0.8848

Xinjiang (2018) 1.1326 (0.0012, 2.2640) 1 0.8829

Shanxi (2018) 22.9332 (13.5426,
32.3238) 21 0.9157

Tibet (2018) 1.1372 (0.1477, 2.1266) 1 0.8793

Shandong (2018) 1292.1705 (1009.3498,
1574.9912) 1218 0.9426

Fujian (2018) 453.3473 (396.4419,
510.2527) 430 0.9485

Tianjin (2018) 21.4799 (11.3123,
31.6475) 20 0.9311

Chongqing (2018) 13.3288 (7.0392, 19.6184) 12 0.9003
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Table 6. Missing data prediction results in the number of infectious disease cases (FIML).

Mean 95%CI True Value Accuracy

Ningxia (2016) 4.4400 (2.7943, 6.0857) 4 0.9009

Tibet (2016) 1.1219 (0.1621, 2.0817) 1 0.8913

Hubei (2016) 256.9686 (210.1379,
303.7993) 236 0.9184

Guangdong
(2016) 450.1042 (368.4492,

531.7592) 410 0.9109

Gansu (2016) 20.9320 (10.8787,
30.9853) 19 0.9077

Hebei (2016) 468.7837 (392.1163,
545.4583) 434 0.9258

Guangxi (2017) 15.5936 (8.9372, 22.2501) 14 0.8978

Beijing (2017) 7.8431 (4.3958, 11.2904) 7 0.8925

Xinjiang (2018) 1.1282 (0.0297, 2.2267) 1 0.8863

Shanxi (2018) 23.2970 (12.4424,
34.1517) 21 0.9014

Tibet (2018) 1.1462 (0.1392, 2.1532) 1 0.8724

Shandong
(2018) 1312.6414 (1004.2167,

1621.0661) 1218 0.9279

Fujian (2018) 457.3981 (391.2553,
523.5409) 430 0.9401

Tianjin (2018) 21.7936 (11.0744,
32.5128) 20 0.9177

Chongqing
(2018) 13.5379 (7.0102, 20.0656) 12 0.8864

Table 7. Imputation performance comparison of MCMCINLA, EM, and FIML.

Evaluation
Indicators MCMCINLA EM FIML

MSE 4.27 × 10−5 9.44 × 10−5 2.153 × 10−4

MAPE 3.498 × 10−5 7.2 × 10−5 1.058 × 10−4

r 0.9222 0.9122 0.9051

6. Conclusions and Discussion

Medical data are often missing during collection and transmission due to clinical trials
or equipment failures. In this paper, we investigate the problem of parameter estimation for
SLM when the covariates contain random missing data, and we propose a new imputation
method that uses MCMCINLA to get not only accurate parameter estimates for the model,
but also good imputation results for the missing data. Taking the economic and HFRS
disease data of mainland China from 2016–2018 as an example for empirical analysis, the
study found that the HFRS epidemic in China had obvious spatial heterogeneity and a
south-heavy and north-light distribution trend. Before the outbreak of COVID-19 in 2019,
China’s public health management system had certain problems, and the state’s financial
investment in public health did not receive certain attention. Compared with EM and FIML,
the predicted values of the missing data obtained using our method are closer to the true
values. Therefore, in the future, the relevant CDC departments should focus their attention
on the south or areas with a high incidence of epidemics in wetter climatic conditions and
do a good job of the research and diagnosis of HFRS epidemics. In the post-epidemic era,
the government should play a leading role, actively learn from previous experiences and
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lessons, establish a mechanism for stockpiling materials for public health emergencies,
build a modern epidemic prevention material reserve system, and increase the construction
of professional public health institutions and the procurement of professional equipment
updates in order to quickly and effectively control sudden major infectious epidemics.

Since this paper mainly focuses on model imputation, fitting, and estimation with ran-
dom missing data, the other two mechanisms are not explored in depth. It can continue to
be extended in the future to study how to use the method to deal with different imputation
models and missing mechanisms.

One of the fundamental aspects of imputation, in addition to the missing pattern (MAR,
MCAR, and NMAR), is the percentage of missing data. It would be more intriguing to
study how the new algorithm is affected by the percentage of missing data and compare its
performance with other algorithms. In this paper, we take the 15% missing data percentage
as an example to conduct intensive research. In the future, different levels of missing
rates (such as 5%, 10%, 15%, 30%, and 50%) can be set to discuss the performance of the
algorithm more comprehensively.

Finally, since in this paper we only design a set of simulation experiments to test the
algorithm, objectively speaking, the effectiveness of the algorithm is questionable when it is
extended to other situations (for example, if X takes different probability distributions, ρLag
takes different spatial autocorrelation degrees). Therefore, the test effect of the imputation
algorithm in other cases can be further explored in the future.
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