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Introduction: This paper presents a novel technique for the synthesis of graphene oxide

(GO) with various surface features using high-density atmospheric plasma deposition.

Furthermore, to investigate the use of hydrophobic, super-hydrophobic, and hydrophilic

graphene in biological applications, we synthesized hydrophobic, super-hydrophobic, and

hydrophilic graphene oxides by additional heat treatment and argon plasma treatment,

respectively. In contrast to conventional fabrication procedures, reduced graphene oxide

(rGO) formed under low pressure and high-temperature environment using a new synthesis

method—developed and described in this study—offers a convenient deposition method on

any kind surface with controlled wettability.

Methods: High density at atmospheric plasma is used for the synthesis of rGO and GO and

its biocompatibility based on various wetting properties was evaluated using MTT

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the viability of

cells in response to rGO and GO with various surface features was investigated. Structural

integrity was characterized by Raman spectroscopy, FESEM and FE-TEM. Wettability was

measured via contact angle method and confirmed with XPS analysis.

Results: We found that GO coating with a hydrophilic feature is more biocompatible than

other surfaces as observed in case of fibroblast cells. We have shown that wettability—

controlled by GO deposition—influences biocompatibilities and antibacterial effect of bio-

material surfaces.

Discussion: Measuring the contact angle, it is found that contact angle for hydrophobic is

increased to 150.590 and reduced to 11.580 by heat and argon plasma treatment, respectively,

from 75.880 that was initially in the case of hydrophobic surface. XPS analysis confirmed

various oxygen-containing functional groups transforming as deposited hydrophobic surface

into superhydrophobic and hydrophilic surface. Thus, we have proposed a new, direct, cost-

effective, and highly productive method for the synthesis of rGO and GO—with various

surface properties—for biological applications. Similarly, for the dental implant application,

the Streptococcus mutans was used as an antibacterial effect and found that S. mutans grows

slowly on hydrophilic surface. Thus, antibacterial effect was prominent on GO with hydro-

philic surface.

Keywords: reduced graphene oxide, graphene oxide, atmospheric plasma, biocompatibility,

MTT assay, hydrophobicity, super-hydrophobicity and hydrophilicity

Introduction
Materials made of carbon are recognized to be more biocompatible than inorganic

materials.1 Graphene—one of the allotropic forms of carbon—has unique properties

that can be used in transparent conductive electrodes, photodetectors and transis-

tors, light-emitting diodes, photoelectrochemical, and biological usages.2 The
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numerous chemical properties of graphene have enabled

its applications in high-performance devices that generate

and store energy. Recently, the applications of graphene,

graphene oxide (GO), and reduced graphene oxide (rGO)

have increased in the biomedical areas such as cell differ-

entiation and osteoblast growth.3–8 As compared to gra-

phene, the presence of oxygen-containing functional

groups in GO has promoted a wider application of the

latter in the field of surface chemistry. Structurally, GO

consists of a single layer of graphene sheets where the

concentration of carbon atoms is reduced to 40‒60% due

to the addition of oxygen-containing functional groups.9

Despite having multiple advantages over graphene, GO is

still structurally defective and mechanically poorer.

Further, GO can be modified into rGO by thermal or

chemical reductions; rGO is an intermediate structure

between the highly oxidized GO and ideal graphene, and

thus, possesses some of the properties of both GO and

graphene.9

GO is usually synthesized by exfoliating the bulk gra-

phite, either mechanically or chemically, followed by their

deposition on a designated substrate using chemical vapor

deposition (CVD) on the metal catalyst and Hummer’s

technique.9–12 GO is generated mechanically by exfoliating

the bulk graphite using “scotch tape.” This method is easier,

however, the yield is low and it is difficult to control the layer

thickness and quality of graphene due to the possible con-

taminations from surfactants or solvents, apart from being

costlier and time-consuming.9–11 Additionally, the layers are

not deposited with uniformity. Generally crumples and rip-

ples appear during the deposition of exfoliated layers on

a substrate of interest, creating deformation of stacked

layers.13 CVD for GO synthesis is complicated and costlier

and is further hindered by the generation of uncontrollable

yield and higher energy demands.11,14,15 The most extensive

method for GO synthesis is Hummer’s process.16–19

However, this technique has been criticized due to the release

of toxic gases like NO2, N2O4, and ClO2, which are explosive

in nature.20–23 The synthesis method discussed here is

a relatively efficient technique that demonstrates a new

means for synthesizing rGO and GO from a gaseous source,

such as a mixture of methane (10%) and argon (balanced), in

a very simple way. This simple process could be used for

a cost-optimized synthesis of both rGO and GO.

Herein, we developed a novel method for the syntheses

of rGO and GO with various surface properties i.e., hydro-

philic, hydrophobic, and super hydrophobic, using a high-

density atmospheric plasma instrument at ambient

environment without using any catalyst for the effective

deposition on various substrates. Hydrophobic rGO was

synthesized by direct deposition using a mixture of

methane and argon gas while super hydrophobic and

hydrophilic GO were synthesized after treatment with

additional heat and argon plasma, respectively.

A high-profile research is carried out on graphene and

its derivatives in biological applications.24–26 In some

in vivo and in vitro studies both graphene and GO did

not show cytotoxicity to bones.27 In another in vitro study

done on glioma Cells, it is found that GO is less toxic than

rGO. However, the in vivo results show that toxicity is

varied with graphene surface.28 Impurities play

a prominent factor in the biocompatibility of GO in

in vitro and in vivo, so as highly purified GO in compar-

ison with prepared GO shows minor negative effects.29

Similarly in vitro study using magnetic graphene oxide

exhibits low cytotoxicity.25 So, to develop a relationship

of GO with various surface properties we made an initial

effort on in vitro study with fibroblast cells (NCTC L929)

and anti-bacterial effect (Streptococcus mutans).

Materials
Synthesis of Reduced Graphene Oxide
Titanium specimens, having 2 mm thickness and 15 mm

diameter, were polished by a series of sand papers and

with alumina suspension (1 μm alumina powder). Before

depositing rGO, the surface was ultrasonically cleaned

with ethanol and distilled water for 10 minutes to

remove the contaminants. GO was deposited using high-

density atmospheric plasma generator PGS-300

(Expantech Co., Suwon, Korea), operated at 900 MHz.

The plasma was generated with 100 W (900 MHz)

power. Argon gas was used as a plasma carrier at

a rate of 6 L/m. Then a mixture of methane (10%) and

argon gas as a carbon source were introduced to the

plasma at a rate of 100 SCCM while simultaneously

increasing the power to 180 W. The change of plasma

color indicates that source gas dissociation has started

for carbon-carbon nucleation. The effects of distance

between the plasma tip and the substrate on the deposi-

tion of GO was also evaluated. The plasma with the

carbon source was run for 4 minutes for direct deposition

of rGO on titanium substrate with the hydrophobic fea-

ture as illustrated in Figure 1. Furthermore, super-

hydrophobicity and hydrophilicity were achieved after
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additional heat treatment and argon plasma treatment,

respectively.

Synthesis of Graphene Oxide
Here again substrate used is titanium with 2 mm thickness

and 15 mm diameter and followed with the same proce-

dure done for rGO synthesis but here we just treat the

already deposited rGO with only argon plasma treatment

at a rate of 6 L/m for 1 min and 30 sec with the source gas

turned off.

Characterization of the Materials
The structural integrity of the direct deposition of rGO was

confirmed through Raman spectroscopy, X-ray photoelec-

tron spectroscopy (XPS), and field emission transmission

electron microscopy (FE-TEM). We measured the transi-

tion from hydrophobic to hydrophilic and super hydropho-

bic by the contact angle (Phoenix 300, SEO Korea) that

reflects the interaction of the surface with an aqueous

solution. XPS was performed to differentiate between

graphene oxide and reduced graphene oxide that reveal

different oxygen-content of functional groups which

changes as a hydrophobic surface transforms into super-

hydrophobic or hydrophilic. Raman spectroscopy assured

that both rGO and GO were successfully synthesized.

For biological applications, wettability plays an impor-

tant role, and it was measured accordingly. Further, the

biocompatibility of GO and rGO (having different surface

properties ie, super hydrophobic, hydrophobic, or hydro-

philic) deposited on titanium substrate was evaluated by

MTT assay, to compare between carbon coating having

different surface properties and bare titanium substrate.

Cell viability is dramatically enhanced on the hydrophilic

surface when compared with hydrophobic, super hydro-

phobic or titanium substrate.

In this paper, therefore, we proposed a highly produc-

tive and cost-effective novel technique for the direct

deposition of rGO and GO, with various surface proper-

ties, on a biomedical substrate. We subsequently evaluated

the biological application to confirm the relationship

between different surface properties with cell viability

and anti-bacterial effect.

Field Emission Transmission Electron Microscopy

Morphology of the GO-coated samples were analyzed by

field emission transmission electron microscopy (FE-

TEM, Model: JEM-2100F, JEOL LTD) using an accelera-

tion voltage of 200 kV.

Field Emission Scanning Electron Microscopy

In order to study the surface roughness, we performed field

emission scanning electron microscopy (FESEM, Model:

Figure 1 (A) Schematic diagram of the atmospheric plasma instrument. (B) Decomposition of methane in the high-dense plasma and carbon-carbon bonding through the

tube.
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Gemini 500 + EDS (Oxford)) analyzing side view of the

coatings.

Laser Raman Spectroscopy

Laser Raman spectroscopy (NRS-5100) was used at

a wavelength of 532 nm in order to differentiate between

rGO and GO.

High-Performance X-Ray Photoelectron

Spectroscopy

High-Performance X-ray photoelectron spectroscopy

(XPS, Model: K-ALPHA +) with Al Kα X-ray analyzer

was used to study the various functional groups.

Contact Angle Instrument

Contact angle instrument is used to measure the wettability

using distilled water (Phoenix 300, SEO Korea).

Thermo Scientific Varioskan Lux Spectrophotometer

Spectrophotometer is used for MTT assay evaluation at

570 nm.

Biocompatibility Assay

NCTC L929 cells (purchased from ATCC) were chosen

for cells viability. In brief, L929 cells were seeded at

a density of 5 x 104 cells/well (25% confluency) using

24 well plates in 1 mL RPMI media on GO and rGO

coated surfaces with various surface properties and

allowed the cells to settle down for attachment for

a period of 3 days at 37º. After three days of incubation,

media was removed with proper care and washed with 1x

Phosphate Buffered Saline (PBS) twice. Next step is fol-

lowed with 0.1mg/mL MTT (3-(4, 5-dimethylthiazol-

2-yl)-2, 5-diphenyltetrazolium bromide) while putting

450ul RPMI media and 50ul MTT assay in each well.

Further plates were incubated for at least 2 hours and

then the media was replaced with 500ul MTT solvent

(Dimethylsulfoxide). The absorbance was taken at 570

nm using Varioskan lux reader. Additionally, as

a successful candidate for the surface treatment of the

dental implant, Streptococcus mutans is used for antibac-

terial effect.

Results and Discussion
Raman spectroscopy analysis was performed to differ-

entiate between rGO and GO and to find the number of

layers as well. The characteristic peaks for graphene are

D (1350 cm−1), G (1580 cm−1), and 2D peak at

2690 cm−1. Pristine graphene does not have a D peak

that represents defects, edges of a graphene crystal, and

chemical bonds.30 Typical Raman spectra for GO are

characterized by its D and G band corresponding to

1353 cm−1 and 1605 cm−1, respectively,31 The two

major peaks for rGO arise at 1350 cm−1 and

1599 cm−1, which corresponds to the D and G peak,

respectively. However, rGO and GO can be differen-

tiated by the variation observed in the ratio of D and

G peak intensities (I(D)/I(G) ratio).32 The I(D)/I(G) ratio

was higher for rGO, suggesting high sp2 clusters than

GO.32 The D peak arises due to the breathing mode of

k-point photons of A1g symmetry, while the G band is

due to the first-order scattering of E2g phonons that arise

from sp2 carbon atoms.33,34

Firstly, we evaluated the rate of synthesis and deposition

of GO on the substrate based on the distance between the

plasma and the substrate. The spectrum in Figure 2A does not

show D, G, and 2D peaks, signifying that no carbon coating

was done while the flame touches the substrate. Raman

spectra of Figure 2B showed D, G, and 2D bands, transpired

at 1348 cm−1, 1592 cm−1, and 2693 cm−1, respectively con-

firming that rGO was successfully deposited at a distance of

2.5 cm. Similarly, D, G, and 2 D bands, for Figure 2C

occurred at 1351 cm−1, 1598 cm−1, and 2692 cm−1, respec-

tively, which showed that rGO coating was successfully

synthesized at a distance of 5 cm. Figure 2D has two promi-

nent peaks at 1354 cm−1 and 1613 cm−1 corresponding to D,

and G band, respectively that matches with the peaks of GO.

The 2 D band was reduced with increasing flame distance,

leading to the synthesis of GO. This phenomenon is attrib-

uted that adequate distance is required in the synthesis of GO

because longer distance would enhance the presence of oxy-

gen atoms during carbon-carbon bonding inside the tube as

our process is atmospheric plasma based. The intensities

were found to differentiate between rGO and GO using I(D)
/I(G) ratio and I(2D)/I(G) ratio that reflected the number of

layers. The intensities, as shown in Figure 2B, are 457, 393,

and 312 corresponding to D, G, and 2 D band, respectively,

and the intensity ratio for I(2D)/I(G) was 0.79 showing

a multi-layered rGO.35 The intensities, shown in Figure 2C

are 308, 291, and 281 for D, G, and 2 D peaks, respectively

and its ratio for I(2D)/I(G) is 0.96 that corresponds to a multi-

layered rGO.35 Similarly, the intensities shown in Figure 2D

are 455, 462, and 390 and the intensity ratio for I(2D)/I(G)

was 0.84 corresponding to a multi-layered deposition of

GO.35 Likewise, the I(D)/I(G) ratio for Figure 2B–D is 1.1;

1.0 and 0.9. On the basis of the I(D)/I(G) ratio, Figure 2B and

C are attributed to rGO while Figure 2D is assigned to GO.32
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X-ray photoelectron spectroscopic analyses were per-

formed to identify the various functional groups in hydro-

phobic rGO, super-hydrophobic rGO, and hydrophilic GO.

High-resolution XPS C1s spectra obtained for rGO and

GO are shown in Figure 3. The C1s peak in Figure 3A

belongs to rGO with hydrophobic features showing peak

binding energies at 284.6, 285.3, and 286.4 eV ascribed to

C=C (75.9 at. %), C-OH (12.57 at. %), and C-O-C (11.49

at. %), respectively.36,37 Figure 3B is associated with rGO

functionalized by additional heat treatment after direct

deposition, thus generating super-hydrophobicity. The

functional groups of the super-hydrophobic rGO, appeared

at binding energies of 284.6, 285.4, and 286.48 eV attrib-

uted to C=C (77.875 at. %), C-OH (14.19 at. %), and

C-O-C (7.93 at. %) respectively.36–39 On the contrary,

hydrophobic rGO was turned into GO with hydrophilic

charters by additional argon plasma treatment. The transi-

tion from hydrophobic to hydrophilic was achieved due to

the diverse precursors of plasma treatment. Various func-

tional groups revealed in Figure 3C are 284.58, 285, 286.9,

and 288.76, corresponding to C=C (40.4 at. %), C-OH

(38.68 at. %), C-O-C (12.32 at. %), and COOH (8.96 at.

%) respectively.36–38 In Table 1 it is shown that O/C ratio

is the highest and the lowest at the hydrophilic and the

super-hydrophobic surfaces respectively which confirms

that hydrophilicity comes due to high amount of oxygen

contents.

Furthermore, Figure 4 shows high-resolution spectra of

O1s and N1s. Figure 4A shows two functional groups at

about 533.3 eV and 532.38 eV assigned to C-O and C=O,

respectively, which belongs to rGO with hydrophobic

character, functional groups binding energies are well-

matched with XPS database.40 Figure 4B also shows two

functional groups revealed at 532.5 eV and 531.6 eV,

corresponding to C=O. The addition of carbonyl group

indicates rGO with super-hydrophobicity.36,40 Likewise,

the peak in Figure 4C is also split into two components

of COOH at 532.9 eV and C-O (epoxy) at 532.4 eV, which

matched the peak of GO with hydrophilic feature.37,41

Similarly, the peak shown in Figure 3D is the N1s peak

that was additionally added in GO (hydrophilic) after

argon plasma treatment as our synthesis process was oper-

ating in an open environment. The peak is split into two

components, cyanide (N≡C) at 399.7 eV and NH2 at 401.4

eV.42,43

Figure 2 (A) No carbon coating while the flame is touched with the substrate. (B) rGO coating at a distance of 2.5 cm. (C) GO coating at a distance of 5 cm. (D) GO at

a distance of 8 cm.Abbreviations: GO, graphene oxide; rGO, reduced graphene oxide.
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Figure 5 shows TEM images obtained for rGO after

direct deposition. In order to examine its morphology, the

images were obtained through FE-TEM to confirm that

reduced graphene oxide is synthesized. In Figure 5A, the

layers are smoothly stacked one above the other with no

ripples and crumples due to the smooth deposition by

stable plasma. The appearance of these crumples usually

appears during exfoliation and restacking processes that

create the deformation of the stacked layers.45 Figure 5B

shows that rGO contains multi-layers in a similar direction

and the inset is selected area diffraction showing polycrys-

talline structure.21 Thus, morphology of rGO was con-

firmed through FE-TEM.

Figure 6 shows SEM side view images of both rGO and

GO. These SEM images were taken to study the irregularities

on the surface and it is evident from Figure 6 that rGO with

hydrophobic surface is having some irregularities and GO

with hydrophilic feature is smoothly deposited on the

Figure 3 C1s peak of (A) rGO (Hydrophobic) obtained by direct deposition, (B) rGO (Super-Hydrophobic) obtained by additional heat treatment, (C) GO (Hydrophilic)

obtained by additional argon plasma treatment after direct deposition.

Table 1 Atomic Percentages of C, O, O/C Ratio and Functional Groups

rGO and GO Coating At % of C At % of O O/C Ratio % of

C=C

% of

C-OH

% of

C-O-C

% of

COOH

Super Hydrophobic 90 10 0.11 77.8 14.19 7.93

Hydrophobic 86.79 13.29 0.1544 75.9 12.57 11.49

Hydrophilic 83 17 0.20 40.4 38.68 12.32 8.96
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surface. Thus, argon plasma treatment is helpful in trans-

forming the surface from roughness into smoothness.

The wettability of carbon-coated samples (rGO and

GO) is a crucial factor in the biological applications.

Thus, wettability was measured through contact angle

instrument (Phoenix 300, SEO Korea). Hydrophobicity is

shown in Figure 7A, where reduced graphene oxide was

directly deposited. Figure 7B shows super hydrophobicity

where deposited carbon coating was heat-treated at 200 °C

for 1 hour and 30 minutes. This remarkable increase in

contact angle is attributed to the removal or reduction of

oxygen-containing functional groups in graphene oxide

sheets.46 Figure 7C shows hydrophilic characters where

the carbon-coated surface is additionally treated with

argon plasma. The decrease in contact angle can be

ascribed to the addition of oxygen-containing functional

groups that make hydrogen bonds with water molecules,

as explained in Figure 3C through XPS analysis. Figure

7D shows the water droplet on bare titanium without

carbon coating. All surface conditions are measured three

times and the average and the standard deviation of the

surfaces are described in Table 2.

Therefore, it is attributed that the transition from

hydrophobicity to hydrophilicity is obtained after argon

plasma treatment that helps in forming oxygen-

containing functional groups, which makes the carbon

deposited material more hydrophilic. The transition of

rGO surfaces from hydrophobic to hydrophilic is simple

and certain with a cost-optimized way without having

additional requirements of temperature and vacuum

Figure 4 O1s and N1s peaks (A) O1s peak of rGO (Hydrophobic) obtained by direct deposition, (B) O1s peak of rGO (Super-Hydrophobic), (C and D) O1s and N1s

peaks of GO (Hydrophilic).
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formation. The mechanism involved behind the formation

of hydrophilic surface is that the ion energy in plasma,

usually greater than 10 eV, exceeds the binding energy of

carbon, which is about 2.7 eV and 3.6 eV for π-bonding

and σ-bonding respectively, thus forming an oxygen-

containing functional groups.11 Compounds like C-OH,

C-O-C, COOH, C-O-C, and carboxylates (O-C=O) make

the surface hydrophilic from hydrophobic due to

a dynamic interaction with water by generating intermole-

cular forces called hydrogen bonding.47–50 The super-

hydrophobic features may resulted due to lack of these

polar functional groups and presence of phenolic func-

tional group that do exist at a higher temperature and

possesses low solubility with water.51

Carbon deposition on the surface of titanium with var-

ious surface conditions (hydrophobic; Superhydrophobic;

Figure 5 Field emission transmission electron microscopic images of reduced graphene oxide synthesized by atmospheric plasma. (A) Showing transparent sheets stacked

one above the other. (B) Multi-layers and Selective area electron diffraction image (inset).

Figure 6 Field emission scanning electron microscopic images of rGO and GO. (A) rGO with hydrophobic surface. (B) GO with hydrophilic surface. (C) Substrate without

coating.
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hydrophilic and bare Ti substrate) for the evaluation of

biocompatibility was followed by seeding NCTC L929

fibroblast cells at 25% confluency (5 x 104/mL). After

three days of growth, cell viability was evaluated by MTT

assay (Figure 8). In this context, we found that carbon

coating with hydrophilic feature proved to be a far better

surface than other surface conditions. We observed

entrapped air in the interfaces of the superhydrophobic

coating due to a high contact angle of about 150.6, as

shown in Figure 7B, implying that cells were not allowed

to settle down appropriately on the surface. Similar obser-

vation was made with hydrophobic coating; however, it was

less effective than the super-hydrophobicity. However, this

effect was negligible in case of hydrophilic coating that

resulted in higher cell viabilities. Similar phenomenon is

observed by another group where they have defined that the

air entrapped on superhydrophobic interfaces inhibit the

cells growth and can negatively affect the adsorption pro-

cess. Additionally, it is further defined that hydrophilic and

hydrophobic surfaces have a paramount role in the adhesion

process of cells which is in consistent with our results.52 So,

neither rGO nor GO show any cytotoxicity, and the hydro-

philic surface is more adequate for NCTC L929 fibroblast

cell growth. As a successful candidate for the surface treat-

ment for the dental implant, the antibacterial effect of the

deposited graphene oxide was conducted (Figure 9). For

this, Streptococcus mutans was incubated in the samples

with various surface conditions (cell culture well-plates for

the control, the bare surface without GO, hydrophilic GO,

hydrophobic rGO, and superhydrophobic rGO). As

expected, S. mutans grows fast on the superhydrophobic

surface of rGO-deposited Ti much the same as the control,

which S. mutans was incubated in a culture dish because

Figure 7 Water droplet on the surface of (A) Carbon layers deposited without

plasma treatment. (B) Carbon layers deposited with additional heat treatment. (C)

Carbon layers deposited with additional plasma treatment. (D) Without coating.

Table 2 Average and STD of Water Contact Angle Taken for

Three Samples on the Surface of Superhydrophobic,

Hydrophobic and Hydrophilic Carbon Coating on Titanium

Substrate

Surface Average (°) STD

Hydrophobic rGO 62 12.9

Super hydrophobic rGO 147.6 4.2

Hydrophilic GO 14 2.4

Ti substrate without coating 53 8.2

Figure 8 MTT assay for cytotoxicity of various surface conditions on Ti.

Figure 9 The effect of the various surface wettability on the viability of

Streptococcus mutans which is a common anaerobic bacterium found in human

oral cavity.
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S. mutans is an anaerobic bacterium and proliferated well in

anoxic environments. However, S. mutans on the hydrophi-

lic surface grows slowly rather than on the bare-Ti surface.

Therefore, the GO deposition with hydrophilicity enhanced

the antibacterial effect and the biocompatibility on the Ti

implant showing similarity with.53

Figure 10 is the diagrammatic representation of com-

paring surfaces with different wettability developing rela-

tionship with the cell viability and antibacterial effect.

Cells viability and antibacterial effect for hydrophilic sur-

face is 95% and 38%, respectively.

Conclusion
We report a very simple and novel method to effectively

synthesize and convert hydrophobic surfaces into super-

hydrophobic and hydrophilic surfaces using high-density

atmospheric plasma. Transition from hydrophobic (rGO)

to hydrophilic (GO) surface is achieved by additional

argon plasma treatment that results in highest biocompat-

ibility as evaluated by MTT assay. Further, superhydro-

phobic surfaces are prepared using additional heat

treatment; these surfaces show lowest cell viability. This

simple, low cost, and highly productive synthesis method

could enable cost-effective synthesis of rGO and GO for

potential biological and photoelectrochemical applica-

tions. Our study showed that both rGO and GO did not

show any cytotoxicity and in comparison GO showed

higher cells viability and anti-bacterial effect.53 Further

rGO and GO will be used for different drug loading

where rGO with hydrophobic character will be used for

hydrophobic drugs while GO will be used for hydrophilic

drugs. Additionally, osteoblast cells will be grown to

check its differentiation into bone cells and will be fol-

lowed for implant coating.
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