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ABSTRACT: Free energy calculations at finite temperature based on ab initio
molecular dynamics (AIMD) simulations have become possible, but they are still
highly computationally demanding. Besides, achieving simultaneously high
accuracy of the calculated results and efficiency of the computational algorithm
is still a challenge. In this work we describe an efficient algorithm to determine
accurate free energies of solids in simulations using the recently proposed
temperature-dependent effective potential method (TDEP). We provide a
detailed analysis of numerical approximations employed in the TDEP algorithm.
We show that for a model system considered in this work, hcp Fe, the obtained
thermal equation of state at 2000 K is in excellent agreement with the results of
standard calculations within the quasiharmonic approximation.

■ INTRODUCTION

Development of density functional theory (DFT), its
implementation within efficient computational software pack-
ages in combination with rapid increase of computer power
puts on the agenda a possibility of using simulations based on
the most fundamental laws of quantum physics for solving
important scientific challenges,1 as well as technologically
relevant tasks. The simulations, named ab initio, are widely used
in a variety of applications ranging from multidisciplinary
research projects to accelerated knowledge-based materials
design. However, standard DFT calculations are carried out at
zero temperature, and this significantly reduces predictive
power of the theory. Ab initio molecular dynamics (AIMD)
allows one to overcome this limitation. Compared with classical
molecular dynamics simulations, AIMD does not require any
fitting parameters because the force fields are calculated from
first principles. On the contrary, running AIMD simulations to
obtain accurate free energies is always an extremely demanding
problem in terms of required computational resources.
However, the free energy calculations give an important

insight into the behavior of the system in the case of applied
pressure and at finite temperature. The state-of-the-art
approach is based on independent calculations of harmonic,
quasiharmonic, and anharmonic contributions to the free
energy.2,3 In dynamically stable systems, the anharmonic
contribution to the free energy is relatively small. Unfortu-
nately, there is no efficient way to compute it. Moreover, in
systems with dynamical instabilities, the conventional technique
fails completely. Therefore, the treatment of the anharmonic
effects typically requires the use of additional techniques, such
as thermodynamic integration.4 In this paper, we show how the
recently developed temperature-dependent effective potential

(TDEP) method5,6 can be applied to calculate the free energy,
taking care of all the contributions simultaneously.
The TDEP employs AIMD, and therefore it is important to

optimize the TDEP algorithm. Here we describe a computa-
tionally efficient scheme of executing TDEP. The theoretical
background of TDEP has been presented earlier,5,6 and it has
been applied with great success in numerous studies of lattice
dynamics.7−13 Here we focus on the details of the computa-
tional algorithm. We demonstrate its performance in
calculations of the equation of state (EOS) of hexagonal
close-packed (hcp) iron at extreme conditions of ultrahigh
pressure and temperature.
The choice of the model system is governed by high

theoretical interest for the behavior of iron at Earth’s core
conditions. There are substantial uncertainties of the
experimentally, as well as theoretically, estimated values of
the properties of Fe, e.g., its crystal structure, elasticity, thermal
conductivity, and melting temperature.14−21 In addition, there
are uncertainties between shock wave experiments22−24 and
experiments carried out in laser-heated diamond anvil cells.25,26

In particular, it is extremely important to know the thermal and
pressure-dependent behavior of elastic properties of iron at
such conditions because it allows for better understanding of
the seismological data obtained up to this point. The recent
paper by Wang et al.27 suggests that the treatment of
seismological data heavily depends on the elastic model of
Fe. Even though iron is one of the most theoretically studied
materials, there are still a lot of questions to be answered,
because most of the ab initio structural stability calculations and
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estimation of elastic constants have been done at 0 K.21,28−36

An ability to model the thermal equation of state of Fe
theoretically is a necessary starting point to address the
challenges specified above. We show that the equation of state
of hcp iron at high pressures and high temperature, 2000 K, can
be obtained accurately using TDEP. We compare our results
with calculations done within quasiharmonic approximation
carried out by Sha and Cohen.37 Therefore, the choice of
temperature and pressure range is governed by a need to stay
within the validity range of the quasiharmonic approximation,
which is a standard theoretical method of investigating
vibrational contributions to the Helmholtz free energy.
Demonstrating the reliability of the results of a new method
in a comparison with existing state-of-the-art tools has been
recently mentioned as a necessary prerequisite to using the
novel tool in solutions of more advanced tasks.1

■ THEORY BEHIND THE METHOD
Let us first outline the basics of the temperature-dependent
effective potential method, focusing on the details, relevant to
our presentation of the TDEP algorithm. The detailed
description of the TDEP is available in refs 5 and 6.
Temperature-Dependent Effective Potential Method.

To include vibrational effects, we introduce a temperature-
dependent model Hamiltonian:
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where ui and pi are the displacement and momentum vectors of
the atom i, and Φij(T) is the temperature-dependent
interatomic force constants matrix, which connects the
displacement ui of atom i with the resulting force fj acting on
atom j, at temperature T. For a system consisting of total Na
atoms, in a harmonic approximation the forces and displace-
ments are connected via the force constants as follows:
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The basic idea of TDEP consists of fitting the parameters U0

and Φij of the Hamiltonian in eq 1 to the results of AIMD
simulations at temperature T to give the best possible harmonic
approximation of the lattice dynamics of a studied real
(anharmonic) system. This is achieved via a minimization of
the difference in forces calculated from the model Hamiltonian
by eq 2 and real forces in the studied system.
We note that it is possible to expand the right-hand side of

eq 1 to include the third-order force constant term.38 These
constants can be used to further improve the description of
highly anharmonic systems and calculate important properties
such as phonon lifetimes. In our case it was not necessary to
include them because hcp Fe is weakly anharmonic for the
conditions studied. The algorithm outlined in the next section
can still be used with such higher-order model Hamiltonian.
Free Energy Calculations within the TDEP Method.

Our task consists of calculation of the equation of state, that is,
to determine pressure−volume relations. In the experiment,

applied pressure plays the role of the input parameter, but for
the simulation in the NVT ensemble, often employed in AIMD,
the pressure is the outcome with the volume being the input
parameter instead. Though it is possible to carry out
simulations in the NPT ensemble, they are currently not well
suited for use with the TDEP method because the underlying
formalism assumes a constant volume when fitting results of the
MD simulation to obtain the force-constant matrix in (2). In
the case of an NVT-type simulation, the pressure is calculated
from the free energy of the system in question:

= − ∂
∂

P
F
V (3)

where F is the Helmholtz free energy, V is the system volume,
and P is the pressure. Therefore, to have an accurate pressure,
we have to obtain an accurate Helmholtz free energy at several
volumes to ensure accurate calculation of the derivative. The
calculations at each volume require AIMD simulations, making
the task numerically demanding. To minimize the number of
AIMD runs is therefore beneficial for the efficiency of the
TDEP algorithm. Below we show that it is possible to
redistribute terms in calculations of F with TDEP in such a
way as to ensure (nearly) linear volume dependence of the
terms that require AIMD simulations, while nonlinear terms are
determined from static calculations. Because of this, the
accurate numerical calculations of volume derivatives for a
wide range of pressures can be achieved with AIMD executed at
just few volumes (five volumes in our case).
In the TDEP formalism,5,6 the Helmholtz free energy F

consists of two terms, namely, vibrational contribution Fph and
a ground-state energy U0 of a auxiliary model system, given by
Hamiltonian in eq 1:

= +F F Uph 0 (4)

The vibrational contribution is obtained in the harmonic
approximation39 via
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where ℏ is the reduced Planck’s constant, kB is the Boltzmann
constant, ω is the phonon frequency, and g(ω) is the phonon
density of states, calculated in a conventional way but with
temperature-dependent force constant matrix Φij from eqs 1
and 2. We note in passing that, in simulations that require
variation of temperature, the interatomic force constants can be
interpolated as a function of temperature and volume, as they
often behave very smoothly in these parameters’ spaces, further
increasing the efficiency of the algorithm.
The ground-state energy of the model system U0 is

determined in the following way:

∑= − Φ
αβ

αβ α βU U t u t u t( )
1
2

( ) ( )
ij
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(6)

where t is the simulation time, for which the averaging is carried
out, UMD(t) is the temperature-dependent potential energy
from AIMD simulation at time t, and α and β are Cartesian
coordinates.
We reiterate that U0 is the ground-state energy of the

auxiliary model system and, therefore, typically, differs from
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both converged potential energy of AIMD simulation and the
DFT total energy calculated at 0 K.
Redistribution of Terms for an Efficient and Accurate

Helmholtz Free Energy Calculations with the TDEP
Method. In weakly anharmonic systems around equilibrium,
Fph in eq 4 exhibits an almost linear volume dependence at fixed
temperature,40 whereas the U0 term in (4) is a nonlinear
function with respect to volume. To capitalize on this
observation and to reduce the required amount of long
AIMD simulations, we suggest a rearrangement of the terms in
eq 4 in such a way that the nonlinearity is shifted to terms that
can be calculated with static DFT calculations rather than with
the tedious molecular dynamics simulations. Let us introduce
an auxiliary function ΔU:

Δ = −U U U0 supercell
ideal

(7)

where Usupercell
ideal is the volume-dependent free energy of an

“ideal” static supercell used in AIMD simulations. Note that the
static calculations are carried out at the same temperature as
AIMD, and the term includes the electronic entropy. Thus, it is
“ideal” in a sense that all ions occupy their nondistorted ideal
positions, with no displacement whatsoever. Next, we define
Uuc as the volume-dependent free energy, which includes the
potential energy and the electronic entropy terms at temper-
ature T of a corresponding ideal unit cell corresponding to the
supercell used in AIMD. In our case of Fe, this is the hcp unit
cell.
In the case of perfect convergence of all the simulations

parameters, Usupercell
ideal = K * Uuc, where K is an integer number,

that accounts for the number of unit cells contained in the
supercell. This is rarely the case though for any reasonbly sized
supercells, because carrying out fully converged calculations
turns out to be too resource-consuming. At this point it is
important to note that the calculation of Uuc(V) can be carried
out with high accuracy and at a dense set of volumes to describe
accurately its nonlinear volume dependence, whereas the
volume dependence of ΔU(V) often turns out to be nearly
linear, similar to that of Fph(V). Therefore, one may use fewer
AIMD simulations at different volumes to achieve the desired
accuracy of the fitting for ΔU(V) as well as Fph(V). In
particular, in our case of hcp Fe at temperature 2000 K, we
carried out just five AIMD simulations. Finally, we obtain

= + Δ +F V F V U V U V( ) ( ) ( ) ( )ph uc (8)

The nonlinear behavior of F(V) is now predominantly
concentrated in the volume dependence of the unit cell Uuc(V).
In the case of our model system hcp Fe, the unit cell consists of
two atoms and the volume dependence of Uuc(V) can be
calculated with extremely high precision, because these
calculations are computationally cheap.
For example, in our case of simulating hcp Fe at 2000 K, we

use only five MD runs within the chosen pressure interval at the
temperature in question to fit the nearly linear-dependent terms
in (8). Once we perform all additional static calculations
needed for the use of eq 8, including calculations of Uuc at 50
volumes, we would now effectively have 50 data points of the
Helmholtz free energy F. Now it can be fitted and differentiated
with high precision.

■ COMPUTATIONAL ALGORITHM FOR THE
TEMPERATURE-DEPENDENT EFFECTIVE
POTENTIAL METHOD

The flowchart of the algorithm for the calculation of pressure
dependence of the free energy with TDEP method is shown in
Figure 1. The full algorithm can be outlined as follows:

1. Pick up the desired (minimal) number of volumes at
which AIMD simulations will be carried out within the
range of pressures of interest for the study. Note that the
pressure at a finite temperature might differ from the 0 K
equation of state value. Still, calculating P(V) at 0 K
yields a good guess for the initial set of volumes {Vi} that
can be used for molecular dynamics simulations.

2. For each of the volumes in {Vi}, carry out a low-precision
short MD simulation (e.g., with the Γ-point BZ
integration scheme), still long enough for the system to
to get a reasonable estimate of the interatomic force
constants of the Hamiltonian (1) using the TDEP
method. From our experience, with the hcp Fe, this
usually takes up to 100−150 timesteps.

3. Estimate the resulting pressures for each simulation. If
the resulting pressures are not close enough to the initial
points, adjust the initial set of volumes and repeat the
low-precision simulations until the estimated AIMD
pressures are indeed in the range of interest.

4. Using the estimated interatomic force constants, prepare
the supercells in a thermally excited state following the
methodology of West and Estreicher.41 In connection
with the TDEP method, the realization of this procedure

Figure 1. Flowchart for Helmholtz free energy calculation algorithm
with the TDEP method. The step labeled “Full scale low-accuracy MD
simulations” can be done in parallel using different initial supercells.
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has been described by Steneteg et al.42 These supercells
can be used as multiple uncorrelated starting points to
carry out highly parallel molecular dynamics simulation.
Indeed, the so-constructed starting points are independ-
ent of each other and they correspond to physically
relevant points of the simulated system phase space,
virtually eliminating a need for the equilibration of the
so-designed simulation cells. As a result, the AIMD
simulations become highly parallel, allowing efficient
execution of TDEP calculations by high-performance
massively parallel supercomputers. However, even in a
serial execution mode, the procedure described above
greatly reduces the time needed to equilibrate the system.

5. Carry out a longer converged low-precision simulation to
obtain uncorrelated samples for the follow-up upsam-
pling (see point 6 below). Because two consequent
timesteps in molecular dynamics simulation are highly
correlated, one in general needs to carry out a simulation
with several orders of magnitude more timesteps than
the number of samples needed for the upsampling, the
static high-precision DFT calculations (dense BZ
integration grid, higher cutoff energy).

6. Carry out upsampling. By upsampling we mean that
instead of using AIMD with fully converged parameters
for the electronic structure calculations, one extracts
uncorrelated samples from the low-accuracy AIMD and
carries out highly accurate static electronic structure
calculations for the samples.2 This can be done in
parallel, because all such simulations are independent of
each other. The force constants matrix components then
can be estimated using these high-precision forces values
according to (2). The TDEP vibrational contribution and
ground-state energy then need to be calculated according
to eqs 5 and 6, with UMD(t) term in (6) based on the
high-precision calculation, and averaging needs to be
done over the total amount of samples. The amount of
the samples needed for the upsampling is determined by
the desired accuracy of the simulated property and needs
to be increased until the convergence is obtained. In our
case we used stress tensor components and the total
energy of the system as the target convergence variables.

7. Using TDEP, obtain the force constants from high-
precision data points. This allows one to obtain the
phonon part Fph of the Helmholtz free energy as a
function of volume as well as the values of the ground-
state energy U0 of our model system U0. See eqs 5 and 6.

8. Calculate ΔU and Uuc (eq 8) as a functions of volume V
in the same range of volumes, with the highest possible
precision (high density of BZ integration grid, high-
energy cutoff).

9. Combine the calculated dependencies to obtain the
Helmholtz free energy F in the form of a smooth
function of V. In our case the data set was dense enough
to fit the dependence of F with respect to V with a
polynomial of fourth order and in this way to obtain the
analytical expression for the F(V) to be used in the
calculation of the equation of state.

10. Calculate the derivative of F(V) to obtain pressure as a
function of volume (3), which yields the P(V) equation
of state for the simulated system.

■ COMPUTATIONAL DETAILS

This paper focuses on specifics of a typical calculation with
TDEP in combination with projector augmented wave (PAW)
method,43 as it is implemented in VASP.44−49 The molecular
dynamics simulations were carried out in the Born−
Oppenheimer approximation, which effectively means that the
nuclei propagated via classical molecular dynamics and the
electronic structure problem is solved with a fixed nuclear
positions at that instance of time.50 The exchange−correlation
energy term was treated within the generalized gradient
approximation in the PBE form.51 In this work, the temperature
in ab initio molecular dynamics simulations was controlled by
the means of a Nose−Hoover thermostat.52
When studying hexagonal lattice, it is common to introduce a

lattice parameters ratio between out-of-plane distance c and in-
plane a, the so-called c/a ratio. For our model system, the hcp
Fe, we used fixed c/a of 1.6. There is an ongoing discussion on
the behavior of c/a at the Earth core conditions. There were
reports on high c/a values up to 1.7 at the Earth core
conditions,21,53 which later were corrected by molecular
dynamics simulations.54,55 Experimentally, c/a of hcp Fe at
room temperature and high pressure is known to be around
1.6.56 Recent experiments reported weak temperature depend-
ence of the c/a ratio up to 2000 K57 in a range from 1.596 and
1.608, meaning that the temperature variations are comparable
to experimental error. Using fixed c/a simplifies the
calculations, allowing us to focus on the algorithm description.
All simulations were carried out on a 4 × 4 × 3 supercell of

96 atoms. For the molecular dynamics simulations, the
following set of volumes per atom was chosen: {7.72928 Å3,
7.1706 Å3, 6.7648 Å3, 6.4394 Å3, 6.164 Å3}.
The low-accuracy AIMD simulations were carried out using

computationally cheap PAW potential with 8 valence electrons
with the default energy cutoff of 268 eV for this PAW potential.
However, the reliability of the use of this PAW potential at high
pressure was checked in comparison with those constructed for
14 and 16 valence electrons, as well as with the all-electron
calculations, as will be discussed below. For the high-precision
settings during the upsampling, we used a 3 × 3 × 3 Brillouin
zone integration grid and the energy cutoff of 700 eV. To
calculate the smooth dependency for Uuc, we took 50
equidistantly spaced volumes in the same range of volumes
with cutoff energy of 700 eV and 31 × 31 × 31 integration grid
generated by Monkhorst−Pack method.58

To interpolate the resulting volume dependency of
Helmholtz free energy F(V), we used a fourth-order polynomial
expression.
The accuracy of the PAW potentials used in our simulations

was verified via comparison of the forces from VASP
calculations with the forces computed using the result of full-
potential linearized augmented plane wave (FPLAPW) all-
electron calculation implemented in Wien2k.59 FPLAPW
calculations were performed on a few atomic configurations
extracted from AIMD run using VASP. The same number of
Brillouin zone integration points was used in VASP and
Wien2k: it was carried out with the Γ-point. The product of
plane-wave cutoff and muffin-tin sphere radius was kept equal
to 7, and the amount of electrons in valence band per atoms
was kept constant regardless of VASP PAW potential and equal
to 16.
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■ RESULTS AND DISCUSSION

Choice of PAW Potential. The PAW potentials library
used in VASP is generated using the frozen core approximation,
and therefore, calculations of forces should depend on its
choice, especially for high-pressure calculations. The standard
available PAW potentials of iron for VASP use 8, 14, or 16
valence electrons. It is reasonable to assume that one should
include more electrons in the valence band as we go toward
lower V/V0 values, where V0 is a system’s volume at zero
external pressure. However, the computational cost increases
nonlinearly with the increasing number of electrons. Therefore,
we aim at achieving an intricate balance between the desired
accuracy and complexity of the calculations performed.
It is important to note that the accuracy of PAW potentials is

most often studied by converging scalar quantities, like total
energies. However, for AIMD simulations, accurate forces are
required. We are not aware of any published accuracy test on
force calculations for Fe at extreme conditions. To find out
which PAW potential is best suited for our task, the following
test was carried out. For each of the Fe PAW potential available
for VASP, we ran a short molecular dynamics simulation (400
time steps for equilibration of 1 fs each). Then few
configurations of ionic positions from the subset of simulation
were selected randomly, and calculations of forces were carried
out. The resulting forces were then compared to the result of
FPLAPW all-electron calculation implemented in Wien2k59

performed on the same atomic configurations. The result of the
comparison is shown in Table 1 for the tested PAW potentials
with varying amount of electrons in the valence band.
In Table 1, Zval denotes the amount of electrons in the

valence band for the VASP PAW potential (for FPLAPW in
Wien2k this value was kept constant and equal to 16); f r, fθ, and
fφ are components of the forces in a spherical coordinate
system;60 ρ is the correlation coefficient between the two sets
of data, obtained in VASP and Wien2k calculations,
respectively,

ρ
μ μ

μ μ
=

∑ − −

∑ − ∑ −
=

= =

f f f f

f f f f

[ ( )][ ( )]

[ ( )] [ ( )]

i
N

i i

i
N

i i
N

i

1
VASP VASP Wien2k Wien2k

1
VASP VASP 2

1
Wien2k Wien2k 2

(9)

where μ( f VASP) and μ( fWien2k) represent the mean values of the
forces averaged over the supercell,
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and the standard deviation σ is defined as
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2
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N being a total number of ions in the supercell.
It is clear that there is no significant difference in the

behavior of the forces in comparison among the tested PAW
potentials; they all are as good as (or as bad as) the calculation
performed by Wien2k. We therefore conclude that due to the
nature of the simulations (long ab initio molecular dynamics
runs), it is worth choosing the PAW-potential with the lowest
amount of electrons in the valence band, because this allows for
a faster calculation.

Helmholtz Free Energy Contributions. At this point let
us come back to the contributions in the right-hand side of eq 8
and discuss how the proposed algorithm affects the Helmholtz
free energy calculations with the TDEP method. The phonon
contribution Fph is depicted in Figure 2, the auxiliary ΔU
function defined in eq 7 is depicted in Figure 3, the ground-
state total energy of the TDEP model Hamiltonian U0 is shown
in Figure 4. Additionally, Figure 5 shows the nonlinear part of
the ΔU expression, namely, the total energy of nondisplaced
unit cell Uuc. The final F(V) for hcp Fe at 2000 K is shown in
Figure 6. The gray crosses show the values from the initial low-
precision MD simulations, and the red circles show results after
the TDEP algorithm was applied as described in this paper.
From Figure 6 one can see that our technique results in a much
smoother dependence of F with respect to V than the initial
low-precision simulation results. This smooth curve can be
easily differentiated to obtain P(V) as defined in eq 3. In Figure
2 one can see that the vibrational contribution Fph(V)
calculated from the initial low-precision simulations appears
to behave almost linearly. However, for the case of U0 on
Figure 4 one can see that the low-precision simulations (gray
crosses) result in a kink at higher pressures, which then goes
away after the upsampling technique is applied (red circles).
Figure 3 depicts the dependence of ΔU with respect to volume.
The data (red circles) in that figure are fitted with a linear
function (black line), and then the resulting expression is used
to obtain the final result for F(V), as expressed by eq 8.

Table 1. Forces Comparison Test between PAW Potentials in VASP and FPLAPW All-Electron Calculation Carried out Using
Wien2ka

sample Zval ρ( f r) σ( f r) ρ( fφ) σ( fφ) ρ( fθ) σ( fθ)

1 8 0.9742 0.3224 0.9934 0.1158 0.9994 0.0160
2 8 0.9969 0.2091 0.9884 0.1492 0.9947 0.0702
3 8 0.9985 0.3039 0.9903 0.1181 0.9947 0.0687
4 8 0.9956 0.2607 0.9899 0.1105 0.9964 0.0551
5 14 0.9891 0.1945 0.9873 0.1735 0.9898 0.0593
6 14 0.9911 0.2402 0.9899 0.1780 0.9902 0.0641
7 14 0.9898 0.3369 0.9806 0.2725 0.9934 0.0624
8 14 0.9903 0.4554 0.9868 0.1733 0.9925 0.0614
9 16 0.9709 0.3378 0.9961 0.1236 0.9906 0.0813
10 16 0.9900 0.1964 0.9920 0.1774 0.9977 0.0419
11 16 0.9952 0.2892 0.9927 0.1417 0.9967 0.0546
12 16 0.9984 0.1666 0.9910 0.1044 0.9965 0.0497

aCorrelation ρ is dimensionless and was calculated according to eq 9. Standard deviation σ was calculated using eq 11, values provided are in eV/Å3.
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Qualitatively, the different displayed behavior between the
initial low-precision and final (upsampled) results is the
illustration of the advantages of the proposed algorithm for
calculations of free energy within TDEP method.
Equation of State of hcp Fe at 2000 K. To test the

developed method, we investigate the EOS of hcp Fe at
extreme conditions of T = 2000 K and P = 150−450 GPa,
which contains the range of pressures relevant for the
geophysical simulations with some leeway. These conditions
are within the validity range of the state-of-the-art quasihar-
monic approximation (QHA), and therefore, the results of
TDEP calculations can be compared directly to those of the
quasiharmonic calculations. This is possible due to the
temperature dependence of the force constants of hcp Fe is
negligible in the validity range of QHA.
The resulting EOS is shown in Figure 7 (red circles),

alongside data from QHA calculation by Sha and Cohen37

(blue line), fitted using Vinet equation of state.61 For the Sha

and Cohen data, the Vinet equation of state gives an
equilibrium volume of 10.081 Å. For our calculation the
equilibrium volume was found to be 10.283 Å. Note, however,
that our data set was limited to the high-pressure range where
the applicability of GGA-DFT calculations is well established.
At lower-pressure many-electron effects play an important role
in simulations of the ground-state properties of hcp Fe.62,63

Therefore, here we excluded it from the consideration.
Very good agreement between two curves in the chosen

pressure range shows the reliability of our algorithm, as well as
the TDEP method.

■ CONCLUSION
We present a detailed description of the algorithm of highly
efficient free energy calculations using the temperature-
dependent effective potential method. We illustrate the

Figure 2. Vibrational contribution to Helmholtz Free energy of hcp Fe
at 2000 K obtained with eq 5. Red circles show values that were
obtained using the upsampling procedure. Initial results obtained with
low-precision AIMD are shown as black crosses (in this particular case,
the points are on nearly on top of each other). The points are
connected with lines as a guide for the eyes.

Figure 3. ΔU, eq 7, as a function of volume (red circles) The black
line represents the linear fit: the deviation is in range from 1 to 5 meV/
atom and is higher at lower volumes. The standard deviation is 4 meV.

Figure 4. TDEP ground-state energy U0 of hcp Fe at 2000 K obtained
with the method described in this paper compared to initial low-
precision results. Red circles show values that were obtained using the
upsampling scheme. Initial results from low-precision simulation
AIMD are shown as gray crosses. The points are connected with lines
as a guide for the eyes.

Figure 5. Unit cell energy Uuc as a function of volume, calculated at
electronic temperature 2000 K using high-precision settings and a
dense set of volumes. This is the main nonlinear term in eq 7.
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reliability and efficiency of the method by calculating the
equation of state of hcp Fe at 2000 K.
The results are in excellent agreement with state-of-the-art

calculations within the quasiharmonic approximation. More-
over, the TDEP method is designed to be used for simulations
of strongly anharmonic solids, because the fit to AIMD takes
into account the temperature-dependence of both the force
constants matrix Φij and potential energy landscape. This, in
particular, will allow us to carry out simulations of Fe and Fe-
based alloys at the Earth’s core conditions.
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