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Many antibiotic resistance genes are associated with plasmids. The ecological success of these mobile
genetic elementswithinmicrobial communities depends on varyingmechanisms to secure their ownprop-
agation, not only on environmental selection. Among themost important are the cost of plasmids and their
ability to be transferred to new hosts through mechanisms such as conjugation. These are regulated by
dynamic control systems of the conjugation machinery and genetic adaptations that plasmid-host pairs
canacquire in coevolution.However, in complexcommunities, theseprocesses andmechanismsare subject
to a variety of interactions with other bacterial species and other plasmid types. This article summarizes
basic plasmid properties and ecological principles particularly important for understanding the persistence
of plasmid-coded antibiotic resistance in aquatic environments. Through selected examples, it further
introduces to the features of different types of simulation models such as systems of ordinary differential
equations and individual-based models, which are considered to be important tools to understand these
complex systems. This ecological perspective aims to improve the way we study and understand the
dynamics, diversity and persistence of plasmids and associated antibiotic resistance genes.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Antibiotic resistances are spreading worldwide in microbial
communities and environments [1]. They are a threat to human
health, since the use of antibiotics is often the only way to treat
infectious diseases [2].

Some bacteria are resistant to antibiotics due to intrinsic struc-
tural or functional characteristics [3]. Other are able to develop or
acquire resistance mechanisms through mutation or horizontal
gene transfer (HGT) [4]. The latter refers, for example, to the spread
of mobile genetic elements (MGE) such as plasmids by cell-to-cell
contact of bacteria. Other MGE and potential sources of antibotic
resistance are bacteriophages, genomic islands, insertion sequence
elements, transposons and integrons [5]. Among MGE, conjugative
plasmids are the most significant for HGT [6, 7] and considered to
be major drivers for the dissemination of antibiotic resistance
genes among clinically relevant pathogens [8]. Studies comparing
collections of bacterial pathogens before and after the era of antibi-
otic use showed that plasmids were similarly common, but resis-
tance genes were not, suggesting that they developed in bacteria
and were inserted into existing plasmids [9].

De novo resistances to antibiotics develop by both DNA muta-
tions and adaptation of expression levels [10]. This includes for
example efflux-pump activations enabling the survival at low
levels of antibiotics. Secondary mutations allowing resistance to
higher concentrations can be promoted by the SOS-response,
which can modulate genetic instability and stimulate HGT that
spreads the resistance mutation within the population [10]. In
addition, bacteria can develop compensatory mutations that
reduce the fitness cost that is usually associated with antibiotic
resistance [11].

The molecular mechanisms of antibiotic resistances have
recently been summarized by Blair et al. [3]. These include a pre-
vention of the access of the drug to its target due to a decreased
permeability or increased efflux. Furthermore, structural changes
of the antibiotic target are able to circumvent an efficient binding
of the antibiotic. This is caused by point mutations of genes coding
for the antibiotic target, which will be rapidly selected under con-
tinuing antibiotic pressure. Targets can also be protected by mech-
anisms of resistance involving chemical modification, which can be
induced by the antibiotic (and are therefore transient); however,
mutations might produce a constitutive (permanent) expression
of these mechanisms.

How a resistance mechanism works at the single cell level can
affect its abundance in the population. It has been observed that
so-called ’selfish’ mechanisms such as efflux-pump are selected
at lower antibiotic concentrations than mechanisms that lead to
antibiotic modification that also benefits non-resistant cells in
the population [12]. Genes that are involved in the inactivation
of antibiotics are sometimes colocalized with other genes that
enable bacteria to use the antibiotic as a nutrient and energy
source [13]. This exploitation of antibiotics as a resource in turn
also benefits sensitive cells and adds another level of complexity
to the process of antibiotic resistance proliferation.

Bacteria which do not harbour any or simply not the appropri-
ate resistance are killed or do not replicate in the presence of
antibiotics [14]. The effect of an antibacterial agent can differ
between species or strains of the same species. A bacteriostatic
effect is given when a drug (most of all) inhibits bacterial growth,
e.g. by blocking a specific metabolic pathway, and affected bacteria
may resume their growth if the antibacterial agent gets diluted
[15]. Bactericidal effects are given if a drug is able to kill the bacte-
ria at high rates, which is mediated by an irreversible destruction
of the physical or genetic integrity of individual cells and finally
leads to a more or less pronounced decline in the number of viable
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cells [14]. However, below the minimum bactericidal concentra-
tion (MBC), they may only inhibit bacterial growth. Bactericidal
effects of antibiotics can be undesirable in certain clinical settings,
e.g. when cell lysis releases bacterial products that stimulate the
production of other substances which may initiate a harmful
inflammation [15]. Meta-analysis studies have shown that the clin-
ical outcome (even in serious infections) using static or cidal drugs
is not substantially different, and probably static agents can act
sometimes as cidal and viceversa in the complex environment of
the infection site [16]. The antibiotic effect thus depends on the
general effect of a drug on a target bacterium and on the antibiotic
concentration or its dynamics.

Antibiotics used for therapeutic treatment of human infections,
in agriculture and animal or fish farming pollute the environment
and act as a selective pressure for resistances, potentially increas-
ing the risk of transfer of resistance genes to human pathogens
[17]. For example, it has been observed that high background con-
centrations of quinolones in a river enriches the population of
waterborne bacteria carrying plasmid-encoded quinolone resis-
tances [18]. Additionally, heavy metal pollution is considered to
be a selective force for antibiotic resistances, because a co-
selection occurs by mechanisms such as efflux pumps that can
work against both heavy metals and antibiotics (cross-resistance)
or by a close genetic arrangement of both types of resistance,
which facilitates a combined transmission by HGT (co-resistance)
[19].

The transfer of resistances from their original (natural) hosts to
human pathogens has been suggested to be restricted by stringent
bottlenecks related to fitness costs, the founder effect and ecolog-
ical connectivity [1], all of which also apply to plasmid-coded
antibiotic resistance. Accordingly, transfer events require a contact
between recipients and donors, implying that both the size and
connectivity of their populations in the same or adjacent ecological
space are important. Where the background concentration of
antibiotics is very low, cells carrying a resistance plasmid may have
a lower fitness and may only be maintained by the acquisition of
compensatory mutations or the connection to another habitat with
different conditions, which has been recently demonstrated by an
experimental evolution study for the maintenance of a mercury
resistance plasmid [20]. Martinez et al. [1] further assumed that
the chance that a new gene is established in a population is
reduced when other genes with a similar substrate profile are
already stably spread within this population (founder effect).
Nonetheless, there can also be pleiotropic effects, as those recently
observed for co-evolving plasmid-host pairs, which suggest that
the stable presence of resistance plasmids can increase the stability
of other resistance plasmids in the same host [21] – a mechanism
that facilitates multidrug resistance. Hall et al. [22] observed that
the fitness effect of plasmids was highly variable and depended
on several factors including the plasmid status (of competing
hosts) and the degree of abiotic selection of the plasmid-coded
resistance. These considerations and empirical observations sug-
gest that the proliferation of antibiotic resistance plasmids is likely
to be influenced by multiple abiotic and biotic factors.

Martinez et al. [23] proposed some guidelines that were drawn
up to predict the risk of emergence of resistances to antibiotics
which will become clinically introduced. Accordingly, a prediction
of the dissemination of antibiotic resistances should take into
account evolutionary constraints, selection pressures and environ-
mental variations. To assess the probability that resistant bacteria
become established these authors recommend developing mathe-
matical models which investigate the population dynamics of
resistant and sensitive bacterial populations in the absence and
presence of antibiotics. In general, a variety of factors is at play,
and selection effects can occur for different targets nested at



Fig. 1. Entities, state variables and scales affecting the ecology of plasmid-coded antibiotic resistance. Plasmids vary in size and can provide antibiotic resistance genes
(ARG) or phage resistance to their host. This can help cells to prevent growth inhibition or cell death in consequence of the presence of some antibiotic. If plasmids carry
transfer genes (tra), they can perform conjugation, which transfers a copy of the plasmid from the host to a nearby recipient cell. Bacteria can be either solitary or part of a
microcolony or biofilm. Those that detach from the biofilm may be transported to another location where they can exchange genes with other subpopulations or members of
the microbial community.
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different scales, including landscapes, soil particles, biofilms, bac-
terial populations as well as the bacterial host, MGE, and the resis-
tance gene itself [24]. For the ecology of plasmid-coded antibiotic
resistance, certain entities, state variables and scales are particular
important (Fig. 1).

In the following, processes that influence plasmid propagation
and the characteristics of diverse aquatic environments are
reviewed to provide an overview of the complexity that models
on the spread of plasmid-bornantibiotic resistances are confronted
with. Finally, this overview provides an insight into opportunities
for the application of different types of simulation models and
opens an ecological perspective for plasmid and antibiotic resis-
tance research.
2. Plasmid fitness

Fitness can be considered as a measure of ecological success
representing the ability to leave offspring relative to others [25].
In this context, the fitness of plasmids has two dimensions
(Fig. 2): vertical transmission fitness, i.e. spread to the daughter
cells of the host by cell division, and horizontal transmission fit-
ness, i.e. spread to new host cells, for example, by conjugation.
Considering that any effects that reduce vertical plasmid transmis-
sion can theoretically be balanced by the effect of horizontal trans-
mission, the conditions for plasmid persistence can be analytically
determined [26, 27, 28, 29, 30]. This can be easily generalized to a
specific plasmid in specific and axenic bacterial isolates (clones)
and has provided important insights into plasmid dynamics. How-
ever, apart from such a ’subpopulation-centric-framework’ [31],
bacteria in nature often live in complex communities (as illus-
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trated in Fig. 1) and dynamic changes in the rates of vertical and
horizontal transmission are to be expected because (i) different
bacteria may be available as hosts, (ii) they also compete with each
other, and (iii) may carry other plasmids, (iv) all of which can
undergo evolutionary modifications and (v) are subject to changes
of environmental conditions. As current research aims to under-
stand the environmental dimension of antibiotic resistance, such
ecological and evolutionary factors have to be taken into account.
2.1. Vertical transmission

Particularly important for understanding the persistence of
antibiotic resistance is the general question how plasmids that
provide no apparent benefit persist in a bacterial community. On
the one hand, the persistence potential of a specific plasmid type
might be increased if it is able to replicate in multiple hosts and
has a less severe impact on the growth rate of the plasmid-
bearing host in comparison to its plasmid-free counterpart. For
example, Seoane et al. [32] reported that plasmids can reduce max-
imum growth rates by up to 40% compared to the plasmid-free
state. On the other hand, plasmids benefit if they secure their
own propagation during cell fission. This can be achieved in differ-
ent ways: (i) high copy numbers can reduce the rates of missegre-
gation, i.e. that a daughter cell receives no plasmid copy, (ii) an
active-partitioning system can control successful segregation of
the plasmid copies, (iii) the so called ’post-segregational killing’
by a toxin-antitoxin (TA) system rapidly, but reversibly reduces
the growth of daughter cells that do not receive a plasmid copy
(which encodes the ’antitoxin’ that acts like a silencer of the
growth inhibitor; TA systems do not kill bacteria [33]). The latter



Fig. 2. Trait space depicting the potential realized fitness according to a plasmids vertical and horizontal transmission fitness. Its frequency in a local community
declines if vertical transmission fitness is low, e.g. due to high rates of missegregation and plasmid costs, and if this cannot be compensated by horizontal transmission, e.g.
conjugation. Both vertical and horizontal transmission fitness are not constant for a specific plasmid, but can be host-specific and change over time due to evolutionary
modifications and spatio-temporal variations of environmental factors (see main text).

Fig. 3. Scheme of horizontal gene transfer by mating pair formation of bacteria in a planktonic environment: a bacterium that harbors a conjugative plasmid, called
’donor’, couples through its pilus to another bacterium that will receive the plasmid, called ’recipient’. When a copy of the plasmid was successfully transferred, the recipient
finally becomes a new donor, called transconjugant. Vb denotes the velocity at which bacteria swim in a planktonic environment, either before (Vb1 ) or after a tumble event
(Vb2 ) (for a short time) by which bacteria change their movement direction. In a biofilm, local interactions occur without further motion of individual cells (colored patches/
pixel). This can create spatial patterns that in turn affect how and which bacteria interact with each other. The pseudocode gives an example for a conjugation submodel that
considers sensing, adaptation and stochastic local interactions of individual cells. This may also be applied to conjugation in plankton, when only mixing but not swimming of
individual cells is considered.
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might prevent that plasmid-bearing cells get outcompeted in the
absence of positive selection for plasmid borne traits [34]. How-
ever, this may not efficiently work when a population consists of
a number of bacteria (of other species) that are either relatively
or completely immune to it or that just never receive the TA sys-
tem through horizontal transmission and are therefore not affected
by it within their cellular lineage.

2.2. Horizontal transmission

Autonomous replication is common to all plasmid types, but
further capabilities can vary remarkably. One of the most impor-
tant differences is their ability to perform horizontal gene transfer,
which is known since the pioneering work of Lederberg and Tatum
[35]. Plasmid types that encode a set of mobility genes (MOB) as
well as a complex enabling mating pair formation (MPF) are called
’conjugative’ [36]. They can spread from one bacterium to another
through a mating channel, provided by a type 4 secretion system
(T4SS) [37]. The scheme provided in Fig. 3 illustrates this process:
the bacterium that carries the conjugative plasmid expresses one
or more pili. These are extended to capture another bacterium
and, if successful, retracted in order to minimize cell distances. This
establishes a stable cell-to-cell contact for the transfer of a plasmid
copy to the recipient, which in turn becomes a transconjugant. The
complete transfer process might take some minutes, as it was
shown in detail for individual mating pairs by live cell imaging
[38], extending the first information presented decades ago [39].

Plasmid types are called ’mobilizable’, if they encode the mobil-
ity genes, but only hitchhike with the MPF system of other co-
occurring conjugative plasmids performing conjugation [36]. This
can also occur in the opposite direction, i.e. from the receiving to
the donoring cell of the conjugative plasmid, called ’retro-
transfer’ [40].

Plasmid types that are neither conjugative nor mobilizable are
called ’nonmobilizable’ or ’non-transmissible’ [36]. They could also
be horizontally transferred by natural transformation, transduction
or conduction [41], which refers to the uptake of DNA from the
environment, the dissemination by phages and the co-integration
with a transmissible plasmid. However, the rates of these pro-
cesses are considered so low that most authors describe this type
of plasmid mobility as ’non-transmissible’ [42, 41]. Therefore,
non-transmissible plasmids are restricted to spread by cell fission,
i.e. vertical gene transfer (VGT). Smillie et al. [36] and Garcillan-
Barcia et al. [41] found that globally a fourth of the plasmid types
are conjugative, one fourth mobilizable and a half non-
transmissible.

2.3. Plasmid co-occurrence, incompatibility and immunity

Different plasmid types can co-occur within the same cell, but if
they share one or more elements of the plasmid replication or par-
titioning system, this will likely lead to increased segregation rates,
making these plasmids incompatible to each other - a feature that
is in general describing the failure of two co-resident plasmids to
be stably inherited in the absence of external selection [43]. Thus,
related plasmids belong to the same incompatibility group, which
means that the introduction of one of both destabilises the other.
Despite this, incompatibility can also work through horizontal
transmission, since specific plasmid-coded entry exclusion sys-
tems let cells actively prevent the transfer of incoming plasmids
belonging to the same or a related incompatibility group (e.g. IncC
and IncA) [44]. This happens by the recognition of proteins
involved in conjugation that are specific to the respective incom-
patibility groups.

Recent experimental studies demonstrated that the co-
occurrence of plasmids affects the fitness of a single plasmid. On
590
the one hand plasmid survival can be promoted by positive epista-
sis [45], which refers to decreased costs of co-residing plasmids in
comparison to a cost that might be expected when their single
costs are summed up. On the other hand, epistasis can also be neg-
ative or neutral. It has also been reported that horizontal transfer
rates are often decreased, when two [46] or three [47] distinct
plasmids interact.

Bacteria can be immune to an incoming plasmid due to clus-
tered, regularly interspaced short palindromic repeat (CRISPR)-
Cas systems, which have been demonstrated to prevent conjuga-
tion [48]. In a recent study, Pinilla-Redondo et al. [49] showed that
these system are carried by plasmid-like elements and involved in
competition between plasmids. These authors concluded that they
are used to eliminate other plasmids with similar properties and
lifestyles in order to monopolize the host environment. This indi-
cates an important role of these systems for the regulation of hor-
izontal plasmid transfer between microorganisms. However,
CRISPR systems are highly diverse and the reasons for this diversi-
fication and its consequences for the evolution and genetic adapta-
tion of microbial communities are not yet fully understood [50].

2.4. Plasmid costs

It is widely accepted that the main fitness cost of plasmids
comes from downstream events such as expression of plasmid
genes [51], although plasmids also incur costs for DNA replication
and repair. The production of plasmid proteins, e.g. for conjugation,
uses up raw material and occupies the cellular machinery [7]. Sev-
eral studies identified conjugation as a source of plasmid cost [51].
Considering that most bacteria suppress the expression of transfer
genes [52], this is probably a strategy to avoid ongoing high costs.
In contrast to this mechanism, it was found that functions such as
antibiotic resistance may not be regulated in response to environ-
mental conditions, i.e. may incur costs even in the absence of
antibiotics [53].

2.5. Adaptations at population and cell level

The spectrum of actions bacteria are able to perform under suit-
able conditions is restricted by the genetic information they have
access to. A number of mechanisms such as point mutations, dele-
tions of chromosomal regions as well as processes procuring DNA
from the environment can create novel genetic variants in bacterial
populations [25]. In addition to the stable core genome of around
2000 genes for a single E. coli cell (assessed for 20 E. coli strains)
[54], bacteria gain and loss genes which are highly mobile between
bacterial cells [55], e.g. by conjugation. These non-core genes
increase the diversity of a species pan-genome and can make up
90% of it [54]. Hence a bacterial population has a fundamental basis
to adapt to various environmental requirements. But these shifts
on population level are subjected to adaptations of individual cells.
The part of a bacterial genome that encodes for additional traits
that are only sometimes beneficial, but do not represent essential
cellular functions, is called the ’flexible’ gene pool [5].

If ecological conditions become harsh bacteria may adapt
through alterations of their genome structure. This happens by
the selection of point mutations and genetic rearrangements as
well as by gene acquisition through HGT or by genome reduction
[5]. It results rather in modifications of the ’flexible’ gene pool,
which comprises variable chromosomal regions as well as mobile
and accessory genetic elements, than in alterations of the con-
served ’core’ genome, encoding essential cellular functions [5].
The latter mostly emerge through recombination and mutation
[54].

Mobile genetic elements such as plasmids may provide advan-
tageous traits to the host, potentially increasing its fitness. Those
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bacteria possessing highest compatibility and performance in
interaction with these MGE will presumably be most competitive
[1]. If compatibility is low or the carriage of the MGE in its ances-
tral form is to expensive compared to its advantages, adaptation
has to occur. Otherwise the integrated MGE, the bacterium or
both will get lost, at least in the long-term. This becomes evident
to a greater extend if the conditions for the selection of the trait
are fluctuating or become obsolete and the carriage of these genes
represents a competitive burden for the bacteria. In the study of
San Millan et al. [42] both a reduced cost and periods of positive
selection were necessary to maintain the integrated MGE, a non-
transmissible plasmid. Environmental conditions, starvation,
stress and high copy numbers of a gene increase the probability
for genetic mutations, which could be important in the evolution
of antibiotic resistances [23]. Such mutations may alter the bio-
logical fitness of resistant strains to a level similar or even higher
than that of the susceptible parental strain.

Many studies investigated the coevolution of plasmids and
bacteria. It was found that the plasmids cost-of-carriage can be
reduced due to mutations occurring at the plasmid, the chromo-
some or both [7]. Among the key mechanisms that mediate this
amelioration of plasmid costs are changes in the conjugation
rate, the loss of plasmid genes as well as changes in plasmid
gene expression [7]. Changes in conjugation rate can range from
a complete loss of the ability to conjugate towards the evolution
of lower or higher rates [56], whereas the imposed costs to the
host positively correlate with the extent of the conjugation rate
[34]. Hence, a shift towards a lower rate enables a higher verti-
cal transmission rate, which indicates a closer alignment of plas-
mid and bacterial fitness interests. Dahlberg and Chao [56]
Fig. 4. Properties of different plasmid types and influences on their vertical and h
resistance. Apart from the factors described here, many other ecological conditions are
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reported deletions of plasmid-borne antibiotic resistance genes
in plasmid-containing populations during experimental evolu-
tion. This resulted in an increased fitness of the host, but also
means that the resulting population is again sensitive to
antibiotics.

As plasmid-encoded compensatory adaptations are not only
confined to one population as adaptations of the bacterial chromo-
some, their potential to invade new populations by horizontal gene
transfer may be enhanced, as recently demonstrated by mathemat-
ical modeling [30]. Dionisio et al. [57] found that plasmid adapta-
tions can provide a general fitness improvement, even in
alternative hosts. This enhances the potential for plasmid spread
and maintenance dramatically, even when it was reported to be
very low for a specific plasmid-host-combination. This finding is
of particular importance considering that recent bioinformatic
analysis revealed that more than 60% of the plasmids of the global
prokaryotic plasmidome were reported to be able to colonize spe-
cies from different phyla [58]. Plasmids coding for antibiotic resis-
tance could therefore initially acquire cost-compensating
mutations in co-evolution with a particular common host and later
spread as optimized vectors to other less common but potentially
more harmful species.

The spectrum of all the aforementioned properties and pro-
cesses shows that the occurrence and persistence of plasmids,
which may provide antibiotic resistance, is affected by diverse fac-
tors comprising mutations and adaptations at the single cell level
as well as biotic interactions between different plasmid types
and different plasmid-host associations. Fig. 4 attempts to summa-
rize how certain properties of different plasmid types determine
the propagation of plasmids and how this can be influenced by
orizontal transfer capabilities. These can also determine the spread of antibiotic
likely to play an important role (see main text).
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different processes. The following section focuses on the role of
environmental and ecological factors.
3. Environmental characteristics

3.1. Biofilm versus plankton

Microbial processes and all kind of ecological interactions
greatly depend on the features of the environment. In general, bac-
teria living in aquatic environments are either in a planktonic sta-
tus or they form a biofilm, a well organized structure of
microorganisms that is protected by a self-produced polymeric
matrix. A biofilm can be attached to a fixed surface or to another
biotic or abiotic particle that itself might be dispersed in the free
water column. Both modes, the planktonic and the biofilm mode
of bacterial life, are schematically illustrated and compared in
Fig. 1 and 3. Biofilm-formation is a very common and successful
strategy employed by bacteria, whereas timescales differ between
bacterial species and have been reported to take as long as 20 to
25 days for maturation [59]. Biofilms play a significant role in
microbial survival [60] and mediate the vast majority of healthcare
associated infections [61]. However, bacterial populations also
develop in situations in which individual cells are not intercon-
nected, and all bacteria found to be able to form biofilms can pro-
duce ’free-swimming’ cells.

In plankton, the bacteria are mixed and have many opportuni-
ties for horizontal gene transfer through mating pair formation,
while the total cell density is usually reduced by a low nutrient
concentration and a high influence of dilution or washout, as is
typical in a river. Toxin-delivery systems that can influence the
composition of microbial communities and processes such as the
secretion of virulence factors or the production of public goods that
are initiated by cell communication might not be at work under
such circumstances. Quorum sensing mechanisms usually prevent
actions that would be unproductive and costly when undertaken
by only a very few cells [62]. However, bacteria are often capable
of taxis and can aggregate by this means to increasing local con-
centrations, or by associating with fibres and particulates, e.g. sim-
ilar to activated sludge flocs in a water treatment reactor. The
formation of such microcolonies that are dispersed within the
water column may also stimulate horizontal gene transfer systems
that allow bacteria to sense the right time and place, e.g. high cell
densities, to switch on the conjugation machinery [52].

Opposed to this, bacteria in a biofilm predominantly interact
with their local neighbors, which can enhance the efficiency of
the before mentioned mechanisms. The same is true for other
mechanisms that require cell-to-cell contact, such as contact
dependent inhibition (CDI), a competitive system that can influ-
ence the composition and spatial organization of growing bacterial
populations [63]. Such an antagonistic behavior based on the abil-
ity to kill or inhibit the growth of other bacteria has also been
observed to evolve in stationary phase [64], i.e. when the popula-
tion stops growing. Considering the high cell density and potential
huge distance to the nutrient supplying interface, which is either
the surface the biofilm is attached to or the fluid flowing over
and through the biofilm matrix, bacteria in a biofilm likely face
heterogeneous environmental conditions depending on their (ver-
tical) position within the biofilm matrix [65]. This biofilm matrix is
of particular importance because it can represent a barrier for
antimicrobial agents, which, in contrast to the high importance
of biofilms for bacterial life, have generally been tested considering
how they eradicate planktonic bacteria [66]. Due to the imperme-
ability characteristics, a higher concentration of antibiotics may be
required to have a bactericidal effect on biofilm bacteria compared
to planktonic bacteria [67]. This can facilitate the survival of persis-
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ter cells, which appear for several reasons, but may also survived a
previous antibiotic treatment and can easily provide resistance to
the regrowing population [68]. New therapeutic approaches there-
fore target biofilm formation and dispersal [66].

At the interface of biofilm and plankton, bacteria may either
attach from the plankton to the biofilm, which can be promoted
by the adhesive effect of pili synthesised by cells carrying conjuga-
tive plasmids [69], or otherwise be dispersed from the biofilm to
the plankton, which can be modulated by quorum sensing of dif-
fusible signal factors [70]. Recently, the ability of conjugative plas-
mids to promote biofilm formation has been found to be correlated
with conjugation efficiency, whereas some plasmids can have
dominant effects over other co-inhabiting plasmids [71]. Biofilms
grow because cells divide and shove each other away, a mecha-
nism vividly demonstrated by individual-based models of colony
formation [72]. Apart from this effect, colonising planktonic cells
likely remain in the same location until they either die or re-
enter the planktonic phase [73]. This is likely associated with a
higher degree of intraspecific competition compared to a mixed
environment, where bacteria are less likely to interact directly
with their progeny.

Biofilms are thought to be highly heterogeneous with respect to
many environmental conditions such as nutrients, pH and oxygen
gradients, as well as the metabolic potential and phenotypic char-
acteristics of the constituent populations [74]. The niche space,
which is typically characterized by time, space, resources and pre-
dation [75], could therefore also be considerably large from the
plasmids’ point of view. Correspondingly, it was hypothesized that
HGT could play a key role in microbial sociality in a biofilm con-
text, since many accessory features of the plasmid are expressed
outside the cell [7]. This may also explain why multispecies bio-
films have been found to show increasing resistance [60]. Nonethe-
less, another recent study reported a reduced selection for
antimicrobial resistance when embedded in a natural community
[76], which indicates that still much is unknown about the role
of interspecific interactions.

3.2. Natural versus artificial conditions

One of the differences between artificial and natural aquatic
environments is their pollution with antibiotics, which is either
increased by direct entries into sewage systems and waste water
treatment plants or rests at a low natural background concentra-
tion as in almost pristine rivers. However, antibiotic resistance
genes have been found in any type of aquatic environment, even
in drinking water [77]. In the Danube river, one resistant isolate
could be detected for each tested antibiotic, which also opens the
possibility that these genes can spread to related human pathogens
[78]. In India, extended-spectrum b-lactamases are known to circu-
late in the community, although affected people may not even
have been hospitalized in the past - a problem that has also been
linked to antibiotic resistance found in tap water and street water
basins [79]. It indicates that pollution with antibiotics is concern-
ing at both artificial and natural environments because they are
interlinked and even water cleaned in waste water treatment
plants can spread antibiotic resistance into the environment,
where it may re-enter the drinking water cycle.

To understand the environmental dimension of antibiotic resis-
tance, it is of particular importance to be aware of the differences
between the artificial conditions in the laboratory and the natural
conditions in the environment. In general, these have a biotic and
an abiotic dimension resulting from the targeted homogenization
and determination of many factors influencing bacterial life in
the laboratory and their heterogeneity and dynamics in the natural
environment. Among the biotic factors is biodiversity, which is
linked to a consideration of intra- and interspecific interactions
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of bacteria and their interactions with entities of other trophic
levels such as plasmids, phages and predators. These entities and
their interactions can further be affected by demographic and
spatio-temporal dependencies such as those given by a restricted
spatial interaction in biofilms or by rare mutations and other
events that happen at the single cell level as a result of a specific
life history. The abiotic dimension comprises the diversity and
spatio-temporal variation of the physico-chemical conditions,
given by local temporal variations in the availability or presence
of specific substances such as antibiotics, heavy metals, organic
compounds, oxygen or derivatives of bacterial processes, as well
as by the local temperature and dilution regime, which potentially
influence each other in their dynamics.

Testing ecological and evolutionary theory with simple, highly
controlled laboratory setups with one or two species provides very
important insights, but several characteristics can be strongly
altered when the biotic complexity is expanded [80]. Even when
simple setups are used, conventional laboratory cultivation tech-
niques may fail to appropriately reproduce the natural conditions
of organisms [81]. Whereas closed batch cultures impose a drastic
change of the environmental conditions during the experiment,
open continuous-cultures fix these conditions but may also neglect
that the growth of heterotrophic microorganisms is limited in most
environments by the slow hydrolysis of particulate organic matter
[81]. The doubling times of bacteria are substantially longer in the
wild than in the laboratory, e.g. 15 h instead of 20 min for E. coli
[82]. Although environmental matrices can be maintained in a lab-
oratory context, the microbial communities may behave and
evolve differently than in their natural equivalent [83]. Recent
methodological advances providing synthetic bacterial communi-
ties comprising for example 33 bacterial strains bridge the gap
between simpler synthetic and natural systems [80]. Other devel-
opments such as community flow cytometry, which provides high-
dimensional data characterising communities at the single cell
level [84], can enhance the analysis depth and resolution of
sequencing approaches and can be used for pure cultures or com-
plex communities in clear medium as well as challenging matrices
[85]. The development of such approaches can overcome many
restrictions, for example of simple laboratory models focusing on
single-species biofilms, which do not illustrate the true nature of
biofilm communities and ignore that many if not most infections
are mediated by polymicrobial biofilms [60].

It was also found that regular switching of the plasmid host is
able to increase the amelioration of the plasmids cost-of-carriage
compared to plasmid evolution in a single host species [86]. Simi-
lar findings have also been reported from soil microcosm experi-
ments [87], suggesting an increased potential for amelioration of
plasmid costs in more complex (natural) environments compared
to laboratory conditions, which may raise general concerns about
their validity. However, Hall et al. [88] found that natural commu-
nities might even not adapt to abiotic conditions, because such fit-
ness benefits can be negated considering competitive species
interactions in natural communities. Similarly, Cairns et al. [89]
showed that a plasmid-dependent bacteriophage can eliminate a
conjugative plasmid providing antibiotic resistance, but this can
be prevented by a protozoan predator. It suggests that multitrophic
interactions play a significant role, although many experimental
setups do not take this into account.
4. Modeling approaches

4.1. Purpose of models

Just as laboratory systems do not reflect the actual conditions in
nature, simulation models represent a simplification of the
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depicted system. Thus, if the depcited system is a simplification,
many simulation models represent a kind of simplification of a
simplification. This is because any experimental design is guided
by an implicitmodel, an imagination of the system under investiga-
tion, but which lacks a clear definition of assumptions and tests of
consistency and logical consequences [90]. This represents a form
of ’pre-model scaling’ [91], a simplification or aggregation that is
done prior to running ’a model’. Usually, people have an explicit
model in mind, if they think of ’models’ or ’modeling’. Contrary
to implicitmodels, the assumptions of explicitmodels are laid down
in detail. It can be studied what happens on the basis of these
assumptions and what happens if they are changed. Writing such
explicit models means that the results are replicable and can be
subjected to rigorous sensitivity and uncertainty analysis.

4.2. Theoretical versus customized models

As models thus offer a gain in knowledge from the abstraction
of the represented real system, it is important to be clear which
system the model actually represents. A distinction can be made
between two types of simulation models: 1) theoretical models
that are guided by a specific scientific question or theory and are
primarily developed to test contrasting hypothesis; and 2) cus-
tomized models that are guided by a specific experimental design
and are primarily developed to serve as a tool for the analysis of
the experimentally observed behavior (data). Both type of models
can provide mechanistic insights that cannot be revealed by labo-
ratory experiments. While ’customized models’ show how the
experimentally observed patterns can arise, ’theoretical models’
are not constrained by the design of a laboratory experiment. They
can even address issues that cannot be investigated by experi-
ments. This is particularly important for research in areas outside
microbiology, as it takes much longer to experimentally observe,
for example, evolution and ecological interactions in forests. How-
ever, also in microbial ecology there are many interesting setups
that are hardly implementable. These can be addressed by theoret-
ical models.

4.2.1. Theoretical models
Theoretical models are often more flexibly applicable than sim-

ilar customized models because they provide a more general
description of a system. One such example is the platform iDy-
noMiCS (individual-based Dynamics of Microbial Communities
Simulator) [92], which is composed of modules, a feature that facil-
itates its application to varying settings. It has for example been
used for theoretical studies addressing diverse topics such as the
response of a community of denitrifying bacteria to an environ-
mentally fluctuating oxygen availability [92], the dependence of
conjugation on the growth rate of the donor cell and its conse-
quences for the plasmid invasion in biofilms [93] as well as the
effect of competitive and mutualistic interactions in a two-
lineage community on the selection of antibiotic resistance [94].
Another recent modular platform that aims to serve as a kind of
standard model is the Antibiotic Resistance Evolution Simulator
(ARES), which can simulate nested compartments from the ecosys-
tem level to the bacterial host [95]. It has been applied to examine
how the rate of antibiotic resistance among bacterial species is
influenced by a variety of variables that determine the complex
parameter space that defines the interaction of biological elements
in a given environment [96] and how the plasmid kinetic values
that are determined by conjugation rate and segregation rate due
to stochastic loss and incompatibility with other plasmids influ-
ences the population ecology of antibiotic resistance in a hospital
setting [97].

Besides iDynoMiCS and ARES, many more theoretical models
have been recently applied to study the spread of antibiotic
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resistance, e.g. to investigate the role of varying mechanisms to
solve conflicts between plasmids carrying a cooperative trait and
their bacterial hosts [98], of transmission and relatedness as fac-
tors driving the plasmid-borne public goods production [99], of
multispecies interactions involving antibotic production and
degredation on ecological stability and biodiversity [100], of
inter- and intra-cellular interactions between conjugative and
non-transmissible plasmids [101], of switching strategies between
susceptible and persister cells [102], of plasmid- versus
chromosome-located compensatory adaptations of the cost-of-
carriage of plasmids and associated resistance genes [30], of the
positioning of wastewater treatment plants in a river network
[103], of transformation for a stabilization of the bacterial genome
in stochastic environments [104] and of transduction considering
co-evolution (phage immunity of bacterial hosts) and stochastic
and local effects [105].
4.2.2. Customized models
Among the more recent studies that used customized models

are Yurtsev et al. [106], who investigated how the fraction of resis-
tant cells carrying a plasmid that encodes a b-lactamase enzyme
that may allow sensitive bacteria to survive is affected by antibiotic
concentration and the addition of a commonly used b-lactamase
inhibitor. For this, experimental results were compared with a
model based on ordinary differential equations and a Michaelis–
Menten Kinetics for antibiotic inactivation. A further example is
the study by Lopatkin et al. [29], who derived a critical conjugation
efficiency as an upper bound for dominant plasmid persistence and
investigated the conditions of conjugation-assisted persistence
when mutliple conjugation plasmids and multiple species are pre-
sent. They used a system of differential equations whose increase
in complexity was fully reported, starting with a one-species,
one-plasmid model to a multiple species, multiple plasmid model.
Malwade et al. [107] fitted varying systems of ordinary differential
equations to flow cytometry observations of growth and conjuga-
tion dynamics in a batch process and compared the predictive
power and parameter uncertainty of varying model formulations.
Meredith et al. [108] quantified determinants of resistance at the
single cell level and resilience at the population level in response
to a b-lactam antibiotic. They also used a system of differential
equations describing the interactive change of the components
population density, antibiotic concentration (b-lactam), nutrient
level and Bla concentration (b-lactamase). Valle et al. [109] studied
the distribution of plasmid fitness effects for the major antibiotic
resistance plasmid pOXA-48. They found this to be dominated by
quasi-neutral effects, which, incorporated in a simple system of
ordinary differential equations, indicated that plasmid stability
increases with bacterial diversity and is less dependent on
conjugation.

Further within–host and between–hosts models on antibiotic
resistance dynamics including studies considering interactions
with host immune responses or focusing on optimal drug dosage
regimes were recently reviewed by Tetteh et al. [110]. Leclerc
et al. [111] applied a systematic review on studies using ’dynamic’
models to study the horizontal transfer of antibiotic resistance
genes between bacteria. They found that 33 of the 43 studies
involved in their review used deterministic models to obtain their
results, all of which representing ordinary differential equations
(ODE). The other 10 studies used stochastic models, 6 of which rep-
resenting agent-based models, 3 stochastic differential equations
and 1 difference equations. The review by Leclerc et al. [111] fur-
ther showed that nine of these studies did not apply any sensitivity
analysis and only eight studies run their model multiple times and
sampled parameter values from distributions rather than assuming
them to be constant.
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4.3. Population-level versus individual-based models

Existing modeling approaches are differently suited to address
certain research questions. A fundamental difference is the level
at which these models describe interactions. On the one hand there
are population-level models (PLM) that can describe the interac-
tions between species. Ordinary differential equations (ODE) are
often used to describe how a compartment of the model (e.g. one
of the interacting species) changes over time. This is based on
the principle of mass action, similar to chemical reactions. Thus,
the degree of interaction or outcome of some process depends on
the ’concentration’, ’proportion’ or ’density’ of the directly involved
compartments. For example, horizontal gene transfer depends on
the density of both plasmid-bearing and plasmid-free cells and a
conjugation rate that determines how often they successfully
encounter each other (and which is potentially subject to further
restrictions; see below). If one imagines that the yellow compart-
ment in Fig. 5 represents the density of plasmid-free cells and
the blue compartment the density of plasmid-bearing cells, such
an interaction might increase the area of the green compartment
to the detriment of the yellow, considering that recipients become
transconjugants as depicted in Fig. 3. The composition of the pop-
ulation of bacteria that live in a certain environment therefore
changes. Such changes can also be resource-dependent, for exam-
ple, by an explicit consideration that some nutrients are consumed,
which control bacterial growth through some Monod-kinetic. A
resource dependency can also be described by a logistic growth
function that implicitly considers a decreased resource availability
when population density increases. As an illustrative example, the
black box surrounding the coloured compartments in Fig. 5 might
be seen as the maximal cell density. Bacterial growth is the greater
the more open (non-colored) space is left in this box. If it is full, as
given, the density of bacteria cannot increase, only their propor-
tions can change. Apart from that, some bacteria may die off over
time, which means there is always some space left to fill by an
increase of the compartments. The cell density of the total popula-
tion or the single compartments could be theoretically infinitely
small or large. Any change that can be observed at the population
level arises due to the definitions that are directly described at the
population level. This represents a ’top-down’ approach, since the
observed behavior is a direct result of the model formulations.

Individual-based models (IBM) represent a fundamentally dif-
ferent approach. They often consists of (1) some individuals (or
’agents’) that interact with the world around them and/or with
each other and (2) the world in which the individuals ’live’ or move
around. Usually some rules define what every individual is allowed
or has to do [112]. These rules are repeatedly applied in form of a
loop, which allows to repeatedly act or interact.

IBM represent a ‘bottom-up’ approach, since the changes that
are observed at the population level emerge from the activities of
lower-level entities. For example, instead of describing the growth
of an entire bacterial population, it is considered how individual
bacteria take up resources, grow and perform cell fission. This also
leads to population growth, but population growth as such is not
part of the model formulation. Instead, such characteristics of the
population emerge from the behavior of the individuals, which is
determined by some rules. This behavior can also take into account
individual heterogeneity, e.g. that individual bacteria, even those of
the same species (which would belong to the same compartment),
have different growth rates or perform cell division at different cell
sizes. This may also reflect differences in their life cycle that them-
selves may be important for other processes, such as the ability to
perform horizontal gene transfer [113].

An IBM might also consider that individuals adapt their behav-
ior in order to understand and predict ecosystem complexities
[114]. Bacteria can, for example, change their movement direction



Fig. 5. Conceptual differences between population-level models and individual-based models. Colors indicate different species that are represented either ’block’-wise
(left; PLM) or by individual cells (right; IBM). The latter may also distinguish between cells of the same species in terms of location, biomass (size) and expression of transfer
(tra) genes considering heterogeneous environmental conditions (with respect to nutrients and antibiotics).
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according to some chemical signal [115]. Thus, bacteria might
direct their movement towards higher nutrient availability.
Another example are bacteria that carry plasmid-bearing cells,
but only shut off the repression of tra genes (means they become
transfer-competent), when they sense that the conditions to trans-
fer the plasmid are optimal [52]. One of the first real IBMs for
microbial biofilms is ’BacSim’ [72], which assumes, for example,
that bacteria perceive local densities and shove each other away,
allowing them to remain competitive for the uptake of local
resources.

The ability of IBM to be spatially explicit can be advantageous
for a description of conjugation. An individual plasmid-bearing
bacterium might therefore be able to perform a transfer attempt
only to bacteria in its local neighborhood (see Fig. 3 and Fig. 4).
Otherwise, it could also be sufficiently detailed to consider that
individual bacteria encounter each other randomly in a mixed
environment and perform conjugation with a certain probability.
Besides conjugation, processes such as consumption of nutrients
can be considered to occur locally, which means that bacteria
directly compete for resources in the local neighborhood. Such dif-
ferences in space can also be taken into account by spatially-
explicit PLM, i.e. partial differential equations (PDE). This opens
the possibility to compare different kind of models in order to
reveal the effect of spatial structure (comparing ODE with PDE)
or the effect of individual heterogeneity and adaptive behavior
(comparing ODE with non-spatial IBM or PDE with spatial IBM),
which is best practice [116] and has been recently applied unrav-
eling the effect of spatial interaction on the evolution of a gene
sharing mechanism [117].

New laboratory methods that enable to observe and measure
the behavior of individual microbes also stimulates individual-
based modeling [118], since data on the individual-level is
required to parameterize an IBM and to compare simulated
individual-level characteristics with empirical data on the same
scale [116]. Various techniques extract and process information
from individual microbes [119]. Cell tracking, for example, enables
the analysis of cell trajectories that can be used to generate a dis-
tribution of the turning angle and the swimming speed (before and
after a turning event) of bacteria [120]. Single cell analysis has
been used to estimate the probability of successful conjugation
in dependence to the donor-recipient orientation as well as distri-
butions for the time required to transfer the plasmid and the delay
time between transfer events depending on the individual cells
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history [113]. The application of scanning confocal laser micro-
scopy of fluorescent bacteria revealed the dynamics of the spatial
distribution of transconjugants in a flow chamber biofilm [40].
Cytometric analysis can sort thousands of cells in a second [121].
This can, for example, be used to determine relative abundances
of subcommunities, reveal cell cycle dynamics and to monitor
the evolution of microbial communities [85]. This opens various
opportunities for the field of microbial individual-based ecology,
which refers to the study of microbial ecology by the combination
of such experimental data with individual-based models [118].

4.4. Limitations, pitfalls and good modeling practice

A variety of limitations of IBMs should be considered [116]. For
example, IBM might be used to study the sources of variability
between replicates of the same treatment in controlled laboratory
experiments, as e.g. Harrison et al. [122] demonstrated. But when
it comes to rare events such as an infinitesimal small probability
that a specific mutations is acquired, IBMs might be on their limit,
since they can only simulate a restricted number of individuals, but
the probability that any of them will acquire such a mutation
within a certain time depends on the population size. In such a
case PLM might be required to perform simulation experiments
efficiently, although they may only estimate the mean point in
time when such a sweeping mutation will take effect.

Apart from the fact that a simulation of too large numbers of
individuals is not feasible, computationally expensive models
make sensitivity analysis and model fitting more cumbersome.
Two methods can overcome this [116]: (1) a simulation of one or
several statistically representative volume elements of the larger
system in full detail, whereas its size depends on the spatial vari-
ation of the features of interest; (2) a simulation of super-
individuals that represent a group of similar individuals. In large
populations, stochastic differential equation models may better
describe heterogeneity. Besides limitations in modeling large-
scale systems, IBMs can become too complex to analyse mathe-
matically, understand and communicate. As otherwise too simple
models might not be representative for natural systems, an inter-
mediate model complexity is supposed to be optimal [123].

Good modeling practice is to use a structured and standardized
description to present a model, e.g. to adopt the ‘ODD’ (overview,
design concepts, and details) protocol for the description of IBMs
[124], to check structural realism through the application of a pat-
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tern oriented modeling approach, which refers to a comparison of
multiple simulated patterns with empirical patterns at varying
scales, i.e. involving individual- and population-level characteris-
tics [123, 116]. The structural realism of models should also be
examined by model robustness tests. These involve parameter sen-
sitivity analysis that identifies important parameters, which, if
achievable, should therefore be carefully estimated with empirical
methods. Other robustness tests focus on the model structure,
referring to a sensitivity analysis in which processes are systemat-
ically included or omitted [125, 126]. Potential pitfalls of IBM are
that individuals have global knowledge, processes that are impor-
tant for the research question are ignored or something that should
be an emergent property is imposed [116]. For example, a single
donor cell should not be able to identify the last recipient in a pop-
ulation that is composed of thousands of completely mixed cells.
Instead, a donor might only by chance select the ’right’ recipient
cell for a transfer attempt. Another negative example could be that
a study aims to investigate how bacterial interactions lead to spa-
tial clusters, which in reality are induced by a predetermined, fixed
spatial distribution of some nutrients.
4.5. Implementing conjugation – details that can make a difference

Leclerc et al. [111] reported that most of the studies they
included within their review modelled horizontal gene transfer
as a mass action process. According to this, the rates of change
are often calculated according to the product of the transfer rate
c, the density of donors D (plasmid-bearing cells) and the density
of recipients R (plasmid-free cells) such that transfer T ¼ cRD,
whereas T reflects a density estimate for the proportion of infected
cells. Here it might become obvious that this way of modeling hor-
izontal gene transfer is based on the assumption that the actual
transfer rate is a constant. But in principle this is only the case if,
apart from cell density, all factors that are known to influence
the transfer rate are constant. In most cases, however, changes
such as in nutrient availability can be expected, which means that
the growth rate of the bacteria is not constant and this is known to
have an influence on the conjugation rate [40, 127, 113, 93]. There-
fore, it has been suggested to model the conjugation rate with a
nonlinear substrate dependent expression similar to Monod kinetic
or the Michaelis–Menton equation for enzyme kinetics [128]. If
substrate availability is not explicitly considered in the model, a
simple logistic factor f can be used instead [30], such as it is often
used to model declining growth rates of bacteria approaching the
maximal cell density N (carrying capacity)with f ¼ 1� ðDþ RÞ=N.
Thus, a corrected estimate of the transfer rate Tcorr: can be obtained
simply by including f such that Tcorr: ¼ fcRD. This principle can also
be applied to stochastic, spatially explicit models in which the local
availability of vacant sites can mimic the local resource availability
that affects both bacterial growth and conjugation rates [101].
Such alignment of growth and conjugation rates with the factor f
might be negligible under certain circumstances. However, if a
population is simulated that is approaching carrying capacity in
its growth, then models that do not couple the conjugation rate
to growth predict that the bacteria can no longer grow, but the
conjugation rates are at their maximum.
5. Summary and outlook

The conditions and processes affecting the persistence and
occurrence of plasmid-coded antibiotic resistance are manifold,
including many ecological characteristics and properties inherent
to the plasmid types themselves. This study provided an overview
and ecological framework for the study of plasmid dynamics with
simulation models.
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If the dissemination of antibiotic resistance by plasmids is
addressed, the general purpose of a model is to describe the two
dimensions of plasmid fitness, i.e. vertical and horizontal transmis-
sion. This can be done considering different degrees of complexity
with respect to its abiotic and biotic dimension.

Model-based simplification is both a necessity and a valuable
insight into key system features. However, a simplification only
becomes visible when it is compared with the actual complexity
of the system. Assumptions of models should therefore be clearly
addressed and justified. In addition to uncertainty and robustness
analyses, documentation and description of the step-by-step
model development have great potential to improve the under-
standing of the properties and the behavior of a system, because
this learning process provides important insights into the rationale
of the decisions made for simplification and their alternatives,
which are often not explained in detail.

Biotic interactions, evolutionary modificationsas well as indi-
vidual heterogeneity and dynamic adaptations can have a strong
influence on the spread of plasmid-coded antibiotic resistance.
The great advantage of individual-based models is that they
describe the processes at the level where they actually take place:
the individual cell. Therefore, these processes can be formulated
much easier and can be understood more easily by non-
modelers. The combination of such computer-based tools with
the increasing number of laboratory methods that provide detailed
insights into the dynamics of individual cells offers a way to
address the manifold open research questions that are related to
the complexity of natural environments.

Models can serve as a powerful tool to understand the environ-
mental dimension of the spread of antibiotic resistance and help to
design ’ecology-and-evolution-proof’ counteractive strategies.
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