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ABSTRACT The study of P transposable element repression in Drosophila melanogaster led to the discovery
of the trans-silencing effect (TSE), a homology-dependent repression mechanism by which a P-transgene
inserted in subtelomeric heterochromatin (Telomeric Associated Sequences) represses in trans, in the female
germline, a homologous P-lacZ transgene inserted in euchromatin. TSE shows variegation in ovaries and
displays a maternal effect as well as epigenetic transmission through meiosis. In addition, TSE is highly sensitive
to mutations affecting heterochromatin components (including HP1) and the Piwi-interacting RNA silencing
pathway (piRNA), a homology-dependent silencing mechanism that functions in the germline. TSE appears
thus to involve the piRNA-based silencing proposed to play a major role in P repression. Under this hypothesis,
TSE may also be established when homology between the telomeric and target loci involves sequences other
than P elements, including sequences exogenous to the D. melanogaster genome. We have tested whether
TSE can be induced via lacZ sequence homology. We generated a piggyBac-otu-lacZ transgene in which lacZ is
under the control of the germline ovarian tumor promoter, resulting in strong expression in nurse cells and the
oocyte. We show that all piggyBac-otu-lacZ transgene insertions are strongly repressed by maternally inherited
telomeric P-lacZ transgenes. This repression shows variegation between egg chambers when it is incomplete
and presents a maternal effect, two of the signatures of TSE. Finally, this repression is sensitive to mutations
affecting aubergine, a key player of the piRNA pathway. These data show that TSE can occur when silencer and
target loci share solely a sequence exogenous to the D. melanogaster genome. This functionally supports the
hypothesis that TSE represents a general repression mechanism which can be co-opted by new transposable
elements to regulate their activity after a transfer to the D. melanogaster genome.
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Transposable elements (TEs) are present in all organisms, and their
activity can both induce severe deleterious effects by disrupting gene
activity and create genetic novelties possibly useful from an evolutionary

point of view (Wicker et al. 2007). Various mechanisms exist for
repressing TE mobility, including autorepression by proteins en-
coded by TEs themselves and host defense mechanisms via DNA
methylation, heterochromatin formation, and small RNA silencing
(Cam et al. 2008; Girard and Hannon 2008; Slotkin and Martienssen
2007). In a given organism, these mechanisms can vary depending
on the cellular context. For example in Drosophila melanogaster, TEs
are regulated by different RNA silencing pathways in somatic and
germline tissues (Dufourt et al. 2011; Hartig and Forstemann 2011;
Li et al. 2009; Malone et al. 2009). In species that have been recently
invaded by a particular family of TEs, it is possible to recover strains
with or without these TEs. These strains are useful to study the
mechanisms of repression since TEs containing strains can be
crossed to control strains (devoid of the TEs) to genetically isolate
and identify regulatory TE copies. D. melanogaster has been invaded
in the last century by three families of TEs: the I factor, the hobo
element, and the P element (Anxolabehere et al. 1988; Blackman
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et al. 1987; Blackman 1989; Chambeyron and Bucheton 2005; Engels
1989; Finnegan 1989; Rio 2002). The first one transposes via a RNA
intermediate (Class I element), and the two others transpose via
a DNA intermediate (Class II elements). These TEs can induce hybrid
dysgenesis, a syndrome of genetic abnormalities (e.g., high mutation
rate, chromosomal breakages, sterility) which occurs in the germline of
progeny produced by crossing females lacking these elements and
males carrying theses elements (Blackman et al. 1987; Kidwell et al.
1977; Picard et al. 1978).

The P element presents a maternally inherited repression termed “P
cytotype” (Engels 1979). P cytotype shows epigenetic transmission
through meiosis because memory of this maternal effect can be detected
for more than five generations (Coen et al. 1994; Engels 1979). Genetic
investigations to identify P copies responsible for the establishment of P
cytotype allowed the discovery that P elements inserted at the telomere
of the X chromosome have very strong repressive capacities (Ronsseray
et al. 1991, 1996; Stuart et al. 2002) that show the complex rules of
epigenetic transmission over generations typical of the P cytotype
(Coen et al. 1994; Niemi et al. 2004; Ronsseray et al. 1991). These
elements are inserted in subtelomeric heterochromatin (Ronsseray
et al. 1996; Stuart et al. 2002), i.e., tandemly repeated noncoding sequences
called “Telomeric Associated Sequences” (TAS) (Karpen and Spradling
1992). Repression elicited by these elements requires a certain length of
common sequence between regulatory elements inserted in TAS and
repressed elements located in euchromatin (Marin et al. 2000). It is
sensitive to mutations affecting heterochromatin protein 1 (Ronsseray
et al. 1996), a major component of heterochromatin, and to aubergine
(Reiss et al. 2004; Simmons et al. 2007), a gene playing a major role in
the small RNA-silencing pathway termed Piwi-interacting RNA (piRNA)
silencing (Brennecke et al. 2007). Furthermore, P element2derived
piRNAs have been found in ovaries of P strain females, which can be
correlated to maternal effect of P cytotype (Brennecke et al. 2008).

The discovery of a transgenic system mimicking the P cytotype
properties provided an important opportunity to analyze phenotypic,
genetic, and molecular properties of P element repression established by
telomeric P elements. A P-lacZ transgene carrying the Escherichia coli
b-galactosidase gene in frame with sequence encoding the N terminal
domain of the P element transposase that was inserted in the TAS of
the X chromosome was shown to repress ovarian expression of second
P-lacZ located on another chromosome: this phenomenon was termed
trans-silencing effect (TSE) (Roche and Rio 1998; Ronsseray et al.
2003). TSE has become a key tool to study the underlying mechanism
of P cytotype, allowing visualization of the distribution of repression in
ovaries and even within ovarioles using simple histochemical X-gal
staining (Ronsseray et al. 2003). Further studies showed that TSE (1)
can be also established by P-transgenes inserted in the TAS of autoso-
mal telomeres (Josse et al. 2008; Roche and Rio 1998); (2) is restricted
to the germline (Josse et al. 2008); (3) shows variegation in ovaries
when repression is incomplete (Josse et al. 2007); (4) has a maternal
effect whose memory can persist for more than five generations (Josse
et al. 2007); (5) involves both a chromosomally and a cytoplasmically
transmitted factor (Josse et al. 2007); (6) is sensitive to mutants affecting
HP1 and the piRNA pathway (Josse et al. 2007; Todeschini et al. 2010);
and (7) is linked to maternal transmission of small RNAs derived from
the telomeric transgenes (Todeschini et al. 2010), which were recently
characterized as piRNAs (Muerdter et al. 2012).

TSE variegation results in a bimodal stochastic distribution of egg
chamber staining, some showing very strong lacZ repression while
others showing null repression. Intermediate staining is rarely observed.
Inside a given egg chamber, the 15 nurse cells show, in most of the
cases, identical on or off staining. It must be emphasized that TSE

functions only in germline cells, the tissue in which P transposition is
restricted (Laski et al. 1986), and does not function in ovarian somatic
follicle cells (Josse et al. 2008). TSE therefore likely involves a germline-
specific piRNA repression pathway. Because the piRNA-silencing path-
way has been shown to affect a large number of different families of
TEs, one of the remaining questions is whether TSE is specific to
P element sequences or, on the contrary, whether TSE can be obtained
between a telomeric and an euchromatic locus sharing sequence ho-
mology other than P element sequences.

We have functionally tested the latter possibility by constructing
a transgene in which the lacZ sequence is carried by a TE different from
the P element, that is, piggyBac (Cary et al. 1989; Fraser et al. 1995),
which shares no sequence similarity with the P element. LacZ expression
was placed under the control of a female germline promoter (ovarian
tumor). D. melanogaster embryos were transformed by the piggyBac-
otu-lacZ transgene, allowing recovery of several insertions strongly
expressed in nurse cells and the oocyte, the two populations of germline
cells of ovaries. In this article, we report that telomeric P-transgenes
carrying lacZ strongly repress, in the germline, expression of a lacZ gene
carried by piggyBac transgene insertions. This repression presents the
genetic and phenotypic properties of TSE and is sensitive to aubergine
mutants. Trans-silencing can therefore be established via solely lacZ
homology. This shows that TSE can be established for sequences exog-
enous to the D. melanogaster genome. In addition, this strongly rein-
forces the hypothesis that TSE represents a typical homology-dependent
piRNA repression mechanism in the germline and that its complex
trans-generational epigenetic properties therefore reflect those of
a piRNA pathway functioning in germline cells of ovaries.

MATERIALS AND METHODS

Establishment of the transgenic lines
The piggyBac-otu-lacZ transgene plasmid was generated by extracting
two fragments, one containing the white gene and the second contain-
ing the lacZ gene under the control of the ovarian tumor (otu) gene
promoter, from the PCO plasmids described in Boivin et al. 2003.
These two fragments were cloned between the HindIII and EcoRI sites
of pXL-BacII (Li et al. 2001; 2005). The transgene is 9815 bp long and
is shown in Figure 1A. Transgenic lines were obtained by microinjec-
tion in the w1118 strain (devoid of P elements) performed by the
BestGene company. New insertions were further produced by remobi-
lization of a primary insertion using the jumpstarter element encoding
piggyBac transposase (Horn et al. 2003).

Characterization of the transgenic lines
The transgenic lines were named “PBoL,” for PiggyBac-based transgenes
containing the lacZ gene under control of the otu gene promoter. They
carry the mini-white gene as transformation marker. Three PBoL-carrying
lines were analyzed: m2a, w1a, and A7.6B.

The m2a and w1a insertions are located on chromosome 2, and the
A7.6B insertion is located on chromosome 3. The m2a and A7.6B inser-
tions are homozygous viable, whereas w1a is lethal and maintained over
a balancer chromosome (Cy).

Precise localization of PBoL insertions was performed using inverse
polymerase chain reaction (PCR) and the following oligonucleotides as
primers: i2PCR39Pb- (GTTCCTTGTGTAGATGCATCTC), i2PCR59Pb+

(GTCATTTTGACTCACGCGGTCG), i2PCR59Pb2 (CGACCGCGTGA
GTCAAAATGAC), iPCR59Pb+ (ACTGAGATGTCCTAAATGCACA
GC), iPCR39Pb2 (GGATTTCACTGGAACTAGAATTCG), and iPCR59Pb+

(ACTGAGATGTCCTAAATGCACAGC).
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All lines apparently carry a single PBoL transgene insertion. The
m2a insertion is located between the mir-8 and the Ugt37c1 genes at
cytological site 53D. The w1a insertion is located in the Arc-p20 gene
at cytological site 26B. The A7.6B insertion is located in the Alhambra
gene at cytological site 84B.

P-element2derived transgenes and Drosophila lines

P-lacZ fusion enhancer trap transgenes: P-1152, P-1155 are
enhancer-trap transgenes and contain an in-frame translational fusion
of the E. coli lacZ gene to the second exon of the P-transposase gene.
They carry rosy+ as a transformation marker (P{lArB} transgene)
(O’Kane and Gehring 1987). P-1152 (FBti0005700) comes from the
stock previously known as #11152 in the Bloomington Stock Center
and was mapped to the telomere of the X chromosome (site 1A); this
stock carries two P-lacZ insertions in the same TAS unit and in the
same orientation (Josse et al. 2007). P-1155 (FBti0005691) comes from

the stock previously known as #11155 of the Bloomington Stock Center.
It contains a single P-lacZ insertion in TAS at the 3R chromosome arm
telomere (site 100F). P-1152 and P-1155 are homozygous viable and
fertile. P-1152 shows no lacZ expression in the ovary, whereas P-1155
shows weak and nonuniform lacZ staining in follicle cells but no stain-
ing in the germline. The T-1 line carries a cluster of P-lacZ-white
elements (P{lacW} transgene) located at cytological site 50C on the
second chromosome (Dorer and Henikoff 1994, 1997). The cluster
contains seven transgene copies, including a defective copy, all inserted
in direct orientation. In addition, the T-1 line has complex chromo-
somal rearrangements, including translocations between the second and
the third chromosomes due to X-ray treatment. After overnight stain-
ing, weak lacZ expression is detected in follicle cells of T-1 ovaries,
presumably because of a position effect at 50C, but no staining is
observed in the germline. P-1152, P-1155, and T-1 have a strong capac-
ity to induce TSE which is maternally inherited (Josse et al. 2008; Roche
and Rio 1998; Ronsseray et al. 2001).

Figure 1 A telomeric P-lacZ strongly represses a PBoL
transgene in the germline with a maternal effect. (A)
Schematic representation of a piggyBac-otu-lacZ trans-
gene named “PBoL”. LacZ expression is under the con-
trol of the otu promoter, and the white gene serves as
a transformation marker. The length (bp) is indicated for
the fragments constituting the transgene. piggyBac trans-
formation vector sequences present at extremities of the
transgene are in black: black boxes correspond to terminal
regions of piggyBac (PB) and black lines to sequences
required for germline transformation in Drosophila. (B-D)
Three PBoL insertions (m2a, w1a, and A7.6B) were ana-
lyzed. Overnight lacZ staining of ovaries of G1 females
produced by crossing males and females of the strains
indicated above and to the left of the images are shown.
The images were taken at lower (top) and greater (bottom)
magnifications. In each case, the percentage of repressed
egg chambers (at ovarian stages 9210; see Materials and
Methods) is given together with the total number of egg
chambers counted between parenthesis. (B) The three
PBoL insertions are strongly expressed in the germline
(nurse cells and oocytes) due to the otu promoter. (C)
These insertions are strongly repressed by a maternally
inherited telomeric P-lacZ transgene (P-1152). Below the
percentages, examples of variegating lacZ repression are
shown. (D) PBoL insertions are not repressed by a pater-
nally inherited P-1152 locus.
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Three strong mutant alleles of aubergine induced by EMS were used.
All of them are homozygous female sterile. aubQC42 (Schupbach and
Wieschaus 1991) comes from the Bloomington Stock Center (stock
#4968) and has not been characterized at the molecular level. aubHN2

(Schupbach andWieschaus 1991) has an amino acid substitution. aubN11

(Wilson et al. 1996) has a 154-bp deletion, resulting in a frameshift that
is predicted to add 16 novel amino acids after residue 740 (Harris and
MacDonald 2001).

All stocks used carrying transgenic insertions have a M genetic
background (devoid of P transposable elements), as do the multi-
marked balancer stocks and those carrying aubergine mutations. The
Cantony and w1118 lines were used as control lines, and these are
completely devoid of any P element or P element2derived transgene
(M lines) and of any piggyBac-derived transgene.

Experimental conditions
All crosses were performed at 25� and involved three to five couples in
most of the cases. Ovary lacZ expression assays were performed using
X-gal overnight staining as described in Josse et al. 2007, except experi-
ments involving aubergine mutants for which 24-hr staining was con-
ducted because weaker lacZ expression required these conditions to
facilitate scoring of TSE.

Quantification of TSE
When TSE is incomplete, variegation is observed because “on/off” lacZ
expression occurs between egg chambers (Josse et al. 2007). TSE was
quantified by determining the percentage of egg chambers with no
expression among ovarian stages 9-10 because lacZ expression of PBoL
insertions was intense and reproducible at these stages.

RESULTS

Production of PBoL transgenic lines
A transgene was designed to test whether “non P-element” homology
between a telomeric transgene and a target euchromatic transgene
allows trans-silencing to take place. More precisely, we asked whether
a telomeric P-lacZ transgene can repress, in trans, a transgene carrying
the lacZ sequence in a TE other than the P element. The piggyBac-based
transgenic system was used. The Trichoplusia ni piggyBac element is
absent from the Drosophila melanogaster genome and shows no signif-
icant sequence similarity with the P element, as tested by BLAST anal-
ysis (data not shown). Because TSE is restricted to the female germline,
expression of the lacZ gene in piggyBac was placed under the control of
the germline-specific promoter of the otu (Figure 1A). After transfor-
mation of embryos and remobilization, six transgenic lines were re-
covered (named PBoL). All insertions but one showed b-galactosidase
expression restricted to germline cells of the ovary. However, lacZ
expression levels varied from one PBoL insertion to another, likely
because of position effects. The three lines showing the strongest lacZ
expression were selected for further analysis. Details about these lines
are given inMaterials and Methods. These lines are calledm2a and w1a
(chromosome 2) and A7.6B (chromosome 3). For all PBoL insertions,
lacZ expression in ovaries was assayed in two different genetic back-
grounds (Cantony and w1118) to take into account possible background
effects on transgene expression. No significant difference was observed
between the two backgrounds (data not shown). The m2a, w1a, and
A7.6B insertions produced strong lacZ expression in nurse cells, espe-
cially at late stages of oogenesis and in mature oocytes (Figure 1B).
Scoring egg chambers at stages 9-10 allowed detection of lacZ expres-
sion in all (but one) egg chamber among more than 4700 egg chambers
assayed for the three PBoL insertions tested (Figure 1B).

LacZ homology between a telomeric and an euchromatic
locus allows trans-silencing to take place in germline cells
of the ovary
P-lacZ insertions located in subtelomeric heterochromatin (TAS) of the
X chromosome induce strong repression of any P-lacZ transgene
inserted in euchromatin expressed in the female germline (Josse et al.
2008; Roche and Rio 1998; Ronsseray et al. 2001). In addition, incom-
plete repression results in variegation for X-gal staining from one egg
chamber to another (Josse et al. 2007). This repression shows a strong
maternal effect because strong repression is observed only when the
telomeric locus is maternally inherited (Josse et al. 2008; Ronsseray et al.
2001). For example, crossing P-1152 females with males carrying an
euchromatic P-lacZ transgene resulted in G1 females showing 80% to
95% of egg chambers with repressed lacZ expression, whereas the re-
ciprocal cross resulted in only 15% to 30% repression in G1 females
(Josse et al. 2007, 2008). When P-1152 females were crossed with males
carrying any one of the three PBoL insertions tested, G1 females showed
strong lacZ silencing in all cases (Figure 1C: 98% for m2a and A7.6B ;
90% for w1a). In addition, in each case, incomplete repression resulted
in variegating lacZ expression characterized by on/off egg chamber lacZ
expression (Figure 1C). Finally, the reciprocal cross was performed, and
no repression was detected with any of the three PBoL insertions tested
(Figure 1D). Therefore, lacZ homology allows trans-silencing to take
place in the female germline and repression shows phenotypic and
genetic properties of TSE.

PBoL repression by autosomal silencers
Previous studies of TSE allowed the identification of several silencers
located on autosomes (Josse et al. 2008; Roche and Rio 1998). First,
P-lacZ transgenes inserted in subtelomeric heterochromatin of chromo-
somes 2 and 3 were found to be able to establish strong repression of a
P-lacZ target transgene (Josse et al. 2008). This repression is also mater-
nally inherited and shows variegation: for example, the P-1155 telomeric
P-lacZ transgene, located in the TAS of the 3R chromosomal arm, was
shown to repress a P-lacZ transgene located in euchromatin of chromo-
some 3 (named P-Co1). This repression is however weaker (TSE = 65%)
than that induced by X chromosome telomeric insertion P-1152 [TSE =
88% (Josse et al. 2008)]. Second, complete trans-silencing of P-lacZ was
found to be induced by the T-1 line (Ronsseray et al. 2001), which carries
a cluster of P-lacZ transgenes (Dorer and Henikoff 1994, 1997) inducing
local heterochromatin formation (Fanti et al. 1998) and which has
complex chromosomal rearrangements induced by X-rays. Again trans-
silencing was maternally inherited (Ronsseray et al. 2001).

The capacity of these two silencer loci to repress PBoL insertions
was tested. The P-1155 telomeric transgene induced repression of the
three PBoL insertions tested (Table 1). P-1155-mediated repression is
weaker than that obtained for P-1152 (Figure 1) with m2a (56% vs.
98%) and w1a (81% vs. 90%), whereas strong repression was observed
for both P-1155 and P-1152 with A7.6B (93% and 98%). Table 1 also
shows that T-1 induced complete silencing of the three PBoL tested.
Note that in this case, repression can result from both lacZ and white
homology. Autosomal P-lacZ silencers can thus strongly repress PBoL
transgenes. In addition, a maternal effect was found for both the
P-1155 and T-1 autosomal silencers because no repression was ob-
served in the progeny of reciprocal crosses (Table 1).

Further, we tested whether single transgenes located in euchro-
matin and heterochromatin (pericentromeric heterochromatin and
fourth chromosome) can repress PBoL insertions. Indeed, previously
such transgenes were shown to be unable to repress a P-lacZ transgene
expressed in the female germline (Josse et al. 2008). Similarly, of five
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euchromatic P-lacZ insertions, and three pericentromeric chromosome
insertions tested, located on chromosomes X, 2 and 3, none repressed
m2a, w1a or A7.6B (Table S1). In addition, a P-lacZ transgene located on
the heterochromatic fourth chromosome, previously shown to be unable
to repress a P-lacZ transgene (Josse et al. 2008), did not repress the PBoL
insertions. Therefore, P-lacZ and PBoL target transgenes respond in the
same way (repressed or not repressed) to all silencer/nonsilencer loci
tested.

A telomeric P-lacZ locus can repress two PBoL
transgenes inserted on different chromosomes
A single telomeric P-1152 locus was previously shown to be able to
strongly repress two P-lacZ targets located at allelic or nonallelic posi-
tions (Josse et al. 2008). We tested whether a single P-1152 locus can
similarly repress two PBoL insertions. Females having maternally
inherited P-1152 and carrying two PBoL insertions presented more
than 80% of repressed egg chambers (Table 2). This result was obtained
for flies homozygous for the m2a insertion or for flies carrying two
nonallelic PBoL insertions located on the same or on different chro-
mosomes (m2a and w1a located on chromosome 2 and A7.6B located
on chromosome 3). Therefore, a single P-1152 locus can repress simul-
taneously two PBoL insertions located at allelic or nonallelic positions.
In addition, we found that a single maternally inherited P-1152 locus

established strong lacZ repression in females carrying both a hemizy-
gous P-lacZ insertion located on chromosome 3 [BQ16 (Josse et al.
2007)] and a hemizygous PBoL insertion (m2a; 93.8% of TSE, n = 241).

LacZ homology2dependent silencing is sensitive to
mutations affecting the piRNA pathway gene aubergine

TSE has been shown to be highly sensitive to mutations affecting the
piRNA silencing pathway (Josse et al. 2007; Todeschini et al. 2010).
Repression of a PBoL target transgene by a P-lacZ telomeric locus was
tested in aubergine mutant contexts (Table 3). aubergine is one of the
main actors involved in the piRNA amplification mechanism termed
“ping-pong” which functions in the germline (Brennecke et al. 2007;
Li et al. 2009; Malone et al. 2009). TSE between P-lacZ transgenes was
found previously to be null in aubergine heteroallelic mutant contexts
(Josse et al. 2007). Similarly, P-1152 repression of the PBoL A7.6B
insertion was almost completely (2.6%) or completely abolished in the
two aubergine heteroallelic mutant contexts tested (Table 3). There-
fore lacZ homology-based trans-silencing is dependent on aubergine.

DISCUSSION
The genome of natural populations of Drosophila melanogaster has been
invaded by three TE families during the last century: I, hobo, and P
(Blackman 1989; Engels 1989; Finnegan 1989). For all three, a repression
mechanism was established, and for two of them, P and I, repression has
been shown to involve a maternal effect and complex epigenetic trans-
mission over generations (Bucheton et al. 1976; Engels 1979; Picard et al.
1978). P and I repression involves regulatory copies of these TEs located
on all chromosomes (Engels 1979; Picard et al. 1978), but some master
regulatory sites corresponding to copies inserted in heterochromatin have
been identified (Jensen et al. 2002; Picard 1978; Ronsseray et al. 1991).
Both P and I repression mechanisms are sensitive to mutations affecting
heterochromatin formation and RNA silencing (Bucheton et al. 2002;
Chambeyron et al. 2008; Klenov et al. 2007; Reiss et al. 2004; Ronsseray
et al. 1996). For P element repression (P cytotype), the existence of
a maternally transmitted cytoplasmic component (pre-P cytotype), cou-
pled with chromosomally inherited P copies, was shown to be necessary
to establish strong repression in the zygote (Niemi et al. 2004; Ronsseray
et al. 1993). However, the maternally inherited component is not an
autoreproducible component (Ronsseray et al. 1993; Sved 1987). Further-
more, upon discovery of the piRNA silencing pathway (Brennecke et al.
2007; Gunawardane et al. 2007) sequence analysis of piRNAs suggested
that a high proportion of TEs are repressed in the gonads by this ho-
mology-dependent silencing mechanism. In particular, deep-sequencing
of ovarian small RNAs allowed detection of piRNAs derived from I and P
elements whose maternal transmission is correlated with repression
of hybrid dysgenesis induced by massive transposition of these TEs

n Table 1 PBoL transgenes are repressed by autosomal TSE
silencers

Line name m2a w1a A7.6B

Cantony

♀ \♂ 0% (1344) 0% (1077) 0% (1457)
♂\♀ 0% (420) 0% (429) 0% (368)

P-1155
♀\ ♂ 56.3% (448) 81.2% (399) 93.2% (382)
♂\♀ 0% (409) 0.3% (344) 0% (305)

T-1
♀ \♂ 100% (769) 100% (465) 100% (544)
♂\♀ 0% (332) 0% (303) 0% (353)

Reciprocal crosses were performed between individuals indicated in column 1
and in line 1. TSE was measured in G1 females. In each case, the first line (♀\ ♂)
gives the percentage of TSE (total number of egg chambers scored in paren-
thesis) in progeny produced by crossing females indicated in column 1 with
males indicated in line 1. The second line (♂ \♀) gives the percentage of TSE
observed in progeny of the reciprocal cross (total number of egg chambers
scored in parenthesis). P-1155 carries a P-lacZ-rosy transgene, similar to P-
1152, located at the telomere of the 3R chromosomal arm. The T-1 line carries
a tandem array of seven P-lacZ-white transgenes located in the middle of the 2R
chromosomal arm. The Cantony reference line is devoid of any P-transgene or P-
element. PBol, PiggyBac-based transgenes containing the lacZ gene under con-
trol of the otu gene promoter; TSE, trans-silencing effect.

n Table 2 A telomeric P-lacZ locus can repress two PBoL transgenes inserted at allelic or nonallelic positions

Row Parental Cross Genotype of G1 Females Analyzed % TSE n

1 ♀ m2a x ♂ m2a + / + ; m2a / m2a ; + / + 0.0 381
2 ♀ m2a x ♂ w1a + / + ; m2a / w1a ; + / + 0.0 844
3 ♀ m2a x ♂ A7.6B + / + ; m2a / + ; + / A7.6B 0.0 316
4 ♀ P-1152 ; m2a x ♂ P-1152 ; m2a P-1152 / P-1152 ; m2a / m2a ; + / + 95.8 406
5 ♀ P-1152 ; m2a x ♂ w1118 P-1152 / + ; m2a / + ; + / + 84.2 310
6 ♀ P-1152 ; m2a x ♂ m2a P-1152 / + ; m2a / m2a ; + / + 87.3 512
7 ♀ P-1152 ; m2a x ♂ w1a P-1152 / + ; m2a / w1a ; + / + 90.2 877
8 ♀ P-1152 ; m2a x ♂ A7.6B P-1152 / + ; m2a / + ; + / A7.6B 97.4 381

The parental crosses shown in column 2 were performed in order to generate G1 females whose genotype is given in column 3. In each case, G0 females carrying
P-1152 were homozygous for this locus. LacZ staining of G1 female ovaries was performed and TSE was measured. Columns 4 and 5 give the TSE percentage and
the total number of egg chambers counted, respectively.
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(Brennecke et al. 2008). In the case of P, these maternally trans-
mitted small RNAs very likely correspond to the pre-P cytotype.

All these data suggest a model in which the genome harbors several
“traps” for invasive mobile DNA sequences which constitutively produce
piRNAs and allow repression by a homology-dependent silencing mech-
anism. Some families (gypsy, ZAM and Idefix) are regulated by a hetero-
chromatic locus called flam-COM located close to the centromere of the
X chromosome (Desset et al. 2003; Mevel-Ninio et al. 2007; Pelisson et al.
1994; Prud’homme et al. 1995). This repression takes place in the somatic
follicle cells of the ovary and, therefore, is mediated by a functionally
different piRNA pathway (Desset et al. 2008; Malone et al. 2009; Pelisson
et al. 2002). It is noteworthy that this regulation presents different genetic
properties because gypsy repression, for example, does not exhibit a ma-
ternal effect nor trans-generational epigenetic transmission (A. Pélisson,
personal communication). For the I factor, repression appears to involve
homology-dependent silencing in the germline (Jensen et al. 1999, 2002;
Malinsky et al. 2000; Robin et al. 2003) and major repressive loci appear
to be located in pericentromeric heterochromatin (Jensen et al. 2002) and
in the intercalary heterochromatin 42AB locus which contains numerous
fragments of TEs (Brennecke et al. 2008). For the P element, Telomeric-
Associated Sequences appear to be a major trap. Indeed, numerous P
strains deriving from natural populations having various geographical
origins have been found to carry P elements located at the telomere of
the X chromosome (Ajioka and Eanes 1989; Ronsseray et al. 1989).
Telomeric P elements inserted in TAS deriving from seven natural pop-
ulations have been further isolated in a genomic background devoid of
other P copies and were shown to have repressive capacities (Marin et al.
2000; Ronsseray et al. 1996, 1998; Stuart et al. 2002). The combination of
a telomeric defective P element with various target P-transgenes showed
that repression induced by the telomeric P-element is dependent on
P-element homology between the telomeric and target loci (Marin
et al. 2000; Roche and Rio 1998).

To validate and generalize this model, it remained, however,
important to determine via a functional assay whether trans-silencing
can be established via sequence homology other than that derived from
the P element. In the present article, we show that the lacZ gene located
inside a piggyBac-derived transgene is strongly repressed by a maternally
inherited telomeric P-lacZ transgene, this repression exhibiting variega-
tion, which is a typical phenotype of TSE. The parallel between P-lacZ
and PBoL repression by a telomeric P-lacZ also includes the capacity to
be repressed by autosomal silencers and sensitivity to aubergine muta-
tions. Therefore, this functional assay indicates that repression by

sequences inserted in TAS is not a P-element restricted property but
rather a more general repression system that may function for other
TEs inserted in TAS, including those recently introduced in the ge-
nome. Thus, TSE not only allows us to address the nature of P cytotype
but also corresponds to a sensitive or appropriate tool to investigate
phenotypic and genetic properties of a piRNA silencing pathway func-
tioning in nurse cells.

Taking into account the epigenetic trans-generational effects of TSE
and its variegating phenotype (Josse et al. 2007), predictive assump-
tions can be proposed for properties of a germline-specific piRNA
pathway. For example, variegation between egg chambers inside ova-
ries resembles position effect variegation in the eye observed for genes
located close to heterochromatin (Girton and Johansen 2008), and this
suggests that target repression by piRNAs may involve heterochroma-
tin formation. In addition, long-term memory of the maternal effect
observed over generations with TSE (Josse et al. 2007) indicates that
piRNA-based repression functioning in the germline undergoes ampli-
fication that can transcend a single fly generation to reach its maxi-
mum level. Note that P is not the only TE displaying long-term
inheritance of its repressive properties because I factor regulation also
shows such trans-generational effects (Bucheton 1979; Jensen et al.
1999; Picard et al. 1978). It will be interesting to investigate whether
such a long-term trans-meiosis epigenetic inheritance exists for other
piRNA producing loci in the genome.
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